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Abstract: The effects of temperature on bulk hydrogen concentration and diffusion have been tested
with the Devanathan—Stachurski method. Thus, a model based on hydrogen potential, diffusivity,
loading frequency, and hydrostatic stress distribution around crack tips was applied in order to
quantify the temperature’s effect. The theoretical model was verified experimentally and confirmed
a temperature threshold of 320 K to maximize the crack growth. The model suggests a nanoscale
embrittlement mechanism, which is generated by hydrogen atom delivery to the crack tip under
fatigue loading, and rationalized the ∆K dependence of traditional models. Hence, this work could
be applied to optimize operations that will prolong the life of the pipeline.
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1. Introduction

Hydrogen embrittlement [1,2] is the most severe degradation mechanism in buried pipeline
steel and is an issue involving the loading, environment, and physical property of the steel [3–6].
Temperature is a determining factor in hydrogen diffusivity and bulk hydrogen concentration co and,
thus, also determines the level of hydrogen embrittlement [7–9]. Hence, crack propagation in pipeline
steel has a strong temperature dependence. However, traditional models (like Paris’ law) only quantify
the relationship of the crack growth with the stress intensity range (∆K) [10], or verify the correlation
of crack growth with loading frequency f [11–14]. Additionally, no model is available that quantifies
the effect of temperature on crack growth.

When hydrogen is not present in steel, the toughness of the steel would increase with temperature,
meanwhile, the hardness would decrease. Specifically, the crack resistance of steel would increase with
temperature [15,16]. However, when hydrogen is introduced, the temperature dependence of the crack
resistance of steel remains debatable, and further studies are required in this field. Therefore, the hydrogen
diffusion model has been applied to quantify the effect of temperature. Hydrogen atoms are driven
by hydrostatic stress to accumulate around the crack tip [17,18]. The trapped hydrogen atoms near a
crack lower the free surface energy [19], thus enhancing cleavage-like failure. This postulation is the
hydrogen-enhanced decohesion (HEDE) mechanism [20–22]. The hydrogen-enhanced local plasticity
mechanism (HELP) [23–26] can be interpreted in a way that hydrogen atoms enhance the dislocation
generation and emission, thus increasing the local plasticity and leading to the subsequent failure by
exhaustion of the material strain capability. These two mechanisms provide a cleavage mechanistic
framework for predictive models: (1) hydrogen atoms will be trapped in plastic deformations and will
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diffuse into the plastic zone and saturate plastic defects [27–29]; (2) the hydrogen atoms will aggregate
at the crack tip after saturating the plastic zone, diminishing the energy for cleavage [18]; and (3) as
the atomic hydrogen concentration (an atomic ratio of number of hydrogen atoms to iron atoms) at the
crack tip approximates 1, every bond between adjacent iron atoms would be weakened by the hydrogen
atom, and the bindings are easily broken to form free surfaces fully covered by hydrogen atoms [17].
Typically, the temperature will not affect the plastic zone size because yield strength has little temperature
dependence when compared with hydrogen diffusivity and concentration [11]. As the temperature
rises from 293 to 373 K, the yield strength only changes one percent [30]. Therefore, the temperature
dependence of hydrogen diffusivity and equilibrium are critical factors that should be determined to
quantify the temperature dependence of hydrogen embrittlement.

A crack growth model based on hydrogen diffusion [17] can be described as

.
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where
.
a is the crack growth rate; ∆a is the crack length change; D is the hydrogen atom diffusivity; m2/s;

ΩH is the partial volume of hydrogen atom; v is Poisson’s ratio; co is the bulk equilibrium hydrogen atomic
concentration; ao is the original length of the crack; kB is the Boltzmann constant; and T is temperature. This
model establishes a quantitative relationship between the temperature and crack growth rate because both
D and co are dependent on temperature T. However, this model is only applicable in static loading and in a
brittle condition because of the plastic zone [31,32] which is generated in cyclic loading, as the aggregation
of hydrogen atoms by plastic deformations is ignored in this model. However, this model involves the
physical properties of the materials and environmental parameters, as well as the loading factors, whereas
only the loading factors are considered in traditional models. To improve the theoretical model so that
it can be applied in industrial operations, hydrogen-diffusion related crack growth theory was applied
to a new model where hydrogen atoms saturate the plastic zone before they diffuse to the crack tip. As
Figure 1 shows, the stress and dislocation density are small outside the plastic zone when compared with
inside, and the hydrogen concentration outside the plastic zone is approximated to be the bulk equilibrium
concentration co. An illustrated annulus region outside the plastic zone will offer hydrogen atoms during
loading and deplete partial hydrogen atoms during unloading. If the annulus region is large enough
(the resource of hydrogen atoms is enough) and the loading time is long enough, the crack growth rate
is maximized as hydrogen atoms have enough time to saturate the plastic zone during loading. As the
hydrogen concentration approximates unity at the crack tip, the free surfaces are generated.
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Figure 1. Schematic showing the evolution of a pre-existing microcrack; the yellow circular zone is the
plastic zone where the stress is concentrated and plastic deformations (dislocations) are aggregated.
The hydrogen atoms need to distribute according to the stress intensity and saturate the dislocations
core (T symbols), then diffuse to the crack tip. If the atomic hydrogen concentration ahead of a crack tip
approximates 1, free surfaces are generated (red). The stress intensity and dislocation density outside
the plastic zone is low, hence, the hydrogen concentration outside the plastic zone approximates the
bulk hydrogen concentration, co.
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2. Temperature Dependence of Critical Loading Frequency

