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Abstract: Solitons are a challenging topic in condensed matter physics and materials science because
of the interplay between their topological and physical properties and for the crucial role they play in
topological phase transitions. Among them, chiral skyrmions hosted in ferromagnetic systems are
axisymmetric solitonic states attracting a lot of attention for their dazzling physical properties and
technological applications. In this paper, the equilibrium statistical thermodynamics of chiral magnetic
skyrmions developing in a ferromagnetic material having the shape of an ultrathin cylindrical dot
is investigated. This is accomplished by determining via analytical calculations for both Néel and
Bloch skyrmions: (1) the internal energy of a single chiral skyrmion; (2) the partition function; (3) the
free energy; (4) the pressure; and (5) the equation of state of a skyrmion diameters population. To
calculate the thermodynamic functions for points (2)–(5), the derivation of the average internal energy
and of the configurational entropy is crucial. Numerical calculations of the thermodynamic functions
for points (1)–(5) are applied to Néel skyrmions. These results could advance the field of materials
science with special regard to low-dimensional magnetic systems.

Keywords: solitons; topological defects; chiral magnetic skyrmions; Dzyaloshinskii–Moriya
interaction; microcanonical ensemble; equilibrium statistical mechanics of topological defects;
skyrmion free energy and partition function; pressure and equation of state

1. Introduction

The thermodynamic description of topological defects and topological phase transitions has been
one of most important challenges of the modern condensed matter physics. The leading works on
the thermodynamics of topological defects and the relevant underlying physics are the ones dating
back to the 70s of Berezinskii and of Kosterlitz and Thouless on defect-mediated phase transitions in
two-dimensional (2D) XY superfluid model. In particular, Berezinskii studied the low-temperature state
of one-dimensional (1D) and 2D classical and quantum systems such as crystals, isotropic magnetic
substances, and superfluids and superconductors having continuous symmetry, showing that in both
kinds of systems the long-range order is destroyed due to the increasing fluctuations of the ordering
parameter with increasing size [1,2]. Kosterlitz and Thouless deepened this type of investigation,
arguing the existence of topological defects having the form of vortices in physical systems described
by the XY model, such as superfluids [3–5]. They studied the thermodynamic behavior of these
systems by means of the calculation of the Helmholtz free energy F showing that, for T→0 K and
with increasing size, F can be minimized if no vortices appear, while above a critical temperature F is
minimized if there is the formation of couples of unpaired vortices and anti-vortices. On the basis of
this analysis, they introduced the concept of defect-mediated topological phase transition in condensed
matter physics systems, the so-called infinite-order Berezinskii–Kosterlitz–Thouless phase transition.

After these seminal works, a great deal of attention has been paid to study the interplay between
topology and physics characterizing solitons in condensed matter systems and its relevant implications.
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Skyrmions are topologically protected objects, characteristic of certain classes of nonlinear continuous
models, that could be present in various condensed matter systems such as, for instance, Bose–Einstein
condensates [6], chiral nematic liquids [7], superconductors [8], superfluids [9]. Their name was first
proposed as topological solitons field-like solutions for pions in nuclear physics whose topological
stability was determined by the conservation of their baryon number [10].

The interest has grown in the last years in the field of magnetic materials after the discovery of
magnetic skyrmions, the smallest magnetic structures in low-dimensional magnetic systems behaving
like particles, that are topologically stable configurations arising in ferromagnetic samples. Magnetic

