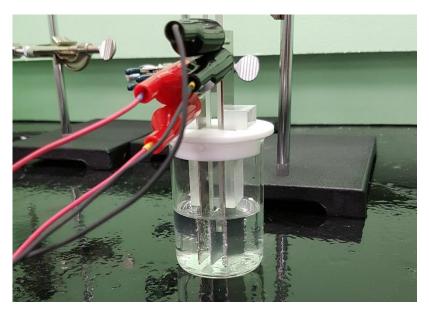
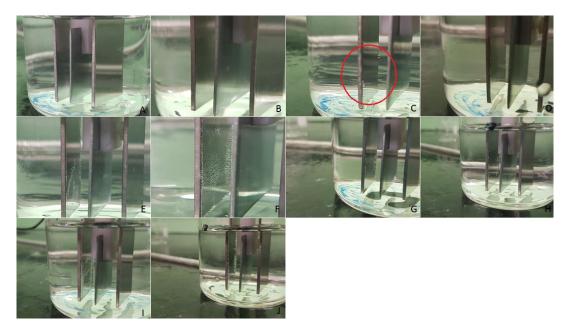
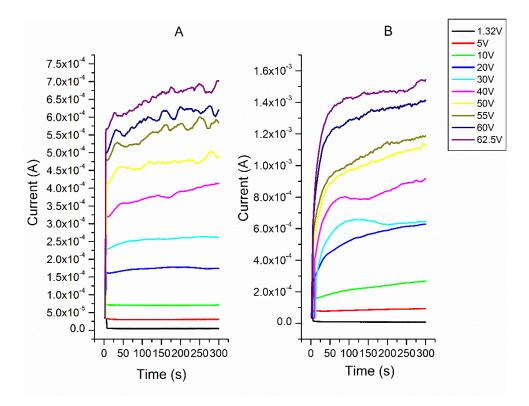


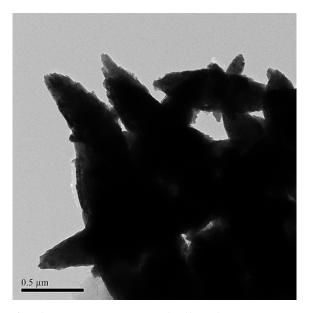
Article ZnO Synthesized Using Bipolar Electrochemistry: Structure and Activity

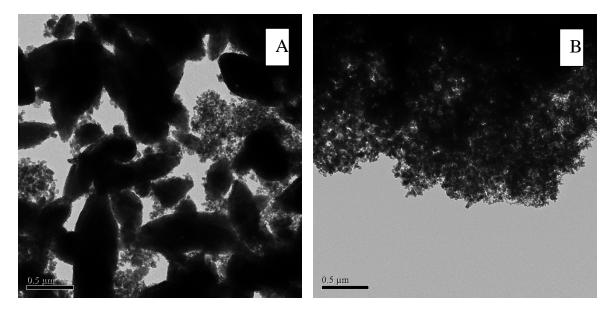
Arya Hakimian, Steven McWilliams and Anna Ignaszak *

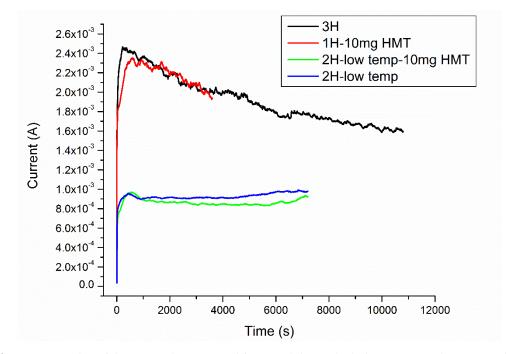
Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, NB, E3B 5A3, Canada.

* Correspondence: Anna.Ignaszak@unb.ca; Tel: +86-150-6261-9128


Figure S1. Reaction cell setup used for bipolar electrochemical synthesis.


Figure S2. Images of the qualitative varying potential analysis performed at (**A**) 1.32 V, (**B**) 5 V, (**C**) 10 V, (**D**) 20 V, (**E**) 30 V, (**F**) 40 V, (**G**) 50 V, (**H**) 55 V, (**I**) 60 V and (**J**) 62.5 V.


Figure S3. *I*–*t* graphs of current generation at varying applied potentials for both systems (**A**) without and (**B**) with a bipolar electrode (BPE) present.

