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Abstract: An efficient analytical/numerical method has been developed and programmed to predict
the distribution of residual stresses and springback in plane strain pure bending of functionally
graded sheets at large strain, followed by unloading. The solution is facilitated by using a Lagrangian
coordinate system. The study is concentrated on a power law through thickness distribution of
material properties. However, the general method can be used in conjunction with any other through
thickness distributions assuming that plastic yielding initiates at one of the surfaces of the sheet.
Effects of material properties on the distribution of residual stresses are investigated.

Keywords: functionally graded materials; elastoplastic analysis; pure bending; residual stress;
large strain

1. Introduction

Structures made of functionally graded materials (FGM) are advantageous for many applications.
A difficulty with theoretical analysis and design is that structures made of FGM are classified by a
much greater number of parameters than similar structures made of homogeneous materials. For
this reason, it is desirable to perform parametric studies by analytic or semi-analytic methods as
much as possible. A review of results related to the analysis of FGM and published before 2007
is presented in [1]. This review focuses on structures with through-thickness variation of material
properties. Analytic solutions derived in [1–5] belong to this class of FGM as well. In [2–4], elastic and
elastic/plastic spherical vessels subjected to various loading conditions are considered. Thermo-elastic
simply supported and clamped circular plates are studied in [5]. Many analytic and semi-analytic
solutions are available for FGM discs and cylinders assuming that material properties vary in the
radial direction but are independent of the circumferential and axial directions. Purely elastic solutions
for a hollow disc or cylinder subjected to internal or/and external pressure are derived in [6–8].
An axisymmetric thermo-elastic solution for a hollow cylinder subjected quite a general system of
thermo-mechanical loading is presented in [9]. It is assumed that the temperature varies along the
radial coordinate. A plane strain analytic elastic/plastic solution for pressurized tubes is found in [10].
The solution is based on the Tresca yield criterion. Many solutions are proposed for functionally
graded solid and hollow rotating discs. Purely elastic solutions for solid discs of constant thickness are
given in [11,12], a purely elastic solution for a hollow disc of variable thickness in [13], a purely elastic
solution for hollow polar orthotropic discs in [14], and a solution for hollow cylinders using the theory
of electrothermoelasticity in [15]. An elastic perfectly plastic stress solution for hollow discs is derived
in [16] using the von Mises yield criterion.
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All of the aforementioned solutions deal with infinitesimal strain. A distinguished feature of
the solution provided in the present paper is that strains are large. The process considered is pure
bending of a FGM sheet under plane strain conditions. A review on bending of functionally graded
sheets and beams at infinitesimal strains is given in [17]. The present solution is based on the approach
proposed in [18]. It is shown in this paper that the use of Lagrangian coordinates facilitates the solution.
Moreover, the equations describing kinematics can be solved independently of stress equations in the
case of isotropic incompressible material. This is an advantage as compared to the classic approach
developed in [19] where the stress equations are solved first. The classic approach is restricted to
perfectly plastic materials, whereas the mapping in Equation (1) is valid for a large class of constitutive
equations. The approach proposed in [18] has already been successfully extended to more general
constitutive equations in [20–23]. It is shown in the present paper that the approach is also efficient
for FGM sheets. It is worth noting that a rigid plastic solution for pure bending of laminated sheets
(such sheets can also be referred to as functionally graded sheets) at large strain is given in [24].

2. Basic Equations

The process of plane strain pure bending is illustrated in Figure 1. The approach proposed
in [18] for solving the corresponding boundary value problem is based on the following
transformation equations:

x
H

=

√
ζ

a
+

s
a2 cos (2aη)−

√
s

a
,

y
H

=

√
ζ

a
+

s
a2 sin (2aη) . (1)

where (x, y) is an Eulerian–Cartesian coordinate system and (ζ, η) is a Lagrangian coordinate system.
Without loss of generality, it is possible to assume that the origin of the Cartesian coordinate system is
located at the intersection of the axis of symmetry of the process and the outer surface AB and that the
x-axis coincides with the axis of symmetry. The Lagrangian coordinate system is chosen such that