skyrmions are characterized by a skyrmion number S = 1/(4π)
∫

d2ρm ·
(
∂m
∂x ×

∂m
∂y

)
where m(ρ) =

M(ρ)/Ms is the unit magnetization vector with M the magnetization, ρ = (x,y), and Ms the saturation
magnetization, and ∂/∂x and ∂/∂y are first partial derivatives. During the last decade, the classical
modelization of single chiral magnetic skyrmions and their observation has attracted a lot of physicists
and materials science researchers for the new physics that characterizes this type of solitons, their
dazzling properties, and the several technological applications. Specifically, they can be employed
as information carriers in logic and spintronic devices because very low spin currents are needed to
move them and therefore they contribute to the advancing of the field of skyrmionics [11,12]. The
key energy interaction that stabilizes chiral Néel (hedgehog-like) and Bloch (vortex-like) skyrmions
determining the sense of rotation of the magnetization is the Dzyaloshinskii–Moriya interaction (DMI).
This interaction was discovered developing a thermodynamic theory of “weak” ferromagnetism of
antiferromagnetic crystals resulting in an anti-symmetric spin coupling [13], and by generalizing the
Anderson theory of superexchange with the inclusion of the spin-orbit interaction that gives rise to
anisotropic effects in “weak” ferromagnets [14]. The DMI can be regarded as a relativistic form of
chiral exchange energy due to the lack or breaking of inversion symmetry in bulk crystalline systems
such as B20 cubic crystal structures (MnSi, FeGe) [12]. The DMI may lead to the spontaneous formation
of ground skyrmion states in condensed matter systems with chiral interactions, to the spontaneous
formation of 2D lattice lines observed in a chiral magnet such as MnSi by means of neutron scattering
and Hall effect measurements [15–18]. The DMI may play a crucial role also at the interfaces in magnetic
Ir|Co|Pt multilayers hosting room temperature magnetic skyrmions [19] or in β-type CuZnMn alloys
where skyrmion lattices above room temperature were observed [20]. Its microscopic origin at the
film interface was recently investigated [21]. The first theoretical prediction and description of chiral
magnetic skyrmions in thin magnetic films was done by Bogdanov and Rössler [22]. This prediction
was confirmed a few years ago by the observation of a spontaneous atomic-scale magnetic skyrmion
lattice in two dimensions by Heinze et al. [23]. In particular, the bulk DMI interaction typical of D2d

systems stabilizes chiral Bloch skyrmions [24], while the interfacial DMI (IDMI) stabilizes chiral Néel
skyrmions [12]. The tilting of edge moments in nanostructures hosting skyrmions [25], the evolution of
single chiral skyrmions under an applied magnetic field [26], the current induced motion of different
types of chiral skyrmions [27–30], the current-induced rotational torques in skyrmion lattices [31],
and the current-dependent skyrmion Hall angle [32] were also studied. In addition, the breathing
dynamics [33] and the skyrmion state stability [34,35] were also investigated.

Recently, attention was also paid to study thermal properties of magnetic skyrmions, with special
regard to the investigation of skyrmion entropy. In particular, an estimation of the skyrmion entropy
has been made from experimental data, and in bulk B20 compounds the concept of skyrmion entropy
has been used to classify the magnetization phase transition at the transition temperature [36,37].
In addition, the skyrmion entropy has been included in the Arrhenius law in order to explain the
disagreement between the measurement and the calculation of the lifetime of a skyrmion lattice [38].

In a recent paper, a theoretical model was developed to study magnetic skyrmions thermodynamics
computing by means of a classical approach to the configurational entropy at equilibrium based
on the analogy between a skyrmion diameters population referred to one skyrmion and the
Maxwell–Boltzmann statistics of the ideal gas [39] using scaling magnetic parameters as a function
of temperature T [35]. The entropy S = S(T) of a three-dimensional (3D) Néel magnetic skyrmion
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diameters population was calculated as an expectation value in a way similar to Shannon’s information
entropy. Because of this definition, the skyrmion diameter dependent Helmholtz free energy, F(Dsky) =

E − T S (with E = E(Dsky) the skyrmion energy and Dsky the skyrmion diameter), also exhibits a square
diameter dependence for each T and the mean square fluctuation of energy of the skyrmion diameters
around its average value population is equivalent to the mean square fluctuation of free energy F(Dsky)
around its average value.

Recently, in some excellent papers the skyrmion energy has been analytically calculated using
either a 1D distribution [40] that was used to describe properties of thick-walled magnetic domains in
uniaxial platelets [41] or a two-dimensional domain distributions [25,42], or numerically calculated
using an accurate 2D magnetization distribution recently proposed to describe the magnetization
texture, namely the orientation of the magnetization vector in the xy plane and with respect to the
z direction, of the Néel (hedgehog) chiral skyrmion [35,43]. Additionally, in [42] the magnetostatic
contribution of the volume charges has also been included in the skyrmion energy computation.

