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Abstract: Magnetic fluid hyperthermia (MFH) is a medical treatment where the temperature in
the tissue is increased locally by means of heated magnetic fluid in an alternating magnetic field.
In recent years, it has been the subject of a lot of research in the field of Materials, as well as in the
field of clinical testing on mice and rats. Magnetic fluid manufacturers aim to achieve three objectives;
high heating capacity, biocompatibility and self-regulatory temperature effect. High heating power
presents the conversion of magnetic field energy into temperature increase where it is challenging to
achieve the desired therapeutic effects in terms of elevated temperature with the smallest possible
amount of used material. In order to carry out the therapy, it is primarily necessary to create a fluid
and perform calorimetric measurement for determining the Specific Absorption Rate (SAR) or heating
power for given parameters of the magnetic field. The article presents a model based on a linear
response theory for the calculation of magnetic losses and, consequently, the SAR parameters are
based on the physical parameters of the liquid. The calculation model is also validated by calorimetric
measurements for various amplitudes, frequencies and shapes of the magnetic field. Such a model
can serve to help magnetic fluid developers in the development phase for an approximate assessment
of the heating power.

Keywords: magnetic fluid; loss model; specific absorption rate; linear response theory

1. Introduction

Magnetic fluids attract attention because of their unique properties, which, in several respects,
differ considerably from those of bulk materials. A great deal of promising applications have arisen
because of this, especially in medicine for cancer treatment using hyperthermia. This is a treatment
where magnetic-fluid tumour-loaded tissue is exposed to an AC magnetic field which, in the case
of mild hyperthermia, results in a temperature rise from 41–43 ◦C. An ideal hyperthermia treatment
should destroy the tumour cells selectively without damaging the surrounding healthy tissue [1].

The heating effect of a magnetic fluid, when exposed to an AC magnetic field, is a direct
consequence of different physical mechanisms. The transformation of field energy into heat depends
strongly on the frequency and amplitude of the AC field. It also depends on the nature of the particles,
such as particle size, surface modification, and the carrier liquid. These arguments have been dealt
with others in works [1–10]. For the successful use of fluids for medical purposes, knowledge of
heating power and its temperature dependence is essential.
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This work represents a systematic study of the heating effect of superparamagnetic nanoparticles
in alternating (amf) and rotating magnetic field (rmf). Results of analytical calculations are compared
with calorimetric measured results for various frequencies and amplitudes of the magnetic field for
the purpose of hyperthermia treatment.

2. Model of Magnetic Losses Calculation

The magnetic relaxation time corresponding to the time in which the direction of the magnetic
moment of nanoparticle flip and reverse its direction under the influence of external magnetic field,
representing a crucial parameter that defines the power dissipation.

The two mechanisms of alignments mentioned above indicate that, in the theory of magnetic
nanoparticles relaxation, there are two possible relaxations; the first one is called Néel relaxation (τN)
and the second is Brownian relaxation (τB).

Néel relaxation is dominant for smaller particles, and magnetic moments follow the alternating
magnetic field by rotating against the anisotropic energy barrier within the particles. Brownian
relaxation, which dominates larger particles, is the action of whole-scale rotation of particles within
the base fluid. The expressions for τN and τB are given by Equations (1) and (2), were τ0 is an
exponential factor 1 × 10−9 provided by McNab et al. in Reference [11] and later Rosensweig [12],
Ka is the anisotropy constant in J/m3, Vp is the volume of particle in m3, kB is a Boltzmann constant
(1.38 × 10−23 J K−1). T is an absolute temperature in K, Vh is the hydrodynamic volume of spherical
particles, including surfactant thickness, and η is the viscosity of the base fluid.

τN = τ0e
KaVp
kBT (1)

τB =
3Vhη

kBT
(2)

For determining magnetic losses, it is not important which of the two relaxation mechanisms will
prevail, but the resulting relaxation time τ, which is calculated according to Equation (3)

τ−1 = τ−1
B + τ−1

N (3)

The model of magnetic fluid losses calculation is set for the rotating magnetic field, where the
orthogonal breakdown of magnetic variables implies two main directions, x and y. According to P.
Cantillon-Murphy [13] a rotational magnetic field excitation has two complex components ĥx = Hex

and ĥy = jHey, and, therefore, components of magnetization vector M can be calculated as

M̂x = χx
ĥx

jωτ + 1
, M̂y = χy

ĥy

jωτ + 1
(4)

In above equation ω is the magnetic field frequency (2πf ) and χ is the maximum value of a
chord susceptibility, calculated from a maximum value of time changing magnetic field in the case
of an alternating field, or its amplitude in the case of a rotating field. Both cases can be calculated by
Reference [13].