ζ = x/H and η = y/H (2)

at the initial instant where H is the initial thickness of the sheet. It is evident from these relations and
the geometry in Figure 1 that ζ = 0 on AB, ζ = −1 on CD, η = L/H on CB and η = −L/H on AD
throughout the process of deformation. Here, L is the initial width of the sheet. In Equation (1), a is a
time-like variable. In particular, a = 0 at the initial instant. In Equation (1), s is a function of a. This
function should be found from the stress solution and therefore depends on constitutive equations.
The condition in Equation (2) is satisfied if

s =
1
4

(3)

at a = 0. It is possible to verify by inspection that the mapping in Equation (1) satisfies the equation
of incompressibility. Moreover, this mapping transforms initially straight lines A1B1 and C1D1 into
circular arcs AB and CD and initially straight lines C1B1 and A1D1 into circular arcs CB and AD after
any amount of deformation (Figure 1). Furthermore, coordinate curves of the Lagrangian coordinate
system coincide with trajectories of the principal strain rates and, for coaxial models, with trajectories
of the principal stresses. Thus, the shear stress vanishes in the Lagrangian coordinates. In particular,
the contour ABCD is free of shear stresses. Let σζ and ση be the physical stress components referred to
the Lagrangian coordinates. The stress solution should satisfy the boundary conditions

σζ = 0 (4)
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for ζ = −1 and ζ = 0. The only non-trivial equilibrium equation in the Lagrangian coordinates has
been derived in [18] as

∂σζ

∂ζ
+

a
(
σζ − ση

)
2 (ζa + s)

= 0. (5)

The initial plane strain yield criterion of the functionally graded sheet is supposed to be

∣∣σζ − ση

∣∣ = 2√
3

σ0β
( x

H

)
. (6)

where σ0 is a material constant and β(x/H) is an arbitrary function of its argument. It is assumed that
material properties are not affected by plastic deformation. Therefore, Equation (6) can be rewritten in
the form ∣∣σζ − ση

∣∣ = 2√
3

σ0β (ζ) . (7)

In this case, the yield locus is invariant along the motion. The importance of this property of
material models has been emphasized in [25]. Let τζ and τη be the deviatoric portions of σζ and ση ,
respectively. Since the material is incompressible, τζ + τη = 0 under plane strain conditions. Then, the
yield criterion in Equation (7) is equivalent to

∣∣τζ

∣∣ = ∣∣τη

∣∣ = σ0β (ζ)√
3

. (8)

Hooke’s law generalized on functionally graded materials reads

τζ = 2G0g (ζ) εe
ζ , τη = 2G0g (ζ) εe

η . (9)

It has been taken into account here that Poisson’s ratio is equal to 1/2 for incompressible materials.
In addition, εe

ζ and εe
η are the total strain components in elastic regions and the elastic portions of

the total strain components in plastic regions referred to the Lagrangian coordinate system, G0 is a
material constant and g(ζ) is an arbitrary function of its argument.

Figure 1. Geometric configuration of the bending problem: (a) before deformation; and
(b) after deformation.
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Geometric parameters shown in Figure 1 depend on a and are expressed as [18]

rAB

H
=

√
s

a
,

rCD

H
=

√
s− a
a

, θ0 =
2aL
H

,
h
H

=

√
s−
√

s− a
a

. (10)

Once s has been found as a function of a, these parameters are immediate from Equation (10).

3. Stress Solution at Loading

It is assumed that the functions β(ζ) and g(ζ) involved in Equations (7) and (9) are such that
plastic yielding can only initiate at ζ = 0 or ζ = −1. This assumption can be verified using the purely
elastic solution with no difficulty. At the very beginning of the process, the entire sheet is elastic.
As deformation proceeds, one of the following three cases arises: (i) plastic yielding initiates at the
surface ζ = −1; (ii) plastic yielding initiates at the surface ζ = 0; and (iii) plastic yielding initiates
simultaneously at the surfaces ζ = −1 and ζ = 0. These cases should be treated separately. In the
following, ζ1 is the elastic/plastic boundary between the plastic region that propagates from the
surface ζ = 0 and the elastic region and ζ2 is the elastic/plastic boundary between the plastic region
that propagates from the surface ζ = −1 and the elastic region. It is evident that both ζ1 and ζ2 depend
on a. The general structure of the solution with two plastic regions is illustrated in Figure 2. Let M be
the bending moment. Then, its dimensionless representation is in terms of the Lagrangian coordinates
given by [18]

m =
2
√

3M
σ0H2 =

√
3

a

0∫
−1

ση

σ0
dζ. (11)

Figure 2. Schematics of elastic and plastic zones.