Critical loading frequency was identified back in the 1880s and is a frequency in the loading
spectra below which the crack growth rate reaches the maximum and remains constant [33]. This
threshold is only established as hydrogen atoms exist in the specimen. It is natural to associate this
threshold with hydrogen diffusion and aggregation. The movement of hydrogen atoms dependent on
axial stress Fr, and Fr near the crack tip, is related to the hydrostatic stress σhyd, Fr = −ΩH∇rσhyd. ΩH
is the partial volume of the hydrogen atom and the average velocity of the hydrogen atom is defined
as [28]

Vr =

∫ rp+req
rp

∫ Kmax
Kmin

DFr
kBT dKIdr

(Kmax − Kmin)req
, (2)

where rp is the size of the plastic zone and req is the size of an annulus region around the plastic zone
to supply sufficient hydrogen atoms into the plastic zone. The saturation number of hydrogen atoms
N(KI) is related to the stress, the size of plastic zone, and the bulk equilibrium hydrogen concentration,
co. It is also equal to the number of hydrogen atoms that the virtual hydrogen supply area, encircled
by the dotted line in Figure 1, can offer:

N(Kmax)− N(Kmin) =
2πcolz

a3
o
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)
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where lz is the thickness of specimen, and the time that requires hydrogen atoms to saturate the plastic
zone as the stress intensity rises from Kmin to Kmax is tc =

req

Vr
. The threshold for the loading frequency

is fc = 1/(2tc). This threshold is sensitive to temperature because some of the parameters have a strong
temperature dependence. For example, the diffusivity of hydrogen atoms is in an exponential function
with T and is expressed as D = Do × 10−8 × EXP(− E

kBT ). The diffusion coefficients in iron have a large
scatter because hydrogen atoms can be trapped by impurities. Typical Do values can range from 3.35
× 10−8 to 2.2 × 10−7 m2/s, and E is the diffusion barrier which ranges from 0.035 to 0.142 eV. The
specimen was assumed to have a bcc structure, hence, the theoretical D expression, which is deduced
from first principles in the bcc lattice, is shown as [34]

D = 1.5× 10−7 exp(−0.088 eV/kBT) m2s−1. (5)

The predicted threshold of loading frequency (f critical) corresponds to a scenario where the plastic
zone is saturated with hydrogen atoms, and it is also expected that less time is required to saturate
the plastic zone if the movement of hydrogen atoms (Vr) is enhanced. The inset of Figure 2 shows
that the predicted velocity of the hydrogen atoms increases with temperature, and the prediction was
verified in Figure 4 in the next section. Basically, more hydrogen atoms can aggregate in the plastic
zone during the same time interval and under the same stress intensity as T is increased. In other
words, the time required to saturate the plastic zone is smaller and the temperature is higher under the
same loading condition. In Figure 2, the filled symbols were tested for critical loading frequency in
HY-130 steel and the open symbols are the predicted values. The results showed rough agreement
and verified the temperature enhancement to critical loading frequency. The predicted values and
empirical values did not converge as the stress intensity was large (∆K = 30.8 MPa * m0.5), because the
space between the adjacent iron atoms was enlarged as the stress intensity increased. Thus, hydrogen
diffusion was enhanced because of the extra volume induced by a larger stress intensity [35]. This kind
of enhancement is negligible in this calculation, however, predictions under common stress intensities
(∆K = 14 or 20.9 MPa * m0.5) showed good agreement with the empirical values.
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Figure 2. The predicted and tested critical loading frequency versus temperature, where the filled
symbols are the tested values in the HY-130 steel, and the open symbols are the predicted values. Both
sets of data showed the same tendency, which verified the predictive capability of the model. The
inset predicted the hydrogen movement velocity at different temperatures and showed that hydrogen
movement was enhanced by temperature [33].