However, a systematic theoretical study describing the classical statistical thermodynamic behavior
of chiral magnetic skyrmions at equilibrium is still lacking in the literature. In this work, a statistical
thermodynamic description of chiral magnetic skyrmions that are hosted in ultrathin cylindrical
dots based on a classical approach is given, strengthening the analogy with the ideal gas. This
is accomplished via the following key results obtained by means of the analytical and numerical
calculation of the following physical quantities at a given T:

(1) the calculation of the skyrmion energy for both Néel and Bloch skyrmions that is regarded as the
internal energy;

(2) the determination of the partition function and of the free energy of a skyrmion diameters
population within a microcanonical ensemble;

(3) the derivation of the skyrmion pressure from the free energy of a skyrmion diameters population
and of an equation of state linking the thermodynamic variables P, V, and T.

In addition, it is shown that the configurational entropy calculated for a Nèel skyrmion diameters
population takes the same form for a Bloch skyrmions population. This feature also characterizes the
partition function and the pressure and results from the fact that the skyrmion internal energy has a
quadratic dependence on the skyrmion diameter (or radius) independently of the topological texture
and skyrmion number. Therefore, it can be concluded that the statistical thermodynamics qualitative
description of axisymmetric solitonic states does not depend on the skyrmion magnetization texture of
the chiral skyrmion under study.

In this study the skyrmion energy is analytically computed starting from the 2D magnetization
distribution proposed to describe the magnetization texture of the Néel (hedgehog) chiral skyrmion [35,43].
This accurate 2D magnetization distribution recovers, in the isotropic case and for dominating exchange
interaction, the Belavin–Polyakov soliton [44] solution and can be easily extended to describe the
magnetization texture of the Bloch (vortex-like) chiral skyrmion. In this respect, here it is shown that,
for both magnetization textures, the skyrmion energy can be expressed as a combination of elementary
transcendental functions and is actually regarded as an internal energy. Owing to some reasonable
approximations, from the skyrmion energy a simple analytical form of the equilibrium skyrmion radius
in the region of metastability depending on the scaled magnetic parameters is obtained.

The partition function of a skyrmion diameters population is a key physical quantity to describe
their statistical thermodynamics. Indeed, it allows to understand the connection between the occupation
of microscopic states by the skyrmions population and the macroscopic thermodynamic variables of
state, such as the skyrmion free energy and the entropy.

The definition of a skyrmion pressure for a skyrmion diameters population of average volume
<V> at a given temperature T is accomplished exploiting the analogy with the pressure exerted by
the molecules of a gas on the walls of the container. The derivation of the skyrmion pressure p
also allows writing an equation of state linking the thermodynamic variables pressure p, volume V,
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and T equivalent to the one for an ideal gas. This general relation is valid for any single skyrmion
magnetization texture. It is shown that, for Dsky = <Dsky>, the equation of state reduces to the
well-known one for an ideal gas pV = kBT for the number of particles N = 1. However, for diameters
around the average diameter, unlike the ideal gas characterized by the universal constant R, it is not
possible to define for a skyrmions population a universal constant.

Calculations (1)–(3) are not only important for understanding the thermodynamic properties of
chiral skyrmions that form in ultrathin ferromagnetic dots but could enable a further comprehension
of the magnetic properties of ferromagnetic materials hosting these topological objects, suggesting
new thermodynamic measurements able to confirm the predictions. Especially, calculations (2) and (3)
differentiate the analysis and the aim of this work with respect to that of recent studies of the literature
that mainly focus on the dynamical properties of magnetic skyrmions treating the equilibrium statistical
properties of magnetic skyrmions in the region of metastability within a microcanonical ensemble.