In the elastic region, the whole strain is elastic. Therefore, it follows from Equation (1) that the
principal logarithmic strains are

2εe
ζ = −2εe

η = − ln [4 (ζa + s)] . (12)

Since σζ − ση = τζ − τη , Equations (5) and (9) combine to give

∂σζ

∂ζ
+

G0ag (ζ)
(ζa + s)

(
εe

ζ − εe
η

)
= 0. (13)
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Eliminating the strain components in Equation (13) by means of Equation (12) results in

∂σζ

∂ζ
− G0ag (ζ)

(ζa + s)
ln [4 (ζa + s)] = 0. (14)

Integrating this equation with respect to ζ and using the boundary condition in Equation (4) at
ζ = 0 leads to

σζ

σ0
=

a
3k

ζ∫
0

g (χ) ln [4 (χa + s)]
(χa + s)

dχ,
ση

σ0
=

σζ

σ0
+

2
3k

g (ζ) ln [4 (ζa + s)] , (15)

where k = σ0/(3G0) and χ is a dummy variable of integration. The expression for ση in Equation (15)
has been derived using the identity ση = σζ − τζ + τη , and Equations (9) and (12). In the case of the
purely elastic solution, Equation (15) must satisfy the boundary condition in Equation (4) at ζ = −1.
Then, the equation for the function s(a) is

0∫
−1

g (χ) ln [4 (χa + s)]
(χa + s)

dχ = 0. (16)

Using Equation (15), in which s should be eliminated by means of the solution of Equation (16),
and the yield criterion in Equation (8), it is possible to determine which of the three cases mentioned
above occurs for given material properties. Simultaneously, the value of a at which plastic yielding
initiates is determined. This value of a is denoted as ae. In the following, it is assumed that a ≥ ae. It is
now necessary to consider Cases (i), (ii) and (iii) separately.

Case (i). There are two regions. A plastic region occupies the domain −1 ≤ ζ ≤ ζ2 and an elastic
region the domain ζ2 ≤ ζ ≤ 0. Equation (15) is valid in the elastic region. However, the function s(a)
is not determined from Equation (16). It is reasonable to assume that ση < σζ in the plastic region.
Therefore, the yield criterion in Equation (7) becomes

σζ − ση =
2√
3

σ0β (ζ) . (17)

Substituting Equation (17) into Equation (5) and integrating yields the dependence of the stress σζ

on ζ. Using Equation (17) again provides the dependence of the stress ση on ζ. As a result,

σζ

σ0
= − a√

3

ζ∫
−1

β (χ)

(χa + s)
dχ,

ση

σ0
=

σζ

σ0
− 2√

3
β (ζ) . (18)

It is evident that this solution satisfies the boundary condition in Equation (4) at ζ = −1. Both
σζ and ση should be continuous across ζ = ζ2. Consequently, τζ is continuous across ζ = ζ2. The
stress τζ on the elastic side of the elastic/plastic boundary is determined from Equation (15) and on
the plastic side from Equation (8). Then, the condition of continuity of τζ across the surface ζ = ζ2 is
represented as

g (ζ2) ln [4 (ζ2a + s)] = −
√

3kβ (ζ2) . (19)

Solving this equation for s yields

s =
1
4

exp

[
−
√

3kβ (ζ2)

g (ζ2)

]
− ζ2a. (20)
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Using Equations (15) and (18), the condition of continuity of σζ across the surface ζ = ζ2 is
represented as

ζ2∫
0

g (χ) ln [4 (χa + s)]
(χa + s)

dχ = −
√

3k
ζ2∫
−1

β (χ)

(χa + s)
dχ. (21)

In this equation, s can be eliminated by means of Equation (20). The resulting equation should
be solved numerically to find ζ2 as a function of a. Then, s as a function of a is readily found from
Equation (20). The yield criterion should be checked in the elastic region using the solution in
Equation (15). The calculation should be stopped when the yield condition is satisfied at one point of
the elastic region. Denote the corresponding value of a as a2.

In Case (i), Equation (11) becomes

m =

√
3

a

ζ2∫
−1

(
ση

σ0

)
dζ +

√
3

a

0∫
ζ2

(
ση

σ0

)
dζ. (22)

In the first integrand, ση/σ0 should be eliminated by means of Equation (18) and in the second by
means of Equation (15).

Case (ii). There are two regions. A plastic region occupies the domain ζ1 ≤ ζ ≤ 0 and an elastic
region the domain −1 ≤ ζ ≤ ζ1. The elastic solution in Equation (15) satisfies the boundary condition
in Equation (4) at ζ = 0. Therefore, it is convenient to rewrite this solution as

σζ

σ0
=

a
3k

ζ∫
−1

g (χ) ln [4 (χa + s)]
(χa + s)

dχ,
ση

σ0
=

σζ

σ0
+

2
3k

g (ζ) ln [4 (ζa + s)] . (23)

The elastic solution in this form satisfies the boundary condition in Equation (4) at ζ = −1.
It is reasonable to assume that ση > σζ in the plastic region. Therefore, the yield criterion in
Equation (7) becomes

σζ − ση = − 2√
3

σ0β (ζ) . (24)

Substituting Equation (24) into Equation (5) and integrating yields the dependence of the stress σζ

on ζ. Using Equation (24) again provides the dependence of the stress ση on ζ. As a result,

σζ

σ0
=

a√
3

ζ∫
0

β (χ)

(χa + s)
dχ,

ση

σ0
=

σζ

σ0
+

2√
3

β (ζ) . (25)

It is evident that this solution satisfies the boundary condition in Equation (4) at ζ = 0. Both
σζ and ση should be continuous across ζ = ζ1. Consequently, τζ is continuous across ζ = ζ1. The
stress τζ on the elastic side of the elastic/plastic boundary is determined from Equation (23) and on
the plastic side from Equation (8). Then, the condition of continuity of τζ across the surface ζ = ζ1 is
represented as

g (ζ1) ln [4 (ζ1a + s)] =
√

3kβ (ζ1) . (26)

Solving this equation for s yields

s =
1
4

exp

[
−
√

3kβ (ζ1)

g (ζ1)

]
− ζ1a. (27)
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Using Equations (23) and (25), the condition of continuity of σζ across the surface ζ = ζ1 is
represented as

ζ1∫
−1

g (χ) ln [4 (χa + s)]
(χa + s)

dχ =
√

3k
ζ1∫

0

β (χ)

(χa + s)
dχ. (28)

In this equation, s can be eliminated by means of Equation (27). The resulting equation should be
solved numerically to find ζ1 as a function of a. Then, s as a function of a is readily found from Equation
(27). The yield criterion should be checked in the elastic region using the solution in Equation (23). The
calculation should be stopped when the yield condition is satisfied at one point of the elastic region.
Denote the corresponding value of a as a1.

In Case (ii), Equation (11) becomes

m =

√
3

a

ζ1∫
−1

(
ση

σ0

)
dζ +

√
3

a

0∫
ζ1

(
ση

σ0

)
dζ. (29)

In the first integrand, ση/σ0 should be eliminated by means of Equation (23) and in the second by
means of Equation (25).

Case (iii). In this case, there are two plastic regions, −1 ≤ ζ ≤ ζ2 and ζ1 ≤ ζ ≤ 0, and one elastic
region, ζ1 ≤ ζ ≤ ζ2. At the beginning of this stage of the process, a = a1 and ζ2 = −1 or a = a2 and
ζ1 = 0. Let σn1 be the value of σζ at ζ = ζ1 and σn2 be the value of σζ at ζ = ζ2. Then, the elastic
solution in Equation (15) can be rewritten as

σζ

σ0
=

a
3k

ζ∫
ζ1

g (χ) ln [4 (χa + s)]
(χa + s)

dχ +
σn1

σ0
,

ση

σ0
=

σζ

σ0
+

2
3k

g (ζ) ln [4 (ζa + s)] . (30)

It follows from this solution that

σn2

σ0
=

a
3k

ζ2∫
ζ1

g (χ) ln [4 (χa + s)]
(χa + s)

dχ +
σn1

σ0
. (31)

The solution in Equation (18) is valid in the plastic region −1 ≤ ζ ≤ ζ2 and the solution in
Equation (25) in the plastic region ζ1 ≤ ζ ≤ 0 . Then,

σn2

σ0
= − a√

3

ζ2∫
−1

β (χ)

(χa + s)
dχ, (32)

and

σn1

σ0
=

a√
3

ζ1∫
0

β (χ)

(χa + s)
dχ. (33)

Equations (20) and (27) are valid. Therefore,

exp

[√
3kβ (ζ1)

g (ζ1)

]
− 4ζ1a = exp

[
−
√

3kβ (ζ2)

g (ζ2)

]
− 4ζ2a, (34)
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and

a =
1

4 (ζ2 − ζ1)

{
exp

[
−
√

3kβ (ζ2)

g (ζ2)

]
− exp

[√
3kβ (ζ1)

g (ζ1)

]}
. (35)

Equations (31)–(33) combine to give

ζ2∫
−1

β (χ)

(χa + s)
dχ +

1√
3k

ζ2∫
ζ1

g (χ) ln [4 (χa + s)]
(χa + s)

dχ +

ζ1∫
0

β (χ)

(χa + s)
dχ = 0. (36)

Eliminating in this equation s by means of Equation (20) or Equation (27) and then a by means of
Equation (35) supplies the equation to find ζ1 as a function of ζ2 (or ζ2 as a function of ζ1). Then, a as a
function of ζ1 (or ζ2) is found from Equation (35) and s as a function of ζ1 (or ζ2) from Equation (20)
or (27). The distribution of the stresses is determined from Equation (30) with the use of Equations (32)
and (33) in the elastic region, from Equation (18) in the region −1 ≤ ζ ≤ ζ2 and from Equation (25) in
the region ζ1 ≤ ζ ≤ 0.

In Case (iii), Equation (11) becomes

m =

√
3

a

ζ2∫
−1

ση

σ0
dζ +

√
3

a

ζ1∫
ζ2

ση

σ0
dζ +

√
3

a

0∫
ζ1

ση

σ0
dζ. (37)

In the first integrand, ση/σ0 should be eliminated by means of Equation (18), in the second by
means of Equation (30) and the third by means of Equation (25). As usual, it is necessary to verify that
the yield criterion is not violated in the elastic region.

4. Unloading

It is assumed that unloading is purely elastic. This assumption should be verified a posteriori.
At this stage of the process, the strains can be considered as infinitesimal. Let a f and s f be the values
of a and s, respectively, at the end of loading. These values are known from the solution given in the
previous section. Using Equation (10), the values of rCD and rAB at the end of loading, r f

CD and r f
AB,

are determined as

r f
CD
H

=

√
s f

a2
f
− 1

a f
≡ R f ,

r f
AB
H

=

√s f

a f
= r f . (38)

It is convenient to introduce a polar coordinate system (r, θ) with the origin at x = −H√s f /a f
and y = 0 (point O1 in Figure 1). The coordinate curves of this coordinate system coincide with the
coordinate curves of the (ζ, η)-coordinate system. Therefore, σζ = σr and ση = σθ where σr and σθ are
the normal stresses in the polar coordinate system. Moreover, r = R f H at ζ = 0 and r = r f H at ζ = −1.
The equilibrium equation for the increment of the stresses, ∆σζ and ∆ση , in the polar coordinate system
can be written as

∂
(
∆σζ

)
∂ρ

=
∆ση − ∆σζ

ρ
, (39)

where ρ = r/H. Since σζ = 0 at ζ = 0 and ζ = −1 at any stage of the process, the increment of this
stress should satisfy the conditions

∆σζ = 0, (40)

for ζ = 0 and ζ = −1.
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The displacement components from the configuration corresponding to the end of loading in the
polar coordinate system are supposed to be

ur = H

(
U0R2

f

ρ
− ρV0

2

)
and uθ = HρθV0, (41)

where U0 and V0 are dimensionless constants. Using Equation (41), the increment of the normal strains
in the polar coordinate system is determined as

∆εr = −
V0

2
−

U0R2
f

ρ2 , ∆εθ =
V0

2
+

U0R2
f

ρ2 . (42)

The increment of the deviatoric stresses is found from Equation (42) and the Hooke’s
law (Equation (9)) where the stresses and strains should be replaced with the corresponding
increments. Then,

∆τr = −G0g (ζ)

(
V0 + 2U0

R2
f

ρ2

)
, ∆τθ = G0g (ζ)

(
V0 + 2U0

R2
f

ρ2

)
. (43)

Using this solution, the right hand side of Equation (36) can be rewritten as

∆ση − ∆σζ

ρ
=

∆σθ − ∆σr

ρ
=

∆τθ − ∆τr

ρ
= 2G0g (ζ)

(
V0 + 2U0

R2
f

ρ2

)
. (44)

The Lagrangian coordinate ζ at the end of loading is expressed in terms of ρ as [18]

ζ =

(
ρ2a f − s f

)
a f

. (45)

Using this equation, it is possible to eliminate ζ in Equation (44). Then, substituting Equation (44)
into Equation (39) and integrating gives

∆σζ

σ0
=

2
3k

ρ∫
r f

g (ζ)
χ

(
V0 + 2U0

R2
f

χ2

)
dχ. (46)

It is evident that this solution satisfies the boundary condition in Equation (40) at ζ = −1
(or ρ = r f ). The other boundary conditions in Equations (40) and (46) combine to yield

V0

R f∫
r f

g (ζ)
ρ

dρ + 2U0R2
f

R f∫
r f

g (ζ)
ρ3 dρ = 0. (47)

Solving this equation for V0 results in

V0 = −2U0R2
f

R f∫
r f

g (ζ)
ρ3 dρ

 R f∫
r f

g (ζ)
ρ

dρ


−1

. (48)
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Using Equations (43) and (46), it is possible to represent the distribution of ∆ση as

∆ση

σ0
=

∆σζ

σ0
− 2∆τr

σ0
=

2
3k

ρ∫
r f

g (ζ)
χ

(
V0 + 2U0

R2
f

χ2

)
dχ +

2
3k

g (ζ)

(
V0 + 2U0

R2
f

ρ2

)
. (49)

The constant V0 can be eliminated in Equations (46) and (49) by means of Equation (48). It is then
obvious that both ∆σζ and ∆ση are proportional to U0. The distribution of the residual stresses follows
from Equations (46) and (49) in the form

σres
ζ

σ0
=

σ
f
ζ

σ0
+

2
3k

ρ∫
r f

g (ζ)
µ

(
V0 + 2U0

R2
f

χ2

)
dχ,

σres
η

σ0
=

σ
f
η

σ0
+

2
3k

ρ∫
r f

g (ζ)
χ

(
V0 + 2U0

R2
f

χ2

)
dχ +

2
3k

g (ζ)

(
V0 + 2U0

R2
f

ρ2

)
.

(50)

As before, ζ should be eliminated by means of Equation (45) and V0 by means of Equation (48).
The constant U0 remains to be found. To this end, it is necessary to use the condition that the bending
moment vanishes at the end of unloading. Using Equations (11) and (45), this condition can be
represented as

r f∫
R f

(
σres

η

σ0

)
ρdρ = 0. (51)

This equation should be solved for U0 numerically. Then, Equation (50) supplies the distribution of
the residual stresses. To verify that the solution given in Section 4 is valid, this distribution should be
substituted into the yield criterion in Equation (7) where σζ and ση should be replaced with σres

ζ and

σres
η , respectively. The left-hand side of Equation (7) should be less than or equal to

(
2/
√

3
)

σ0β(ζ) in
the range −1 ≤ ζ ≤ 0 .

