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Abstract: A deleterious Laves phase forms in the solidified structure of Inconel 718 (IN718) alloy
during laser cladding. However, effective removal methods have not yet been identified. In this
study, we first added the IN718 alloy cladding layers with a trace amount of vanadium (V, 0.066 wt.%).
Then, we studied the solidification structure of cladding layers using a confocal laser scanning
microscope and scanning electron microscopy. The microstructure and Laves phase morphology
were investigated. The distribution of niobium (Nb) was observed by experiment as well. We found
that V is evenly distributed in dendrites and interdendritic zones. A more refined dendrite structure,
reduced second dendrite arm spacing and lower volume fraction of Laves phase were observed in
the solidification structure. The results of linear energy-dispersive X-ray spectroscopy (EDS) indicate
that the concentration of Nb decreases with an increasing of the distance from the Laves phase.
The V-containing sample displayed a relatively slower decreasing tendency. The IN718 alloy sample
was harder with the addition of V. In addition, the porosity of the sample decreased compared with
the blank sample. The presented findings outline a new method to inhibit the Nb segregation in
IN718 alloy during laser cladding, providing reference significance for improving the performance of
IN718 alloy samples during actual processing.
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1. Introduction

Laser cladding (Figure 1) is a surface modification technology. Compared with traditional surface
strengthening technology, laser cladding has high laser beam energy density, high process efficiency,
and fast heating and cooling rates [1–3]. Nb is the most important element in IN718 alloy. The addition
of Nb has a strong solid solution strengthening effect on Ni–Fe–Cr-based austenite and improves the
elastic modulus of the alloy. Nb is the elemental basis for the main strengthening phase of IN718 alloy.
Meanwhile, one of the most important microscopic characteristics of IN718 alloy is the distribution of
Nb-rich Laves phase particles in the matrix during the laser cladding process [4,5]. Laves phase is a
hard brittle phase that can provide conditions for nucleation and growth of the cracks under residual
stress or other stress [6]. Therefore, the improvement in Nb segregation can benefit microstructure
homogeneousness and enhance the performance of IN718 alloy cladding layer.
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Figure 1. Laser cladding process schematic. 

According to Han et al., IN718 alloy with Mo can reduce the solubility of Nb in the dendrite arm 
and Laves phases. The addition of Mo transforms the Laves phase morphology from eutectiform to 
granular and lessens the area of segregation zone around the Laves phase [7]. The effect of the 
addition of P and B on IN718 alloy as-cast microstructure was studied; the results indicated that the 
addition of these two alloying elements promoted the formation of a blocky Laves phase. A low 
melting B-bearing phase enriched in Nb, Mo, and Cr was observed [8]. Xin et al. investigated the 
effect of Co on precipitation behaviors of IN718 alloy, and the results showed Co was slightly 
segregated in the dendrite core and markedly increased the solubility of Mo in the dendrite core 
which resulted in reduced Mo in the residual liquid. Consequently, the Laves phase was retained 
while precipitation of Mo-depleted gray phase was promoted. The gray phase increased with 
increasing Co [9]. The effect of Zr on IN718 alloy was investigated as well. The addition of Zr not 
only inhibited the precipitation of Laves phase at the grain boundary, but also significantly 
promoted the precipitation of earlobe-like γ′ and γ″ [10]. The addition of W, Ta, and Re other than 
Nb, was reported to reduce micro-segregation in the fusion zones of IN718 alloy [11]. As a result, 
adding alloying elements can significantly change the solidification behavior of IN718 alloy. 

Vanadium has many desirable physical and chemical properties [12]. It was first used in steel to 
increase the grain coarsening temperature, which can improve the strength, toughness, and wear 
resistance of the steel. Afterwards, it was reported that V was found to occupy Al sites in the 
strengthening phase of Ni-based superalloy. The addition of V also can lead to a significant 
improvement in the material strength by forming stable nitrides and carbides [13].  

The addition of V appears to positively influence IN718 alloy microstructures. Due to the lack of 
information of the influence of V on the solidification structure of IN718 alloy during laser cladding, 
this was our goal in this study. The previous work [7–10] on the influence of alloying elements on 
IN718 alloy focused on the solidification and precipitation behaviors. However, macroscopic and 
microscopic features were not compared between the sample with alloying elements and the blank 
sample. Furthermore, the addition of other elements can inhibit the formation of Laves phase. 
Unfortunately, previous studied neglected the quantitative analysis of the Laves phase 
concentration. Therefore, our focus was to study the influence of V on micro structure, Laves phase 
formation and performance of IN718 alloy. Figure 2 shows the workflow in this study. 