This paper is organized as follows: in Section 2, Methods, the model is presented. First, the
skyrmion energy is analytically calculated for both Néel and Bloch magnetic skyrmions according
to a simple variable transformation and to some reasonable approximations. Then, the statistical
thermodynamics of a skyrmion diameters population is studied within a microcanonical ensemble via
the calculation of the partition function, the Helmholtz free energy, and the pressure and by means of
the derivation of an equation of state that is similar to the one for an ideal gas. In Section 3, Results and
Discussion, the model outlined in Section 2 is applied to a diameters population of Néel skyrmions
and the behavior of the corresponding thermodynamic quantities is discussed. The model is also
benchmarked via the comparison of the equilibrium diameters as a function of the external magnetic
field with available experimental data taken from the literature. In Section 4 Conclusions are drawn.

2. Methods

In the following calculations the polar coordinates in the dot plane ρ = (ρ,ϕ) are introduced, where
ρ is the radial coordinate and ϕ is the azimuthal coordinate defining spherical angles (θ,Φ) of the
magnetization vector as functions of ρ. The magnetization unit vector is m = M/Ms.

It is assumed that: (1) the magnetic skyrmion is hosted in an ultrathin cylindrical dot with
thickness of less than 1 nm, allowing to consider the static magnetization uniform (∂m/∂z = 0)) along
the thickness (z-coordinate); (2) the magnetization distribution is circularly symmetric, neglecting
deviations from the axial symmetry with respect to the out-of-plane direction (z-axis) so that at the
equilibrium θ = Θ0(ρ), with Θ0(ρ) the equilibrium magnetization distribution and Φ0(ρ) = ϕ +ϕ0. In a
cylindrical reference frame (ρ, φ, z), the general magnetization distribution of the magnetic skyrmion
takes the form m = (sinθ cosφ0, sinθ sinφ0, cosθ) with 0 ≤ θ ≤ π.

The radial Néel (hedgehog) magnetic skyrmion is characterized by a chirality χ = sign(mρ)
obtained setting either ϕ0 = 0 (outwardly) or ϕ0 = π(inwardly) with χ = ±1, respectively and by
a magnetization texture m = (±sinθ, 0, cosθ), while the Bloch (vortex-like) magnetic skyrmion is
characterized by a chirality χ = sign(mϕ) = sinϕ0, obtained setting either ϕ0 = π/2 (counter-clockwise)
or ϕ0 = 3π/2 (clockwise) with χ = ±1, respectively and by a magnetization texture m= (0,±sinθ, cosθ).

2.1. Skyrmion Energy Density

The general expression of the skyrmion energy density as a function of m is:

ε = A (∇m)2 + εDMI −Kum2
z −

1
2
µ0Msm ·Hdem − µ0Msm ·Hext (1)

The skyrmion energy density includes the exchange εexch, the interfacial DMI (IDMI) εIDMI = D
(mz(∇·m) − (m· ∇)mz) (Néel skyrmion), or the bulk DMI εBulk-DMI = D (m · (∇ ×m)) (Bloch skyrmion),
the perpendicular uniaxial anisotropy εani, the magnetostatic (demagnetization) anisotropy εdem, and
the Zeeman term εextfield, where the subscript “extfield” denotes “external field”. Here, Hdem = (0,0,
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Hdem) with Hdem = −Ms mz in the ultrathin approximation so that εdem = 1
2 µ0 Ms

2. In the following
subsections, the analytical calculations of every contribution are oulined.

2.1.1. Exchange Energy Density

In this subsection, the ferromagnetic exchange energy density is calculated. In its general form it

reads εexch = A(∇m)2, with A being the exchange stiffness constant and (∇m)2 = (∇mx)
2 +

(
∇my

)2
+

(∇mz)
2 with ∇ = ∂

∂ρ ρ̂+
1
ρ
∂
∂φ φ̂+ ∂

∂z ẑ, mx = ± cosφ sinθ, my = ± sinφ sinθ and mz = cosθ with θ =

Θ0(ρ).

Replacing the above expressions, one gets εexch = A
((

dθ
dρ

)2
+ sin2 θ

ρ2

)
for both Néel and Bloch

skyrmions and εexch does not depend on chirality.