5. Numerical Examples

Several numerical examples are presented in this section, based on the analytical solutions
developed in the previous sections. Our chosen modulus gradient function is g(ζ) = 1 + (G1/G0 −
1)(−ζ)N , and yield stress gradient function β(ζ) = 1 + (σ1/σ0 − 1)(−ζ)N . The power law exponent
N controls the functional distribution of material properties along the thickness coordinate ζ. The
power law distributions in modulus and yield stress with the same N have been proposed in the
literature [26,27]. The material parameters used in our numerical calculations are listed in Table 1.

Table 1. Material parameters used in the numerical examples.

G0, GPa G1, GPa σ0, GPa σ1, GPa N

Homogeneous 30 30 1 1 0.0001

FGM Case (i) 30 10 1 0.1 1

FGM Case (i) 30 10 1 0.1 3

FGM Case (ii) 10 30 0.1 1 1

FGM Case (ii) 10 30 0.1 1 3
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5.1. Homogeneous Sheet under Bending

When the homogenous sheet is under bending, both edges will simultaneously develop plastic
zones. Figure 3a shows the movement of the two elastic-plastic boundaries toward the centerline of
the sheet, as deformation magnitude increases. The deformation magnitude is measured by parameter
a. The applied bending moment is a function of a, as shown in Figure 3b. As an illustration of the
developed analytical solutions in previous sections, Figure 4 shows the stress distributions along the
sheet under two different deformation magnitudes. As can be seen, the plastic zones increase with a
for ση , while σζ remains in elastic regime. The reason for ση is not perfectly horizontal in the plastic
zone is because our numerical codes do not allow N set equal to zero, hence a very small N is chosen,
as shown in Table 1. After unloading, Figure 5a,b shows the residual stress distributions under two
different as. Larger a increases the magnitude of residual stresses after unloading. Moreover, the
residual stress σζ is zero at the left and right edges, as indicated by the red short-dashed line.

(a) (b)

Figure 3. For the homogeneous sheet under bending: (a) ζ1 or ζ2 vs. a; and (b) applied bending
moment m vs. a.

Figure 4. Stress distributions for the bent homogenous sheet with two different loading conditions
a = ah

1 = 0.0121 and a = ah
2 = 0.0775. Two plastic zones, one developed from the left edge and the

other from the right edge, increase their size as a increases for ση .
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(a) (b)

Figure 5. Residual stress distribution along the homogeneous sheet for: (a) a = ah
r1 = 0.0096; and

(b) a = ah
r1 = 0.0295. Solid line is for residual ση and dashed line for residual σζ . Zeros of σres

η and σres
ζ

are indicated by orange solid line and red dashed line, respectively.

5.2. FGM Sheet Belonged to Case (i) under Bending

In Case (i), the left edge (ζ = −1) of the sheet has smaller yield stress, hence a plastic zone will
start on the left edge first. Figure 6 shows the relationship between the applied bending moment and
deformation magnitude a with the gradient function exponent N = 1 and 3. As can be seen, larger m is
required for N = 3 than that for N = 1, as a increases. Under given deformation magnitudes, Figure 7
shows the stress distributions in the Case (i) FGM under plastic deformation. Larger plastic zone is
developed at the left edge as deformation increases. After unloading, residual stress distributions
are shown in Figures 8 and 9 for the N = 1 and N = 3 FGM, respectively. Residual stresses are more
predominant at the left edge. In addition, the residual stress σζ is zero at the left and right edges, as
indicated by the red short-dashed line.

Figure 6. Bending moment m vs. a for Case (i) with N = 1 and N = 3. With sufficiently large
deformation, i.e. large a, Case (iii) is automatically developed, hence both edges are plastically deformed.
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(a) (b)

Figure 7. Stress distributions for Case (i) with N = 1 with two different deformation magnitudes, i.e.,
two different as, for: (a) N = 1; and (b) N = 3. Two plastic zones, one developed from the left edge
and the other from the right edge, increase their size as a increases for ση .