Figure 1. Laser cladding process schematic.

According to Han et al., IN718 alloy with Mo can reduce the solubility of Nb in the dendrite arm
and Laves phases. The addition of Mo transforms the Laves phase morphology from eutectiform
to granular and lessens the area of segregation zone around the Laves phase [7]. The effect of the
addition of P and B on IN718 alloy as-cast microstructure was studied; the results indicated that the
addition of these two alloying elements promoted the formation of a blocky Laves phase. A low
melting B-bearing phase enriched in Nb, Mo, and Cr was observed [8]. Xin et al. investigated the effect
of Co on precipitation behaviors of IN718 alloy, and the results showed Co was slightly segregated in
the dendrite core and markedly increased the solubility of Mo in the dendrite core which resulted in
reduced Mo in the residual liquid. Consequently, the Laves phase was retained while precipitation of
Mo-depleted gray phase was promoted. The gray phase increased with increasing Co [9]. The effect of
Zr on IN718 alloy was investigated as well. The addition of Zr not only inhibited the precipitation of
Laves phase at the grain boundary, but also significantly promoted the precipitation of earlobe-like γ′

and γ” [10]. The addition of W, Ta, and Re other than Nb, was reported to reduce micro-segregation in
the fusion zones of IN718 alloy [11]. As a result, adding alloying elements can significantly change the
solidification behavior of IN718 alloy.

Vanadium has many desirable physical and chemical properties [12]. It was first used in steel
to increase the grain coarsening temperature, which can improve the strength, toughness, and
wear resistance of the steel. Afterwards, it was reported that V was found to occupy Al sites in
the strengthening phase of Ni-based superalloy. The addition of V also can lead to a significant
improvement in the material strength by forming stable nitrides and carbides [13].

The addition of V appears to positively influence IN718 alloy microstructures. Due to the lack of
information of the influence of V on the solidification structure of IN718 alloy during laser cladding,
this was our goal in this study. The previous work [7–10] on the influence of alloying elements
on IN718 alloy focused on the solidification and precipitation behaviors. However, macroscopic
and microscopic features were not compared between the sample with alloying elements and the
blank sample. Furthermore, the addition of other elements can inhibit the formation of Laves phase.
Unfortunately, previous studied neglected the quantitative analysis of the Laves phase concentration.
Therefore, our focus was to study the influence of V on micro structure, Laves phase formation and
performance of IN718 alloy. Figure 2 shows the workflow in this study.
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The materials in this experiment included spherical IN718 alloy powder (Figure 3a) prepared 
by the plasma rotation electrode process (PREP), irregular V powder (Figure 3b) prepared by the 
atomization comminuting process (ACP), and IN718 alloy rolled substrate plate. Both powders had 
an average diameter of 100 μm. The size of substrate plate was 100 mm × 100 mm × 10 mm. 

2.2. Laser Cladding Experiment Method 

The experiment in this investigation was performed on the adding and subtracting material 
composite machining center, which is composed of the laser cladding head, powder feeder for laser 
processing, high purity nitrogen machine, etc., as shown in Figure 3a. The machine was equipped 
with a fiber laser, which is characterized by high precision, great power, and higher electro-optic 
conversion efficiency. The laser spot dimensions were 3 mm in length and 1 mm in width. The 
energy was distributed uniformly over the laser spot due to the property of the fiber laser source. 
Before the start of the experiment, we ensured that the V powder was evenly distributed in the 
IN718 alloy powder. To achieve this, the two powders were first stirred in a power agitator for 45 
min. Afterwards, the other powders in the powder feeder were emptied to avoid impurities and 
contamination that would affect the accuracy of the experimental results. Then, 10 cladding layers 
were cladded on the substrate plate. The process parameters are shown in Table 1. The dimensions 
of the produced samples are shown in Figures 3d,e. Finally, the cladding layers were cut using wire 
along the scanning direction to prepare metallographic samples. The solidification structure samples 
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2. Materials and Methods

2.1. Materials

The materials in this experiment included spherical IN718 alloy powder (Figure 3a) prepared
by the plasma rotation electrode process (PREP), irregular V powder (Figure 3b) prepared by the
atomization comminuting process (ACP), and IN718 alloy rolled substrate plate. Both powders had an
average diameter of 100 µm. The size of substrate plate was 100 mm × 100 mm × 10 mm.