2.1.2. DMI Energy Density

First, the IDMI energy density εIDMI = D(mz(∇· m)−(m· ∇)mz) is calculated. In particular,

mz(∇ ·m) = mz

(
1
ρ
∂
∂ρ

(
ρmρ

)
+ 1

ρ
∂mϕ

∂ϕ + ∂mz
∂z

)
and (m · ∇)mz =

(
mρ

∂
∂ρ + mϕ

1
ρ
∂
∂ϕ + mz

∂
∂z

)
mz.

One gets εIDMI = ±D
(

sin θ cos θ
ρ + dθ

dρ

)
for a Néel (hedgehog) skyrmion where the + (−) sign in

front of D refers to χ = +1 or radially outward (χ = −1 or radially inward) chirality.
The general form of the bulk DMI energy density is εBulk-DMI = D [m·(∇ × m)], with m·(∇ ×

m) = (mρ,mφ,mz)·(1/ρ ∂mz/∂φ − ∂mφ/∂mz, ∂mρ/∂z − ∂mz/∂ρ, 1/ρ (∂/∂ρ (ρ mφ) −∂mρ/∂φ)). For a Bloch

(vortex-like) skyrmion in a thin ferromagnetic dot εBulkDMI = ±D
(

dθ
dρ +

sinθ cosθ
ρ

)
, where the + (−) sign

in front of D refers to χ = +1 or counter-clockwise (χ = −1 or clockwise) chirality.
Therefore, in the ultrathin film limit, the bulk DMI energy density of a Bloch skyrmion assumes

the same expression of the IDMI energy density of a Néel skyrmion [41]. D > 0 (D < 0) corresponds
to the case of the heavy metal under (over) the ferromagnetic material. In general, for the proper
skyrmion chirality either for a Néel or a Bloch skyrmions, the DMI energy lowers the skyrmion energy.

2.1.3. Anisotropy Energy Density

The anisotropy energy density gets contributions from the perpendicular uniaxial anisotropy
and the demagnetization (magnetostatic) energy densities, respectively. The former term takes the
compact form εani = −Kum2

z , Ku being the perpendicular uniaxial anisotropy constant. In explicit form
expressed as a function of θ it reads εani = −Ku cos2θ. Instead, the latter term takes the form εdem =

−
1
2 µ0Ms m·Hdem, with Hdem = (0,0,Hdem) being aligned along +z and µ0 = 4π × 10−7 H/m being the

vacuum permeability. Since skyrmions that are hosted in ultrathin ferromagnetic dots are studied,
the ultrathin approximation is applied, according to which the magnetostatic source is given only
by the face surface charges of the dot, Hdem = −Ms mz. Indeed, according to this approximation, in
the ultrathin limit the contributions resulting from the side surface charges of the dot and from the
volume charges can be safely neglected. This leads to εdem = 1

2µ0M2
s cos2 θ that has the form of a

local term. The total anisotropy energy density can be written as an effective anisotropy by defining
an effective anisotropy constant Keff = Ku −

1
2µ0 M 2

s so that εeff
ani = −Keff sin2 θ. However, for a more

realistic description it is convenient to refer the anisotropy energy density to the uniform state (m along
+z), εani (θ =0) = −Ku obtained for θ = 0 expressing it as εani = Ku sin2θ, namely as the difference εani

(θ) − εani (θ =0) recovering the definition of ferromagnetic thin films. Hence, εani
eff = Ku − Keff cos2θ

and the term proportional to Ku leads to a constant upshift of the skyrmion energy from negative to
positive values due to the high Ku magnitude for typical ferromagnetic materials without affecting its
trend vs. the skyrmion radius.
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2.1.4. External Field Energy Density

The Zeeman energy density due to the interaction of the static magnetization with the external
bias field Hext is εextfield = −µ0 Ms m·Hext. In terms of the polar angle θ between the magnetization m
and the z axis and the angle θHext the external bias forms with the z axis it is εextfield = −µ0 Ms Hext

cos(θ- θHext). If Hext is aligned along +z (–z), the Zeeman energy density can be written as εextfield

= −µ0 Ms Hext cos θ, with Hext > 0 (Hext < 0). In both cases, the sign of the Zeeman energy density
depends on the sign of cosθ, which is in turn related to the m orientation with respect the z axis.

Instead, if this contribution is expressed as the energy gain with respect to the Zeeman energy
density of the perpendicular uniform state (m aligned along + z, θ = 0, with Hext aligned along +z
(Hext > 0) or −z (Hext < 0)) one gets εextfield (θ) − εextfield (θ = 0) = µ0 Ms Hext (1 − cosθ).

The total energy density is written down using the dimensionless radial coordinate r = ρ/lexch

with lexch =
√

2A/(µ0 Ms
2) being the exchange length. The total energy density for both skyrmion

magnetization textures as explicit function of the polar angle θ reads:

εtot = Ã

(dθ
dr

)2

+
sin2 θ

r2

± D̃
(

dθ
dr

+
sinθ cosθ

r

)
+ Ku sin2 θ+ 1/2µ0M2

s cos2 θ−µ0MsHext cosθ. (2)

with Ã = A/l2
exch

and D̃ = D/lexch.
The total energy density in dimensionless units is calculated at equilibrium using the static

magnetization distribution θ(r) = Θ0(r) at equilibrium of a chiral Néel skyrmion derived in [35]. This
distribution is a trial solution of the nonlinear and transcendental differential equation resulting from
the minimization of the skyrmion energy functional complemented by the boundary conditions on the
distribution itself and its radial derivative. In the limit of dominating exchange isotropic interaction
(quality factor Q = 1 with Q = 2Ku/(µ0Ms

2) and DMI parameter D = 0), this solution recovers the
well-known Belavin–Polyakov soliton solution [42,44]. Θ0(r) describes the radial dependence of the
static magnetization of a chiral Néel skyrmion having static magnetization along –z (corresponding to
skyrmion number S = −1) hosted in a circular dot. It takes the form:

Θ0(r) = 2arctan
(
B

e−ξr

r

)
(3a)

where B = rskyeξ rsky , with rsky =Rsky/lexch the dimensionless skyrmion radius and Rsky the skyrmion
radius, and ξ =

√
Q− 1. According to Equation (3a) it is Θ0(r = 0) = π(mz = −1, static magnetization

along −z in the core center) and Θ0(r→∞) = 0(mz = +1, static magnetization along +z at the
skyrmion border).

Analogously, the corresponding magnetization distribution at equilibrium for static magnetization
along +z with skyrmion number S = +1 reads:

Θ0(r) = π− 2arctan
(
B

e −ξr

r

)
. (3b)

According to Equation (3b) it is Θ0(r = 0) = 0 (mz = +1, static magnetization along +z in the core
center) and Θ0(r→∞) = π (mz = −1, static magnetization along -z at the skyrmion border). Note that
the trial magnetization distribution expressed by Equation (3) is the solution of the variational nonlinear
differential equation given in [35]. This trial solution is complemented by the boundary conditions Θ0(r
= 0) =0,π, Θ0(r = rsky) =π/2 and ∂Θ0

∂r (r = rd) =
|D|lexch

2A with rd = Rd/lexch the dimensionless dot radius
(Rd is the dot radius) and is valid also for a Bloch skyrmion because the variational differential equation
takes the same form (the bulk DMI energy density has indeed the same expression as the IDMI energy
density) and the boundary conditions are the same. In principle, these boundary conditions do not take
into account the canting of the magnetization at the borders that would become important when the
skyrmion radius is comparable to the dot radius. However, in the analytical and numerical calculations
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presented and discussed in Section 3, this issue does not arise. Indeed, the equilibrium skyrmion
radius calculated in the metastability region for vanishing external bias field and in the presence of
Hext is at most less than 1

4 of the dot radius for all the cases examined including the comparison of the
numerical calculations with the experimental data.

From Equations (3a) and (3b) one gets:

dΘ0(r)
dr

= ∓
2B(1 + rξ)e−ξr

r2 + B2e−2ξr (3c)

where the minus (plus) sign is referred to the skyrmion magnetization texture with the static
magnetization along -z (+z) in the core center corresponding to skyrmion number S = −1 (S = +1).
Substituting Equation (3) in Equation (2) yields:

εtot = Ã

(∓ 2B(1+rξ)e−ξr

r2+B2e−2ξr

)2
+

sin2
(
2arctan

(
B e −ξr

r

))
r2

± D̃

± sin
(
2arctan

(
B e−ξr

r

))
cos

(
2arctan

(
B e −ξr

r

))
r ∓

2B(1+rξ)e−ξr

r2+B2e−2ξr


+Ku −Keff cos2

(
2arctan

(
B e−ξr

r

))
∓ µ0MsHext cos

(
2arctan

(
B e−ξr

r

))
.

(4)

Here, the upper (lower) signs in the first term of the exchange energy density and in the two terms
of the DMI energy density refer to the magnetization texture with the static magnetization along −z
(+z) in the core center (r = 0) corresponding to S = −1 (S = +1). Instead, the upper (lower) sign in the
Zeeman energy density refers to the static magnetization mz along −z (+z) in the core center (r = 0) and
along +z (−z) at the skyrmion border being cos

(
π− 2arctan

(
B e−ξr

r

))
= − cos

(
2arctan

(
B e −ξr

r

))
and the

external magnetic field Hext applied either along +z (Hext > 0) or along –z (Hext < 0). In other words, the
“−“ (“+”) sign in front of the Zeeman energy density contribution refers to the cases where the static
magnetization mz (r = 0) is anti-parallel (parallel) to Hext. By using some trigonometric expansions (see
the Appendix A, Equations (A1)–(A4)), one gets:

εtot
(
r, rsky

)
= 4Ã B2

[
(2+2rξ+r2ξ2)e−2ξr

(r2+B2e−2ξr)
2

]
± 2D̃ B

[
±
(r2
−B2 e −2ξr)e−ξr

(r2+B2e−2ξr)
2 ∓

(1+rξ)e−ξr

r2+B2e−2ξr

]
+Ku −Keff

(
r2
−B2e−2ξr

r2+B2e−2ξr

)2
∓ µ0MsHext

r2
−B2e−2ξr

r2+B2e−2ξr .
(5)

Equation (5) is Equation (A5) of the Appendix A. The expression of the total energy density given
by Equation (5) is valid for any Néel and Bloch magnetic skyrmion either for chirality χ = +1 (+ sign in
front of the DMI term) or χ = −1 (− sign in front of the DMI term). Here, it is Hext > 0 (Hext < 0) if the
external magnetic field is along +z (−z). For D > 0, it is always mz along −z in the core center, r = 0 (S =

−1), and χ = +1 (radially outward Néel skyrmion and counter-clockwise Bloch skyrmion).

2.2. Skyrmion Energy

In this subsection the calculation of the skyrmion total energy E is outlined. The energy density
is integrated over the dot volume E

(
rsky

)
=

∫
εtot

(
r, rsky

)
dV that, in explicit form, is E

(
rsky

)
=∫

εtot
(
r, rsky

)
dV = (lexch)

2
t/2∫
−t/2

dz
2π∫
0

dφ
rd∫
0
εtot

(
r, rsky

)
r dr so that:

E
(
rsky

)
= 2πt (lexch)

2

rd∫
0

εtot
(
r, rsky

)
r dr (6)

where t is the dot thickness.
The total energy expressed in Equation (6) is computed starting from the energy density of

Equation (5). The total energy consists of the following energy contributions: (1) ferromagnetic
exchange; (2) DMI (either IDMI or bulk DMI); (3) effective anisotropy; and (4) contribution dependent
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on the external bias field. The following dimensionless integrals are evaluated analytically: (1) three
Ii-exch for the ferromagnetic exchange; (2) four Ii-DMI for the IDMI; (3) Iani for the effective perpendicular
anisotropy; and (4) