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Abstract: Temperature history and hardening depth are experimentally characterized in the rotational
laser hardening process for an AISI 1045 medium carbon steel specimen. A three-dimensional finite
element model is proposed to predict the temperature field distribution and hardening zone area.
The laser temperature field is set up for an average distribution and scanned along a circular path.
Linear motion also takes place alongside rotation. The prediction of hardening area can be increased
by increasing the rotational radius, which in turn raises the processing efficiency. A good agreement
is found between the experimental characterized hardness value and metallographic composition.
The uniformity of the hardening area decreases with increasing laser scanning speed. The increased
laser power input could help to expand the hardening depth.

Keywords: heat treatment; rotational laser scanning; quenching; martensite

1. Introduction

Laser surface heat treatment technology can perform surface modifications such as hardening and
alloying. The composition and structure of the material surface can be changed by these methods and
improve the surface hardness, wear resistance, fatigue resistance, and corrosion resistance. Compared
with other traditional heat treatment techniques, such as flame heating, high frequency, carburizing,
and nitriding heat treatment, laser surface heat treatment has the advantages of good strengthening
effect, small thermal deformation, good processing flexibility, and automatic production, which
increases the efficiency of each industry in terms of production. Therefore, the surfaces of the crankshaft,
connecting rod, gear, and so forth must have high local hardness and wear-resistant parts. Most of
them use steel with a carbon content of approximately 0.4% for surface hardening heat treatment.
In the past decade, there has been much research on obtaining the best laser quench hardening
parameters. Martínez used laser transformation hardening with scanning optics (LTHS) in the surface
treatment industry and proposed a closed-loop control to maintain a nominal temperature value [1–3].
Different methods have been provided to control the process temperature by investigating the effect
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of scanning speed on the thickness variation of carbon steel’s hardened layer. A stripy spot with
uniform-intensity array spots and intensity blow-up in the edge of the whole array spots were used
in large-sized workpieces. Large area and uniform surface hardening treatment are required for
industrial applications [4]. In addition to these requirements of the plane, the local heat treatment of
complex geometric surfaces is also one of the advantages of laser hardening [5]. Barka used a 3 kW
Nd:YAG laser to heat AISI 4340 cylindrical parts. The Taguchi method was used to optimize the
processing parameters. In addition, for the surface hardening of large cylindrical elements, Orazi et al.
proposed the use of a rotating machined part to machine the surface of a laser light ring-shaped
material, which could obtain a uniform hardened layer on the surface of AISI 1040 [6]. For the
choice of laser spot types, Liverani et al. assumed that the laser beam had a tophat distribution.
The 2D and 3D laser heat transfer analysis modes were combined with AISI 9840 cam to verify the
results. The theoretical solution can quickly and accurately predict the hardening depth and multipass
processing tempering effect [7]. Tricarico et al. utilized a single-pulse laser with discrete spot irradiation
of a hypereutectoid steel. By changing the defocusing distances, the laser power and pulse energy
determined the influence of surface hardness and remelting area [8]. Li et al. used a high-power diode
laser with a rectangular spot of uniform energy distribution, as opposed to a carbon dioxide laser,
which has a circular spot with a Gaussian energy distribution. The final results showed that the surface
of the workpiece was not melted under the action of the high-power diode laser and the hardness
was almost the same in the workpiece. The carbon dioxide laser may cause the surface layer of the
test piece to melt due to the Gaussian energy distribution. The deeper the hardened layer, the lower
the hardness value [9]. Temperature is the most difficult factor to control during laser heat treatment.
However, the temperature can be estimated by changing the processing parameters with numerical
analysis [10–13]. In addition, the material absorptivity must also be considered in order to accurately
control the temperature parameters. Skvarenina and Shin used experimental and numerical analysis
to investigate the surface hardness and hardened layer depth of AISI 1536 steel under different laser
quenching conditions and to estimate the absorbance of the material for the laser [14]. Kim and Lee
used experimental methods to estimate the laser absorptivity of Inconel 718 nickel-based alloy and
proposed a prediction equation for the cutting force and preheating temperature of laser-assisted
milling [15]. The experimental equipment used in this study is the same as the laser-assisted milling
system used in [16]. This equipment provides a compounding process. For example, the heat treatment
can be performed after milling or simultaneously with milling by laser preheating. The current study
will provide a numerical and experimental analysis of the thermal response of the AISI1045 workpiece
material in the laser quenching process. The hardening zone of quenching induced by rotational laser
scanning will be experimentally measured and predicted by finite element modelling. The hardening
depth will be analyzed from the measured data and model prediction. A novel coaxial laser heating
spindle will be proposed for the heat treatment process. The temperature field prediction induced by a
rotational laser scanning path will be provided. A parametric study will be conducted to investigate
the effect of laser power and feed rate on the temperature field.

2. Finite Element Analysis Modelling

In the previous research, the author proposed a finite element analysis model of laser Gaussian
energy distribution [17], using a single-pass laser to discuss the effects of different processing
parameters on the hardened zone of medium carbon steel. The numerical analyses of this study
were also performed using the thermoelastic–plastic models of the commercial MSC Marc software
suite for finite element analysis. Coupled thermomechanical analysis was used to improve the
physical accuracy of our calculations. During each iteration of the simulation, the actual temperature
distribution of the model is acquired and the corresponding strains and stresses of the model are also
calculated. This ensures that the model will, at any point in time, satisfy all equilibrium equations
and convergence conditions. This method of numerical analysis produces results that are more
accurate than uncoupled thermomechanical methods. To ensure a reasonable level of computational
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efficiency, a simple 70 mm × 70 mm × 2 mm model was used. In the finite element analysis model,
an eight-node hexahedral element was used. The number of elements and nodes was 17,360 and
22,365, respectively, as shown in Figure 1. The mechanical properties of AISI 1045 [18] steel is shown
in Table 1. Based on the existing literature, the quenching and melting temperatures of AISI 1045 are
760 ◦C and 1520 ◦C, respectively. These temperature ranges were used to determine whether a material
was successfully hardened.
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Figure 1. Proposed laser heat treatment finite element model.

Table 1. Basic material properties of AISI 1045 steel.

Property Values

Density (kg/m3) 7870
Thermal Conductivity (W/m·◦C) Figure 2

Specific Heat (J/kg·◦C) Figure 2
Young’s Modulus (GPa) Figure 2

Yield Strength (MPa) 310
Coefficient of Thermal Expansion

(CTE, µm/m·◦C) 15

Poisson’s Ratio 0.27
Hardening Temperature Th (◦C) 760

Melting Temperature Tm (◦C) 1520
Tempering Temperature Tt (◦C) 400
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Figure 2. The temperature-dependent material properties of AISI 1045 steel: (a) Young’s modulus; (b) 
coefficient of thermal conductivity; and (c) specific heat. 

On the boundary condition setting, it is assumed that the laser energy is focused on the surface 
of the material. The initial temperature of the material was set to 25 °C, and the temperature of the 
material was reduced to room temperature in consideration of the natural heat convection effect of 
the air, and the heat convection coefficient was assumed to be 12.6 W/m2·°C.  

2.1. Laser Heat Source Modeling 

The laser power distribution on the laser beam focus plane is described in terms of an average 
distribution, as seen below:  𝑃௘=𝜂௘ 𝑃௜𝜋𝑅௘ଶ 

(1) 

where Pe is the energy absorbed by the material, Pi is the laser power, ηe is the absorption rate of 
the laser energy for the material, and Re  is the radius of the laser spot. As the vast majority of 
materials cannot fully absorb the energy provided by the laser, it is necessary to account for the laser 
energy absorption rate of the material used; that is, ηe. Based on the data provided by references 
[13,15,19–21], ηewas defined as 35%.  

The mathematical function for Pe was written in the Fortran programming language. Using the 
subroutine “Flux” interface provided by the boundary condition function in MSC Marc, the 
numerical values calculated using the Fortran code were fed into MSC Marc to be used in subsequent 
calculations [22]. These calculations are as follows: In each time step, the Flux subroutine is called 
during each Gaussian integration point of the analysis, with the appropriate flux type being specified 
in the DIST FLUXES input option. The flux type is chosen according to the element type. The 
equivalent heat flux obtained from the mathematical function of Pe at each node is then calculated 
and stored.  

Figure 2. Cont.
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Figure 2. The temperature-dependent material properties of AISI 1045 steel: (a) Young’s modulus;
(b) coefficient of thermal conductivity; and (c) specific heat.

On the boundary condition setting, it is assumed that the laser energy is focused on the surface
of the material. The initial temperature of the material was set to 25 ◦C, and the temperature of the
material was reduced to room temperature in consideration of the natural heat convection effect of the
air, and the heat convection coefficient was assumed to be 12.6 W/m2·◦C.

2.1. Laser Heat Source Modeling

The laser power distribution on the laser beam focus plane is described in terms of an average
distribution, as seen below:

Pe = ηe
Pi

πR2
e

(1)

where Pe is the energy absorbed by the material, Pi is the laser power, ηe is the absorption rate of the
laser energy for the material, and Re is the radius of the laser spot. As the vast majority of materials
cannot fully absorb the energy provided by the laser, it is necessary to account for the laser energy
absorption rate of the material used; that is, ηe. Based on the data provided by references [13,15,19–21],
ηe was defined as 35%.

The mathematical function for Pe was written in the Fortran programming language. Using the
subroutine “Flux” interface provided by the boundary condition function in MSC Marc, the numerical
values calculated using the Fortran code were fed into MSC Marc to be used in subsequent
calculations [22]. These calculations are as follows: In each time step, the Flux subroutine is called
during each Gaussian integration point of the analysis, with the appropriate flux type being specified in
the DIST FLUXES input option. The flux type is chosen according to the element type. The equivalent
heat flux obtained from the mathematical function of Pe at each node is then calculated and stored.

In this study, a coaxial laser heating system is used for the quenching process. The first attempt to
use coaxial laser heating was made by Brecher et al. [23]. The author also studied the use of coaxial
lasers for preheated milling. This article uses the same equipment. Instead of traditional heat treatment
to heat the whole workpiece, a local heating scheme is introduced. The partially quenched area can be
created on the workpiece, maintaining the toughness inside the material. In addition to the translation
in the x-direction, the laser rotates along with the workpiece in the milling process at a constant angular
speed, as shown in Figure 3.
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Figure 3. Schematic diagram of rotational laser scanning path.

2.2. FE Model for Circular Scanning of Moving Heat Source

In the heat treatment of medium carbon steel, when the temperature above the A1 phase
change point reaches or more [24], it cools rapidly and the hardness of the material surface increases
considerably. Therefore, in this paper, the temperature distribution after finite element analysis is used
to determine the area with a temperature higher than 760 ◦C within the hardened region. The hardened
zone determination is represented by a color-matching temperature gradient, as shown in Figure 4.
The temperature indicated in white, that is, over 760 ◦C, denotes that the temperature in this area has
reached the quenching temperature.
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Figure 4. Schematic diagram of moving local grid redivision and hardening zones. Hardening zone of
(a) top view and (b) cross section with laser power of 500 W, rotational speed of 100 rpm, and feed rate
of 100 mm/min.
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The internal temperature gradient of the material is extremely narrow due to the local heating
of the material by the YAG laser. During the calculation, when the analysis data diverge, the mesh is
partially refined. The remeshed element is used to refine the heat-affected zone range and improve
data accuracy. As the number of elements cannot be re-refined indefinitely, the mesh convergence
analysis used increase the efficiency of the calculation is shown in Figure 5. The results show that
when the number of meshes reaches 17,360 or more, the values of the highest temperature, hardening
width, and depth of the hardened layer of the material are almost stable. Therefore, going forward,
the number of analyzed mesh elements should exceed 17,360.
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Since the model mesh uses eight-node hexahedral elements with four Gaussian integration
points on each side, the elements are proportional to the number of Gaussian integration points.
Thus, the mesh density and number of Gaussian integration points at the laser focus point affect the
accuracy of its heat source distribution. In order to represent the mesh density of the laser heat source
distribution fineness, the overall model is divided and the remesh setting is used. The subroutine
program “Uadapbox” is applied to define the area of the local mesh redivision. The number of elements
in the grid redivision is set by levels. For each level, the hexahedral elements will increase by a factor
of eight. All the models established in this paper use level 3 as the setting.

The redivided area of the mesh has a box-shaped boundary, and the area is set within the rotation
range of the laser heat source. The boundary has the same moving speed. The mesh redivision starts
when the moving boundary enters the grid. At this time, the number of elements in the area will rise
sharply and the total amount of elements will increase rapidly as the boundary moves. This not only
reduces the efficiency of the solution, but also uses a large number of computer resources. Therefore,
a subroutine must be set in the function to ensure that the subdivided mesh returns to the initial mesh
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size after leaving the box boundary, as shown in Figure 4. Thus, the accuracy of the simulation can be
maintained and the efficiency of the solution can be improved while saving computer resources.

3. Experimental Setup

During the experiment, a coaxial laser heating system was used for the laser hardening process,
as shown in Figure 6. The laser lens and cooling water were set beside the CNC spindle, as shown in
Figure 7a. A 1064-nm YAG laser with a maximum power of 1200 W was used in the experiment.
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The dimensions of the AISI 1045 medium carbon specimen used in this experiment were
210 mm × 170 mm × 2 mm. Various laser powers were used to simplify the numerical calculations at
different scanning speeds (ranging from 400 W to 900 W), and the spindle feed rate was 100 mm/s.
The diameter of the laser spot was 2 mm and the laser rotational radius was 7 mm. The thermocouple
was welded at a distance of 8 mm from the centre of the weld path, as shown in Figure 7b. The Vickers
hardness testing instrument was used to measure the surface hardness via laser heating during the
hardness measurement experiment.

4. Results and Discussion

4.1. Results of Finite Element Analysis and Experimental Results

The top surface temperature history of the workpiece, which is located 0.5 mm away from the
laser beam heating centre, is plotted as a function of time for different laser power inputs in Figure 8.
The temperature increases sharply when the laser spot approaches the measurement point and then
cools to the room temperature. When the laser power input decreases from 500 W to 700 W, the peak
temperature shows a slight increase from 390 ◦C to 670 ◦C. This also means that the temperature at
the centre of the laser beam will be higher than the measured value. The temperature change history
shows that as the laser spot shifts closer to the measurement point, the temperature rises, and it falls as
the laser moves away. Therefore, the data contain a cyclic pattern due to the temperature rise and drop.
When the laser is located far away from the measuring point, the temperatures of the heating and
cooling gradient are balanced. Simultaneously, the temperature will decrease steadily. The predicted
temperature history profiles agree well with the measurements.
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Figure 8. Comparison of surface temperature between the experiment and FEM modelling at a laser
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Figure 9 shows the prediction of the temperature variation within the laser spot and the
experimental measurement. The reference points of the value are shown in Figure 3 (P1–P4). P1 is
located at the centre of the laser spot. The laser heats the material locally above temperature A1
(approximately 727 ◦C) and the material changes to the austenite phase and is then air-cooled naturally.
Taking experimental parameter no. 2 as an example, as shown in Table 2, the highest temperature
range of P1–P2 lies between 803.9 and 760 ◦C. As the laser-heated area is small relative to the total area
of the material, the air-cooling time is less than 1 s and the martensite phase is formed at a temperature
of 200–300 ◦C.

According to the continuous cooling transformation curve, when the cooling critical rate is greater
than 200 ◦C/s, the austenite phase will be transformed into the martensite phase [23]. The maximum
temperature is less than 760 ◦C at P3 and P4, and thus, there is no quench hardening phenomenon.Materials 2018, 11, x FOR PEER REVIEW  10 of 14 
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Figure 9. Finite element analysis of temperature history prediction in the laser beam core.

Tables 2 and 3 show the changes in the surface and cross-section hardness of the material after
quenching by heating the material at different laser powers. It can be inferred that when the laser power
is 400 W, the temperature does not reach the austenite phase transfer temperature. The metallographic
structure of the cross section indicates that the surface structure is the same as the inner layer and
martensite formation does not take place. When the laser power is 500 and 600 W, austenite forms.
After air cooling, the surface structure becomes martensite and the hardness distribution decreases
from the surface of the material to the inside. The hardening depth is 100 µm and 153 µm, respectively.
When the laser power is 900 W, the temperature is too high. This causes the surface layer of the
material to become molten. After cooling, the grain size is larger than the non-heat-treated area and no
martensite formation occurs in this zone, as shown in Figure 10d.

Table 2. Surface hardness measurements of AISI 1045 steel.

S = 100 rpm, F = 100 mm/min

EXP. No. Laser Power
(W)

Non-Heat-Treatment
Hardness (HV)

After Quenching
Hardness (HV)

Hardness Increase or
Decrease Rate (%)

1 400

317.3

222.2 −29.97
2 500 767.2 141.79
3 600 363.2 14.47
4 900 407.9 28.55
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Table 3. Cross-section hardness measurements of AISI 1045 steel.