2.2. Laser Cladding Experiment Method

The experiment in this investigation was performed on the adding and subtracting material
composite machining center, which is composed of the laser cladding head, powder feeder for laser
processing, high purity nitrogen machine, etc., as shown in Figure 3a. The machine was equipped with
a fiber laser, which is characterized by high precision, great power, and higher electro-optic conversion
efficiency. The laser spot dimensions were 3 mm in length and 1 mm in width. The energy was
distributed uniformly over the laser spot due to the property of the fiber laser source. Before the start
of the experiment, we ensured that the V powder was evenly distributed in the IN718 alloy powder.
To achieve this, the two powders were first stirred in a power agitator for 45 min. Afterwards, the
other powders in the powder feeder were emptied to avoid impurities and contamination that would
affect the accuracy of the experimental results. Then, 10 cladding layers were cladded on the substrate
plate. The process parameters are shown in Table 1. The dimensions of the produced samples are
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shown in Figure 3d,e. Finally, the cladding layers were cut using wire along the scanning direction
to prepare metallographic samples. The solidification structure samples were etched by a Kalling’s
etchant (40 mL HCl, 40 mL ethanol, 2 g CuCl2). An OLYMPUS-OLS4100 Confocal Laser Scanning
Microscope (CLSM, OLYMPUS, Tokyo, Japan) and a Zeiss ULTRA PLUS Scanning Electron Microscope
(SEM, Zeiss, Oberkochen, Germany) with a X-Max 50 Energy Dispersive Spectrum (EDS, Oxford, UK)
were used to characterize the microstructure and chemical composition. The average diameter of
equiaxed dendrites (DED), secondary dendrite spacing (SDS), average size of columnar dendrites’
primary dendrite spacing (PDS) and volume fraction of Laves phase (LPVF) measurements were
counted and calculated by Image-Pro Plus6.0 software (Ropers Technologies, Sarasota, FL, USA) using
secondary electron micrographs of the etched alloys captured by SEM. Three locations were selected
along the height of the sample to measure the DED, SDS, and PDS (Figure 3f). We measured 4–6
dendrites at each location. A total of 15 dendrites were measured for each sample. The micro hardness
test was performed using the micro hardness tester with a load (100 mN) and a microdiamond imprint.
We selected 10 points along the length of the cross section to measure micro hardness (Figure 3f).
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3. Results and Discussion 

3.1. Solidification Structure Characteristics 

Figure 3. Experimental apparatus: (a) laser cladding system, (b) morphology of IN718 alloy powder
(200×), (c) morphology of V powder (1000×), (d) main view of the sample, (e) left view of the sample,
(f) Vickers hardness measurement points; secondary dendrite spacing (SDS), primary dendrite spacing
(PDS), and diameter of equiaxed dendrites (DED), measurements locations and scan pattern.

Table 1. Processing parameters of laser cladding.

Parameters Laser Power
(W)

Scanning Speed
(mm/s)

Powder Federate
(g·min−1)

Shield Gas Flow
(L·min−1)

- 1200 8 18 15

3. Results and Discussion

3.1. Solidification Structure Characteristics

In this study, we investigated the solidification structure of the V-containing cladding layer (No.1
alloy) from both macroscopic and microscopic aspects. In addition, the results were compared with
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the samples (No.2 alloy) without the addition of V. The chemical composition comparison between the
two alloys is illustrated in Table 2.

Table 2. Chemical composition of two alloys (weight percentage wt.%).