(a) (b)

Figure 8. Residual stress distributions for Case (i) with N = 1 under deformation: (a) a = a(i)r1 =

0.011785065; and (b) a = a(i)r1 = 0.074421129. Solid line is for residual ση and dashed line for residual
σζ . Zeros of σres

η and σres
ζ are indicated by orange solid line and red dashed line, respectively.

(a) (b)

Figure 9. Residual stress distributions for Case (i) with N = 3 under deformation: (a) a = a(i)r3 =

0.011023776; and (b) a = a(i)r4 = 0.051782217. Solid line is for residual ση and dashed line for residual
σζ . Zeros of σres

η and σres
ζ are indicated by orange solid line and red dashed line, respectively.

5.3. FGM Sheet Belonged to Case (ii) under Bending

In Case (ii), the right edge (ζ = 0) of the sheet has smaller yield stress, hence a plastic zone will
start on the right edge first. Figure 10 shows the relationship between the applied bending moment and
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deformation magnitude a with the gradient function exponent N = 1 and 3. As can be seen, larger m is
required for N = 1 than that for N = 3, as a increases. Under given deformation magnitudes, Figure 11
shows the stress distributions in the Case (ii) FGM under plastic deformation. Larger plastic zone is
developed at the right edge as deformation increases. After unloading, residual stress distributions are
shown in Figures 12 and 13 for the N = 1 and N = 3 FGM, respectively. Residual stresses are more
predominant at the right edge. The residual stress σζ is zero at the left and right edges, as indicated
by the red short-dashed line. The results from the illustrative examples solved here may serve as
benchmark solutions for data obtained from numerical or experimental methods.

Figure 10. Bending moment m vs. a for Case (ii) with N = 1 and N = 3. With sufficiently large
deformation, i.e., large a, Case (iii) is developed, hence both edges are plastically deformed.

(a) (b)

Figure 11. Stress distributions for Case (ii) with two different deformation magnitudes, i.e., two
different as, for: (a) N = 1; and (b) N = 3. Two plastic zones, one developed from the left edge and the
other from the right edge, increase their size as a increases for ση .
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(a) (b)

Figure 12. Residual stress distributions for Case (ii) with N = 1 under deformation: (a) a = a(ii)r1 =

0.004915193; and (b) a = a(ii)r1 = 0.019238382. Solid curve is for residual ση and dashed curve for
residual σζ . Zeros of σres

η and σres
ζ are indicated by orange solid line and red dashed line, respectively.

(a) (b)

Figure 13. Residual stress distributions for Case (ii) with N = 3 under deformation: (a) a = a(ii)r3 =

0.005565273; and (b) a = a(ii)r4 = 0.016428139. Solid curve is for residual ση and dashed curve for
residual σζ . Zeros of σres

η and σres
ζ are indicated by orange solid line and red dashed line, respectively.

6. Conclusions

Efficient analytical and numerical methods and procedures have been developed and
programmed to predict the distribution of stresses in a sheet of incompressible material subject to
plane strain pure bending at large strain and then the distribution of residual stresses after unloading.
Springback is also predicted. It has been assumed that the sheet is made of functionally graded
material. The general theory has been developed for an arbitrary through thickness distribution of
material properties assuming that the initiation of plastic yielding occurs at one of the surfaces of the
sheet. This assumption can be verified using the purely elastic solution (Equation (15)) and the yield
criterion (Equation (7)). It is possible to use the general solutions (Equations (15), (18) and (25)) even
if the assumption is not satisfied but constants of integration should be added. Then, these general
solutions should be combined to satisfy the boundary conditions and the conditions at elastic/plastic
boundaries. An illustrative example is concentrated on power law distributions of material properties.
Using the numerical code developed in this work enables the effect of parameters involved in these
laws to be predicted effectively. The calculated examples show the analytical solutions derived here
can systematically treat the plastic problems of the homogenous or functionally graded sheet. The
magnitudes of applied moment may be strongly influenced by the power law exponent as deformation
increases, which provides an effective way to design the functionally graded sheets.
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The method employed to derive the solution in this paper can be extended to cyclic loading.
This new solution may be useful for the interpretation of experimental data from the reverse bending
fatigue test (for example, [28]).
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