S = 100 rpm, F = 100 mm/min

EXP. No. Laser Power
(W)

Experimental
Hardness

Depth (µm)

Min. Hardness
at Cross

Section (HV)

Max. Hardness
at Cross

Section (HV)

FEM Hardness
Depth (µm)

1 400 0 165 191 0
2 500 100 171 534 118.55
3 600 153 161 226 181.38
4 900 0 168 232 0Materials 2018, 11, x FOR PEER REVIEW  11 of 14 
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Figure 10. Cross-section hardness measurements of AISI 1045 steel at rotational speed of 100 rpm,
feed rate of 100 mm/min, and laser power of (a) 400 W, (b) 500 W, (c) 600 W, and (d) 900 W. (Vickers
hardness test)

The top views of the predicted temperature fields are shown in Figure 11. The maximum predicted
temperature for a laser power of 400 W is 633.4 ◦C, which is below the material quenching temperature.
The results in Tables 2 and 3 are compared with Figure 11a, and it is notable that the material in the
heating zone does not change to the γFe phase. Moreover, there is no phase change in the structure
during the cooling process. Figure 11b shows that the maximum temperature of the material is 803.9 ◦C
and the quenching temperature has reached the heat-affected zone. The hardness tests verify that the
hardness of the material can be increased by 141.79% (from 317.3 HV to 767.2 HV) under a power of
500 W, rotational speed of 100 rpm, and feed rate of 100 mm/min. When the laser power is 600 W,
the maximum temperature of the heat-affected zone is estimated to be 994.4 ◦C and the material is
δFe. The hardness after cooling increases by 14.47%. When the laser power is greater than 700 W,
the material temperature is between the softening and liquefaction points. Therefore, the increase in
the hardness of the material below this temperature after cooling is less than 30%.
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Figure 11. Top view of temperature field induced by a laser rotating at a rotational speed of 100 rpm,
with a 7 mm radius, x-directional moving speed of 100 mm/min, and power of (a) 400 W; (b) 500 W;
(c) 600 W; (d) 700 W; and (e) 900 W.

4.2. Finite Element Prediction: Parametric Study

The comparison of the temperature prediction and experimental results at different laser powers
and feed rates is shown in Table 4. The highest temperature error between the predicted data and
experimental results measured at P4 is less than 7%. Under fixed laser power, as the feed rate
increases, the temperature in the material heat-affected zone decreases, which will be detrimental to
the quenching process. When the feed rate increases, the quenching area becomes uneven, as shown in
Figure 12. The light grey area is the quenching area when the feed rate is 200–300 mm/min. Because the
rotation speed cannot match the feed rate, some areas are not heated by the laser. They are highlighted
by the area encircled by the yellow lines. Table 4 also shows that the predicted temperature at P1
is higher than 727 ◦C. This means that the laser power should be greater than 500 W as long as the
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feed rate is properly matched with the spindle speed. A uniform quench-hardened zone can thus
be obtained.

Table 4. Maximum temperature prediction and verification at the measuring point.

Laser
Power (W)

Feed Rate
(mm/min)

FEM Max.
Temperature
(◦C) (at P1)

EXP. Max.
Temperature
(◦C) (at P4)

FEM Max.
Temperature
(◦C) (at P4)

Prediction
Error (%)

(at P4)

500
100 803.9 370.8 392.29 5.8
200 774.4 164.9 165.49 0.36
300 758.5 85.1 90.49 6.33

600
100 994.4 298.3 292.52 −1.94
200 922.1 254.1 262.84 3.44
300 898.9 186.4 182.35 −2.17

700
100 1228 352.5 354.84 0.66
200 1118 341.3 344.64 0.98
300 1082 225.8 223.44 −1.05
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5. Conclusions

The temperature distribution in rotational laser scanning for AISI 1045 steel was experimentally
investigated. A three-dimensional finite element model was developed for the temperature field
prediction. The predicted temperature fields showed close approximation to the experimental
measurements. The hardening zone was also predicted by comparing the simulated isotherm with the
experimentally characterized hardness value and metallographic composition. A parametric study
was conducted to investigate the effects of laser scanning speed and power input on the hardening
zone. The hardening zone uniformity decreased with increasing laser scanning speed. The increased
laser power input could help expand the melting zone area with a laser power range of 500–600 W,
rotational speed of 100 rpm, and feed rate of 100 mm/min. Thus, the finite element model can be
applied to make temperature distribution predictions in coaxial laser heating systems.
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