3. Temperature Dependence of Hydrogen Concentration

The hydrogen-assisted failure mechanism can be facilitated either by increasing the hydrogen
concentration or increasing the hydrogen movement. The temperature dependence of hydrogen
concentration and diffusion can be tested with Devanathan–Stachurski double electrolysis cells. An
X80 steel specimen (the hydrogen density and diffusivity are not related to the strength of the steel,
so the X80 test results can be applied to other steels) with a thickness of 1200 µm and diameter of 35
mm is shown in Figure 3a. The sample was sealed by polytetrafluoroethylene with 740 silica gel on
one surface and was electroplated with nickel on the other surface to prevent the recombination of the
hydrogen atoms. After the electroplating was completed, the polytetrafluoroethylene was removed
from the specimen and the specimen was cleaned with deionized water.
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Figure 3. (a) The X80 specimen. (b) The equipment designed for this study, which consisted of a
constant current, the PARSTAT2273, and double electrolysis cells.

Afterwards, the dried steel specimen was located between two electrolysis cells as shown in
Figure 3b. The corrosion test on the naked side was performed in a near neutral pH solution which
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was employed to charge the hydrogen atoms under a polarized electrical potential of 300 mV. Initially,
the hydrogen atoms were generated on the naked side and moved to the other side of the specimen
afterwards. A PARSTAT2273 was applied to test the current density of the specimen on the test
side, which was covered with nickel. The tested current density, as shown in Figure 4, is related
to the hydrogen concentration. As the current approaches a constant value, the surface hydrogen
concentration approximates the bulk equilibrium hydrogen concentration.
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Figure 4. The current density curves of X80 steel. The stable current density increases with the
temperature, which means more hydrogen atoms are generated at the surface of the specimen. Namely,
the supply of hydrogen atoms increases in the specimen as the temperature increases. As the hydrogen
density and diffusivity are not related to the strength of the steel, the X80 test results can be applied to
other steels.

The facilitating effect of temperature on hydrogen movement was confirmed by the results shown
in Figure 4. The sharp rise of the current density could be detected and recorded in a shorter time at
high temperature. To be specific, the length of the initial horizontal line was negatively proportional to
the temperature, which indicates that less time was spent by the first hydrogen atom travelling to the
testing side. The positive correlation of hydrogen concentration with temperature was verified using
Figure 4. As osmotic current densities of hydrogen atoms were tested at different temperatures, there
was a terrace value for each temperature where the current density stayed constant, and this current
density corresponded to the bulk hydrogen concentration in the steel. The relationship of current
density i∞ with bulk hydrogen concentration is

co =
i∞lz
FD

, (6)

where F is the Faraday constant and D is the diffusivity of the hydrogen atoms. The current density i∞

increased remarkably with temperature, hence co increased with temperature and a specific co value
could be calculated with Equation (6) at different temperatures. However, the equilibrium hydrogen
concentration near a crack has an exponential relation with T, as shown in Equation (7), which suggests
that increasing temperature may diminish the hydrogen concentration near a crack.

ceq = co exp
(

4(1 + v)KIΩH

3πkBT
√

2πr

)
(7)
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Consequently, the experiments suggest that increasing temperature will facilitate the movement of
hydrogen atoms and bulk hydrogen concentration, however, Equation (7) suggests that as temperature
increases the co, it still diminishes the exp(1/T) set. Hence, the specific value of ceq should be calculated
as determining the crack growth rate.

4. Temperature Dependence of Crack Growth Rate

To quantify the temperature dependence of crack growth, a model based on hydrogen-enhanced
decohesion (HEDE) was developed. Here, we employed the criteria that when the atomic ratio of a
hydrogen atom ahead of a crack reached 1, the free surfaces formed, and the crack propagated. The
corresponding free surface length at different stress intensities can be shown as

L(KI) =

[
4(1 + v)ΩH

3πkBT
√

2π ln(1/co)

]2

K2
I , (8)

and the HEDE model can be indicated as [L(Kmax)− L(Kmin)]/( f / fcritical)
0.1

(
da
dN

)
HEDE

= A
(

1 + R
1− R

)
∆K2

( f / fcritical)
0.1 , (9)

where A is an environmental factor related to temperature and pH, and can be illustrated as A =(
4(1+v)ΩH

3πkBT
√

2π ln(1/co)

)2
[19,27]. The set

(
1+R
1−R

)
∆K2 is also a component of energy density in the Griffith

model where all strain energy is converged to free surface energy [36,37]. The energy density is
shown as

∆s =
1− 2v

4πG(T)