χx =
ϕMd
Hex

(
coth(αx)−

1
αx

)
, χy =

ϕMd
Hey

(
coth

(
αy
)
− 1

αy

)
(5)

The unitless Langevin parameter α can be calculated as α = µ0 Vp Md He/kBT, in the same
manner for x and y, replacing He with a field excitation vector component, ϕ is the volume fraction of
magnetic nanoparticles in suspension, and Md is the bulk saturation magnetization. The time-averaged
volumetric heating power P in W/m3 can be calculated with Equation (6), and consists of two
components of a rotating field, whereas, in the case of an alternating field, only one component remains.

P =
µ0
2

Re
(

jωM̂x ĥ∗x + jωM̂y ĥ∗y
)

(6)
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Here, Re stands for a real part of the complex value, ĥ∗x and ĥ∗y denote a complex conjugation of ĥx

and ĥy, respectively. The Specific Absorption Rate (SAR) [8] is the most commonly used parameter to
compare different materials in similar magnetic conditions, or vice versa. It is also the most common
way to determine heating power experimentally, and the aim of this paper is to calculate SAR and
compare it to measured values; it is evaluated using Equation (7) were ρm is the mass density of the
magnetic nanoparticles.

SAR =
P

ρm
(7)

3. Materials and Methods

3.1. A: Characterization of A Magnetic Fluid Sample

For evaluating the loss model, we used a commercially available sample of magnetic fluid that
had previously been exposed to SAR characterization for alternating and rotating magnetic fields.
Maghemite nanoparticles (γ-Fe2O3) dispersed in mineral oil form a stable suspension with a saturation
magnetization of 42.3 kA/m; when divided with a bulk saturation magnetization of 400 kA/m it
reveals the volume fraction of magnetic nanoparticles ϕ = 10.57%.

A Transmission Electron Microscopy (TEM) analysis was performed and the resulting image of
ferrofluid nanoparticles is shown in Figure 1. Usually fatty acids are used for colloidal stabilization
of magnetic nanoparticles in non-polar hydrocarbons. Such capping agents are approx. 1 nm in
length [14], increasing the hydrodynamic radius of the nanoparticles for the same value. For this
reason, we have used the same value for the estimation of the relaxation time.
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Figure 1. TEM image of maghemite nanoparticles in a magnetic fluid sample.

Empirical, number-weighted, particle-size-distribution functions were estimated from the TEM
images, resulting in the distribution, seen in Figure 2 (blue circle, Nparticle actual). The particle size
is given as an equivalent diameter—the diameter of a circle having the same surface area as the
imaged particle. At least 500 particles were measured. The empirical number-weighted distribution
functions were normalized and fitted with a log-normal distribution function. The average size (dNTEM)
and standard deviation (σNTEM) were calculated from known relationships between the arithmetic
moments and the parameters of the log-normal distribution function denoted as Npart. fit [12]. The
diamond marker on this curve indicates values for selected diameters ranging from 3.5 to 14.5 nm
in a 1 nm step. To obtain the volume-weighted particle-size-distribution functions the empirical
number-weighted distributions were transformed to volume-weighted ones, normalized and fitted
with log-normal distribution functions. The parameters dVTEM and σVTEM were obtained in the same
fashion as the number-weighted particle-size-distribution parameters [15]. Normalised actual values
of particles volume are marked with red triangles, whilst the Gaussian fit curve is a red-star curve. At
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some values, a huge difference of up to 20% is seen from the fit curve and actual values, hence, the
latter were selected for further analysis.
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Figure 2. TEM images of the nanoparticles and the corresponding nanoparticle empirical size
distribution (solid symbols) fitted with Gaussian curves (lines).

The result of the TEM analysis is the vector of the volume fraction of each size-group of particles
Vactual. In order to use this result, we had to divide it with the vector sum, and multiplied it with the
actual volume fraction of magnetic nanoparticles (8).