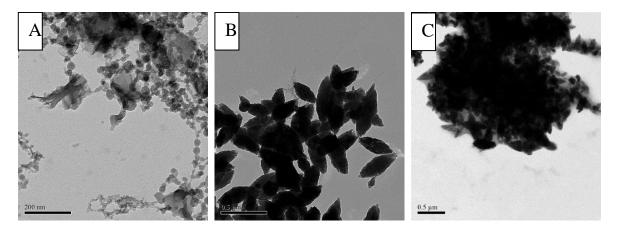

Figure S4. TEM image of a 2-h room temperature trial collected via evaporation showing the presence of larger agglomerates without any indication of smaller nanoparticles.

Figure S5. TEM images of 2-h trials collected via filtration performed at (**A**) room temperature and (**B**) in an ice bath (~5°C).

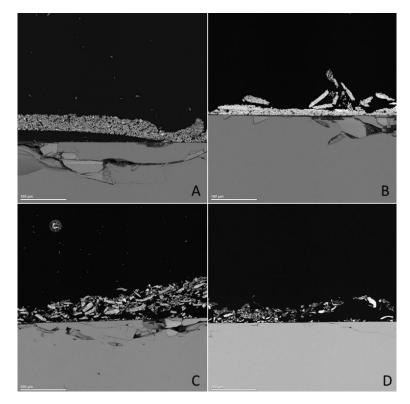

Figure S6. Overlay of the *i*–*t* graphs generated from trial data, which demonstrates the magnitude of current generated under various conditions.

Figure S7. TEM images of 2-h room temperature trial with 10 mg hexamethylenetetramine (HMT) collected via evaporation resulting in both larger agglomerates and smaller nanoparticles (**A**,**B**) and 2-h room temperature trial with 10 mg PVP resulting solely in larger agglomerates (**C**).

Figure S8. Comparison of pure white commercial ZnO (**left**) and 2-h synthesized sample (**right**) in ethanol depicting the off-white color obtained for the synthesized samples.

Figure S9. SEM cross-sectional images of Fluorine doped tin oxide (FTO)-coated ZnO electrodes for (**A**) Com, (**B**) 3He, (**C**) 3Hf and (**D**) 2H samples.

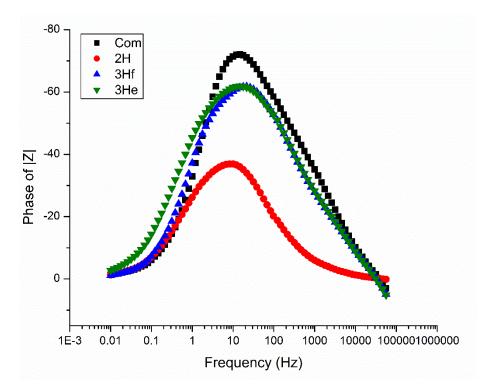


Figure S10. Bode diagram of the illuminated ZnO-based electrodes with the commercial and synthesized samples.

Table S1. Comparison of charger-transfer resistance (R_{ct}) , transport resistance (R_{tr}) , an effective					
diffusion length (L_n) and free-electron lifetimes (t_n) under illumination estimated by impedance					
modelling and from Equations (13) and (14) in main manuscript.					

	Dark						
ZnO	L	Rct	Rtr			Ln	
	(µm)	$(\Omega \times 10^6)$	(Ω)	$\sqrt{\mathbf{R_{ct}}/\mathbf{R_{tr}}}$		$(\mu m \times 10^3)$	
Com	65.5	94	245.0	619.6		40.5	
2H	84.3	1.6	112.2	119.4		10.1	
3He	54.4	1.2	82.5	119.0		6.5	
3Hf	80.2	4.5	130.8	185.6		14.9	
	Illuminated						
ZnO	L	R _{ct}	Rtr		Ln	$ au_{ m n}$	
	(µm)	(Ω)	(Ω)	$\sqrt{\mathbf{R_{ct}}/\mathbf{R_{tr}}}$	$(\mu m \times 10^2)$	(s)	
Com	65.5	4558.5	245.0	4.2	2.7	0.27	
2H	84.3	994.6	112.2	2.9	2.4	0.21	
3He	54.4	4104.4	82.5	7.0	3.8	0.25	
3Hf	80.2	1947.7	130.8	3.8	3.0	0.35	