(
1 + R
1− R

)
∆K2. (10)

Hence, this model verified that the ∆K dependence of crack growth under the near neutral pH
stress corrosion cracking (NNpHSCC) condition is a brittle mechanism and can be applied to
rationalize the traditional crack growth models. However, the hydrogen bubble theory [38–40],
which consumes hydrogen atoms, was neglected in this derivation. Since both mechanisms are
related to hydrogen diffusion, the total hydrogen-assisted cracking rate is naturally expected to have
a power law relationship with the crack growth rate based on HEDE. The total crack growth rate
is (da/dN)T = (da/dN)n

HEDE. As the loading frequency f is smaller than f critical, the plastic zone is
saturated with hydrogen atoms and the crack growth rate is not dependent on the loading frequency
and reaches the maximum. HY130 steel is a high strength steel and the n value approaches 1. In
Figure 5, the experiments were carried out in C-2 (0.0035 KCl, 0.0195 NaHCO3, 0.0255 CaCl, 0.0274
MgSO4·7H2O, 0.0606 CaCO3 g/L) solution. The specimen was gritted to 9 mm thickness and a notch
in the compact tension (CT) specimens was orientated in a direction perpendicular to the mode I
loading direction. The dimensions of the specimen should be 50 × 50 × 9 mm3. The specimen was
polished to 600 grit finish and then pre-cracked in air by fatigue to generate a sharp crack from the
notch. Afterwards, the specimen was sealed in the test cells and pinhole-loaded with computer load
control. The crack growth rate was recorded at an R ratio of 0.25, a loading frequency of 0.1 or 4.9,
and the ∆K value was constant at 14 MPa *

√
m, and the temperature ranged from 280 to 350 K [31].

The temperature threshold to maximize the crack growth under NNpHSCC is indicated in Figure 5,
where f is equal to 0.1. Elevating temperature will facilitate hydrogen movement and increase the
surface hydrogen concentration, however, the equilibrium hydrogen concentration near a crack has an
exponential relation with T. More specifically, elevating temperature will enhance hydrogen generation
and diffusion but restrict hydrogen accumulation near defects. Consequently, the threshold was
generated in the vicinity of 320 K, as shown by the black symbols in Figure 5. If there is insufficient
diffusion time for the hydrogen atoms to accumulate (loading frequency is large), the restriction effects
of hydrogen accumulation caused by the increase in temperature are not significant when compared
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with the enhancements of hydrogen diffusion and generation. Hence, as the loading frequency f was
bigger than the f critical, the predicted threshold was not detected, as shown by the red symbols.
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5. Crack Growth Rate Prediction in Different Steels

In Figure 6, the crack growth rate in X65 was tested at different R ratios and loading frequencies,
and the ∆K value ranged from 10 to 25 MPa *

√
m [41]. The yield strength σys of X65 steel was 448

MPa, and was much smaller than that of the HY130 steel. Typically, steel with a smaller yield strength
has a larger plastic zone and generates more plastic deformations before failure as the plastic zone size

is negatively related to yield strength under the plain strain condition, rp = 1
6π

(
Kmax
σys

)2
. The size of

the plastic zone is smaller for steel that possesses a higher yield strength. The plastic zone is the area
concentrated with defects caused by plastic deformations, which would trap significant amount of
hydrogen atoms. The theoretical model was based on HEDE theory; therefore, the trapping effects of
plastic deformation-caused defects had been ignored. Hence, for a high strength steel in which the
plastic zone is small, the model is more accurate and the fixing parameter n approximates unity. Hence,
the n value of X65 steel was smaller than that of HY130. In Figure 6, all predicted crack growth data fit
very well with the n value of 0.92.
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6. Conclusions

In the presented study, we tested the temperature dependence of hydrogen generation and
diffusion in high strength steel. Based on a mechanism of hydrogen-assisted brittle failure, a theoretical
model was developed to predict crack growth rate in different loading spectra and at different
temperatures. The model yielded rough agreement with the empirical values in different steels
with fixed n values and suggests that the n value in the brittle model is positively correlated with the
degree of brittleness of the steel, and is approximately 1 in high strength steel. This conclusion verified
the brittle failure mechanism in pipeline steel and suggests that a nanoscale hydrogen-rich region may
exist ahead of a crack tip in the NNpHSCC condition.

The model also served to rationalize the empirical models and provide a framework of ∆K
dependence of crack growth. As the loading frequency was smaller than the f citical, the temperature
threshold to maximize crack growth was predicted in the model and verified by experiment. These
results confirmed the predictive capability of the model and suggest that this model can be applied to
optimize steel operations.
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