ϕd =
Vactual ϕ

∑dmax
dmin

Vactual_d
· 100% (8)

The result is the volume percent of each size-group of particles in suspension, as can be seen in
Figure 3. For example, the volume fraction of a 7.5 nm size-group is 1.611%, whilst the sum of all
particles is 10.57%, as previously calculated from measurements.
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3.2. B: Measurements of Magnetic Fluid Losses

To evaluate the Specific Absorption Rate (SAR) of magnetic fluid experimentally there are several
methods, where calorimetric measurement is used most commonly. Because of its simplicity it is
widely accepted, and SAR can be calculated using Equation (9), where c is specific heat capacity, ρ is
the density of the sample and mFe is the mass of magnetic nanoparticles per unit volume. The ratio
dT/dt is the time derivative of measured temperature, where its maximal value is relevant for SAR
evaluation; usually it occurs within the first few seconds of magnetic field switch-on. Temperature
measurement is realised with a FISO fiber optic sensor.

SAR =
c ρ

mFe

(
dT
dt

)
max

(9)

We have developed two systems for experimental evaluation of SAR, the first one for an alternating
magnetic field, and the second for a rotating magnetic field. System properties and methods are
presented in Reference [3] for the alternating and Reference [4] for the rotating field, where, in this
paper, only the experimental results are used for comparison with the calculation model.

4. Results and Discussion

The calculation of the heating power or the SAR of the magnetic fluid was divided into individual
size groups, as evaluated in Figure 3. We divided the liquid artificially into twelve parts, calculated
their individual contribution to the total SAR losses, and summarized them at the end. According to
our problem, Equation (6) can be written as follows.

P =
µ0
2

Re

(
12

∑
i=1

(jωM̂xi ĥ∗x + jωM̂yi ĥ∗y)

)
(10)

According to the equations of the model, it is first necessary to determine the relaxation times for
each individual size group of particles with respect to Equations (1), (2) and (3); for the SAR calculation,
the resulting relaxation time τ is relevant, as seen in Figure 4.
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Figure 4. Calculated relaxation times for different magnetic core sizes for three temperatures
and viscosities.
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As the faster of both mechanisms prevails, we can conclude that the Neel relaxation mechanism
prevails for particles below 12 nm in diameter whilst, for larger particles, the Brownian relaxation is
active. Circular markers indicate the relaxation times for actual particle sizes, and the graph shows
the dynamics of the change in the case of increased temperature, and, at the same time, the lowered
viscosity of the carrier fluid [16].

The necessary variables for the SAR evaluation are the density and the viscosity of the magnetic
fluid. The values of both variables change significantly with temperature; hence, this must be included
in the model since it may have an impact on the relaxation time calculations as seen above. For the
used sample of magnetic fluid three measurement points of density and viscosity had been measured;
20, 40 and 60 ◦C whose values are plotted in Figure 5. In the same graph an approximation function
of both variables is also plotted whilst for other temperatures proper temperature dependent curves
must be measured.
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Figure 5. Temperature dependence of density and viscosity of mineral oil based magnetic fluid
with 10.57% volume fraction of maghemite magnetic nanoparticles, three measured points and
approximation function for the temperature range from 0 to 100 ◦C.

Langevin’s function (coth(α)-α−1), which appears in the expression for complex susceptibility
(5), depends only on the volume of the particles at a constanting temperature, the external magnetic
field, and the magnetization of the material. Figure 6 displays this function multiplied with weight
factor (ϕMd/He) according to (5) for the change of particle size from 0–40 nm, where twelve lines are
plotted for selected volume concentrations from Figure 3. The zoomed view reveals the actual values
of calculated susceptibilities for selected size groups, ranging from 0 to 0.17 for an applied alternating
magnetic field of 4.3 kA/m.

Calculated chord susceptibilities are used for the magnetization component calculation (5) as a
key parameter for determining the heating power (6) of the magnetic fluid exposed to a magnetic field.
Individual contributions are displayed in Figure 7 for the 4.3 kA/m, 395 kHz magnetic field and the
corresponding concentrations of individual size groups. According to Reference [17] linear response
theory is valid for this system, since particles are below 20 nm and magnetic fields are below 10 mT.
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The following are the results of calculations for examples of alternating and rotating magnetic
fields and comparison with measured values.

4.1. Alternating Magnetic Field

The comparison between calorimetric measured and calculated values of magnetic fluid heating
SAR, obtained at the same frequencies are shown in Figure 8. For six selected frequencies, the
calorimetric measurements were made in the same way as described in Reference [3] and comparing
them with the above-described SAR calculations.

The next series of figures revealed the best match between calculated and measured SAR values
at the field frequency of 395 kHz. When the field frequency is higher, the measured SAR values are
higher, while at lower values the reverse is true. The deviations are in the range of ±15 percentage,
and it should be noted that, even in the measured values, a certain degree of a certain degree of error
exists, due mainly to the determination of the maximal temperature derivative. From this, we can
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conclude that the proposed calculation describes well the values of the SAR parameter in the selected
frequency and amplitude of magnetic field strength range with a certain degree of tolerance.Materials 2018, 11, x FOR PEER REVIEW  8 of 11 
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4.2. Rotating Magnetic Field

The model for magnetic losses indicates higher values of SAR in the case of the rotating magnetic
field seen in Equation (6), where two contributions, hx and hy, contribute equally to total losses. This



Materials 2019, 12, 591 9 of 11

theoretical assumption has been validated experimentally, and results are summed in Reference [4],
explaining the experiment and method in details. For calculating the rotational losses, we extended
the model of the calculation to two components of the magnetic field, as indicated by (1)–(7).

We tested the loss model with experimental results for one frequency of 402 kHz. In the measuring
system [4], we performed three calorimetric measurements for the single-alternating magnetic field at
amplitudes 1, 2 and 3 kA/m, and double (x and y) system power supply at the same field amplitudes
for achieving the rotational magnetic field. Expectedly, the fluid was heated more intensely at a
rotating magnetic field by 40 to 50%, resulting in the same ratio of SAR losses. Both the measured
curves, the alternating and the rotational fields, are shown in Figure 9 for the same magnetic conditions
(amplitude, frequency and type of magnetic field). We also performed a calculation of SAR magnetic
losses, whereby, in the case of a rotational field, we take into account the complex value of the
contributions in x and y magnetic field components in such a way that the total contribution is summed
up in a vector manner. The result of the analysis of the calculation is plotted in the same graph, where
we see a good match between the model calculation and the actual measurements.
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5. Conclusions

In the manufacturing process for magnetic fluids for medical hyperthermia, one of the key
desires is finding the maximum heating power of the magnetic nanoparticles, and, consequently,
the smaller amount of material used in treatment to achieve the desired target temperatures. Often,
fluid manufacturers do not have a realistic idea of the heating power of the sample until standard
calorimetric measurements of the SAR are performed. The aim of this article was to test known
equations for evaluating losses, and then validate the calculation mode experimentally.

Comparison of the loss calculation model and the measurement indicates a good correlation of
the results within a relatively broad frequency spectrum. Since both cases involve certain deviations, it
would be worthwhile to pay more attention to the repeatability of measurements in the continuation,
as well as to experiment with different samples of magnetic fluid. In the case of calculations, more
attention should be paid to the measurement of the physical parameters of the liquid and, in particular,
their temperature dependence, since, in most cases, they are altered significantly, even with minor
temperature changes. The loss calculation model can be used as a good basis only with precise
knowledge of all input parameters of the magnetic fluid. In the case of model validation in other
samples, the model could be used to study different magnetic materials, carrier liquids, different
particle size distributions, different concentrations, different amounts of surfactant, etc.
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The comparison of magnetic fluid SAR characteristic between calculated and measured results
in case of amf results reveal a good match between them. However, if we compare magnetic losses
between the alternating and rotational magnetic fields, we find that the rotation field really creates
greater losses, but, on the other hand, only a 50% larger loss does not outweigh the complexity of the
system needed to create a rotational magnetic field of sufficiently large amplitudes. In this case, two
rectangular coils are required, and, consequently, two dual phase-shifted power supplies. In the case
of amf, however, the sample is in the centre of the coil where the field is strongest, and can easily reach
greater amplitude, and, therefore, the alternating field remains the dominant field shape in the case of
medical usage of magnetic fluid hyperthermia.
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