Elements Ni Cr Nb Mo Ti Al C Fe V

No.1 Alloy 53.1 18.43 5 3.18 1.06 0.54 0.014 18.61 0.066
No.2 Alloy 53.2 18.28 5 3.2 1.08 0.54 0.015 18.64 -

Figure 4 shows the macroscopic feature of the two samples via CLSM (50×). The difference in
porosity between the two samples is obvious. The number and the size of pores in the No.1 alloy are
much smaller than those of No.2 alloy (Figure 4). The existence of pores degrades the performance of
the samples, especially the fatigue property [14]. Therefore, it is reasonable to expect that No.1 alloys
would perform better compared to blank alloys.
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Figure 5 shows the micro structure of No.1 and No.2 alloys after solidification. The solidification
structure of the two samples shows typical dendrite morphology at lower magnifications (200×).
The black areas are dendrite, whereas the white areas are the interdendritic precipitation phase. As a
result, the average diameter of equiaxed dendrites (DED) in V-containing cladding layers is smaller,
as well as the average size of the columnar dendrites’ primary dendrite spacing (PDS) when compared
with the blank alloys. To further examine the influence of the addition of V on solidification structure,
we measured the secondary dendrite spacing (SDS) of the two alloys. Because this parameter is a key
index, it can be used to characterize the microstructure [11]. As shown in Figure 6, the SDS value of the
No.1 alloy was 2.6 µm, which is smaller than the 3.8 µm of the No.2 alloy. Consequently, the addition
of V can refine the dendrite structure and decrease the secondary dendrite spacing.

The addition of a trace amount of other powder into the original powder may change several
parameters and mechanical properties of cladding layers. Generally, a more refined secondary dendrite
spacing is desirable. According to Ahmadetal et al. [15], SDS depends on the composition and existence
of additive elements, which is used to describe the scale of columnar dendritic structures [16].

Solidification structures with smaller secondary dendrite spacing limit the diffusion range of Nb
Hence, decreasing the area ratio of the element segregation regions was more effective to achieve
homogenization after heat treatment in No.1 alloy. In summary, the addition of V decreases the porosity
in cladding layers and leads to a certain degree of dendrite refinement. Refined solidification and low
porosity can enhance the performance of cladding layer.
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3.2. Influence of V on Element Segregation

In this study, we performed a surface scan analysis on V-containing cladding layers. Figure 7
indicates the distribution of elements. The V-rich area in the analysis zone cannot be found. Conversely,
the distribution of V was relatively uniform. In this investigation, V was solid-solved into the austenite
matrix, which facilitates the formation of fine carbides at the grain boundaries [17]. These fine
V-containing carbide particles create a pinning effect at the austenite grain boundaries, then the grain
boundary migration, and the dendritic growth can be hindered [18]. This finding was confirmed by
the reduction in the secondary dendrite arm spacing (Figure 6). According to a previous study [19],
due to the redistribution property, Nb is prone to causing element segregation during the solidification
of IN718 alloy. Detailed energy-dispersive X-ray spectroscopy (EDS) data of the Laves phase is shown
in Figure 8. The insert shows an enlarged view of a lumpy Laves phase. The concentration of Nb is
the second highest among all elements. Figure 8 also indicates that Nb is abundantly enriched in the
interdendritic region. The segregation of Nb was found to be a key factor that controls the formation of
Laves phase [20]. Therefore, we discussed whether V can improve Nb segregation. With this goal,
we determined the chemical composition of the Laves phase in No.1 and No.2 alloy respectively.
The results are listed in Table 3.Materials 2019, 12, x FOR PEER REVIEW 8 of 16 
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Table 3. Chemical composition of Laves phase (wt.%).

Alloy Ti Cr Fe Ni Nb Mo

No.1 1.64 14.14 12.95 45.04 21.24 5
No.2 2.24 13.18 16.98 34.97 26.15 6.28

Table 3 shows that the precipitated phase of two alloys have similar elements. However, the Nb
concentration in the Laves phase decreases from 26.15 to 21.24 wt.% with the addition of V. This
indicates that more Nb is solid-dissolved into the matrix to prepare for strengthening phase precipitation.
We concluded that the addition of V improves Nb segregation in IN718 alloy during laser cladding.
To further investigate the influence of V on element segregation, we conducted linear EDS analysis
on No.1 and No.2 alloys (Figure 9), respectively. The result is shown in Figure 10. The path of the
linear EDS passes through the Laves phase, the segregation zone, and the dendrite. Notably, the Nb
concentration in the Laves phase of the No.2 alloy fluctuates considerably, which may be caused by the
existence of pore.
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Figure 10. The distribution of Nb in (a) No.1 alloy and (b) No.2 alloy.

The results of linear EDS analysis indicated that Nb is heavily enriched in Laves phase. The Nb
concentration decreases with increasing distance from the Laves phase. This tendency was observed
in both No.1 and No.2 alloys. The difference was that the V-containing sample displayed a slower
decreasing tendency. In addition, the average concentration of Nb in the analysis zone of No.1 alloy
was less than that of the No.2 alloy, which is consistent with the results in Table 3. All the above
results indicate the addition of V decreases the Nb concentration in the Laves phase, and evens out the
distribution of Nb in cladding layers.

3.3. Influence of V on Laves Phase Formation

As is stated before, the existence of Laves phase can drastically degrade the performance of IN718
alloy. Under higher magnifications (2000×), a clear island-like segregation zone can be defined, in which
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the Laves phase particles are distributed (Figure 8). The addition of V can reduce the secondary
dendrite spacing and decrease the concentration of Nb in the Laves phase. The microstructure becomes
refined, reducing the segregation areas of elements. On this basis, we hypothesized that V can
decrease the concentration of Laves phase and modify its morphology. To count the concentration of
Nb-rich Laves phase and map its morphology, we conducted electron back scattered diffraction (EBSD)
examination on both No.1 and No.2 alloys respectively. The Laves phase distribution of the two alloys
in the equiaxial dendrite zones and columnar dendrite zones is shown in Figure 11. The white region
represents Laves phase and the austenite appears as black. According to the theory of quantitative
metallography [21], the area ratio of the white regions represents the volume fraction of Laves phase in
the cladding layers.
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Figure 11a,b show that the Laves phase morphology was modified dramatically with the addition
of V. In the No.1 alloy, the Laves phase is particle-like. However, the Laves phase that formed in
equiaxed interdendritic regions of No.2 alloy is reticular, as displayed in Figure 11c, and in columnar
interdendritic region, the Laves phase is rod-like, as shown in Figure 11d. Normally, the particle-like
Laves phase is the most desirable morphology feature [22], which could produce the preferred
performance in IN718 alloy.

Figure 12 shows the average volume fraction of Laves phase (LPVF) in equiaxed interdendritic
regions and in columnar interdendritic regions of No.1 and No.2 alloys respectively. We found that
in the blank sample, the LPVF in equiaxed interdendritic regions was 24% higher than in columnar
interdendritic regions, potentially due to the difference in the morphology of the two dendrites.
With the addition of V, the difference in LPVF between different regions increased to 58%. Meanwhile,
the statistical results indicate that the volume fraction of Laves phase in No.1 alloy decreased by 80%
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compared with No.2 alloy, from 2.55% to 0.49%. If heat treatment is used to eliminate the Laves phase,
the time required for homogenization of the No. 1 alloy would be much shorter than that of No. 2 alloy.Materials 2019, 12, x FOR PEER REVIEW 13 of 16 
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3.4. Influence of V on Hardness of Cladding Layer

Hardness is an important performance index used to measure the hardness degree of metal
materials. Meanwhile, hardness has been widely used as a preliminary evaluation of the wear resistance
of alloy [23]. Therefore the Vickers hardness (HV) values were obtained to tentatively estimate the
V-addition influence on the wear resistance of IN718 alloy. Figure 13a depicts the typical indentation
surface morphologies of the two alloys showing the smooth and regular rhombus shapes without any
cracks or other defects, which indicates the fine metallurgical bonding and a superior relative density
of both samples. Figure 13b shows that the average micro hardness of the No.1 alloy was 260.6 HV,
whereas that of the No.2 alloy was 237.9 HV. We concluded that with the addition of V, the average
micro hardness of the sample increased by 9.5%. According to previous studies [24,25], the Laves
phase morphology and volume fraction are the main factors affecting the micro hardness of IN718 alloy.
Our comparison of the average micro hardness between No.1 and No.2 alloy supports this finding.
To study the dispersion of the micro hardness distribution in the samples, the coefficient of variation
(CV) of the experimental data was calculated and compared. The CV of the micro hardness of the
No.1 alloy was 0.017, which is slightly higher than that of theNo.2 alloy (0.011). The results illustrate
the average micro hardness increases with the addition of a trace of V; however, the micro hardness
distribution in the V-containing sample becomes uneven with respect to the blank sample. Based on
the empirical correlation between hardness and wear resistance, it is reasonable to expect that the wear
resistance of No.1 alloy increases with the addition of V.

The discussion above indicates that the addition of V can inhibit element segregation and change
the morphology of the Laves phase, which is similar to adding other alloying elements. However,
the decreased of porosity and increased micro hardness in the IN718 alloy sample fabricated by
laser cladding was not mentioned in previous studies. Furthermore, a new phase precipitated in
the interdendritic region of IN718 alloy with the addition of B or Co, such as B-bearing phase and
Mo-depleted gray phase, and the influence on performance is unknown. The addition of V can
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provide more refined microstructure, without substantially affecting the element distributions and
phase compositions.Materials 2019, 12, x FOR PEER REVIEW 14 of 16 

 

 

 
Figure 13. Vickers hardness testing. (a) Typical indentation surface morphologies of two alloys; (b) 
comparison of Vickers hardness between No.1 and No.2 alloy. 

The discussion above indicates that the addition of V can inhibit element segregation and 
change the morphology of the Laves phase, which is similar to adding other alloying elements. 
However, the decreased of porosity and increased micro hardness in the IN718 alloy sample 
fabricated by laser cladding was not mentioned in previous studies. Furthermore, a new phase 
precipitated in the interdendritic region of IN718 alloy with the addition of B or Co, such as 
B-bearing phase and Mo-depleted gray phase, and the influence on performance is unknown. The 
addition of V can provide more refined microstructure, without substantially affecting the element 
distributions and phase compositions. 

4. Conclusions 

In this study, the influence of V on IN718 alloy solidification structure during laser cladding 
was investigated using experiments. Based on the obtained results our main conclusions were 
drawn: 

(1) With the addition of V, the porosity of cladding layer decrease by 89%, and the average 
secondary dendrite arm spacing decreased from 3.8 to 2.6 μm, as did the average size of dendrite. 

(2) The Nb concentration in the Laves phase of the V-containing sample decreased compared 
with blank sample. The results of linear EDS indicate that Nb concentration decreases with the 
increase in the distance from the Laves phase. However, the V-containing sample displayed a slower 
decreasing tendency. 

(3) The morphology of the Laves phase in the V-containing cladding layer was modified 
dramatically, which changed from rod-like shape to a particle-like feature. The volume fraction of 
the Laves phase decreased by 80% with the addition of a trace amount of V. 

(4) The hardness of the V-containing alloy was higher compared with the blank alloy. However, 
the distribution of micro hardness was uneven.  

Consequently, the addition of V positively influence the microstructure and element 
segregation of IN718 alloy cladding layers. This investigation provides a new and effective method 
for inhibiting the formation of Laves phase and enhancing the performance of IN718 samples 
fabricated by laser cladding.  

Author Contributions: Investigation, K.Y.; Formal Analysis, K.Y. and X.Z.; Writing-Original Draft Preparation, 
X.Z.; Writing-Review and Editing, C.S.; Supervision, F.L.; and Funding Acquisition, H.X. 

Figure 13. Vickers hardness testing. (a) Typical indentation surface morphologies of two alloys; (b)
comparison of Vickers hardness between No.1 and No.2 alloy.

4. Conclusions

In this study, the influence of V on IN718 alloy solidification structure during laser cladding was
investigated using experiments. Based on the obtained results our main conclusions were drawn:

(1) With the addition of V, the porosity of cladding layer decrease by 89%, and the average
secondary dendrite arm spacing decreased from 3.8 to 2.6 µm, as did the average size of dendrite.

(2) The Nb concentration in the Laves phase of the V-containing sample decreased compared
with blank sample. The results of linear EDS indicate that Nb concentration decreases with the
increase in the distance from the Laves phase. However, the V-containing sample displayed a slower
decreasing tendency.

(3) The morphology of the Laves phase in the V-containing cladding layer was modified
dramatically, which changed from rod-like shape to a particle-like feature. The volume fraction
of the Laves phase decreased by 80% with the addition of a trace amount of V.

(4) The hardness of the V-containing alloy was higher compared with the blank alloy. However,
the distribution of micro hardness was uneven.

Consequently, the addition of V positively influence the microstructure and element segregation of
IN718 alloy cladding layers. This investigation provides a new and effective method for inhibiting the
formation of Laves phase and enhancing the performance of IN718 samples fabricated by laser cladding.
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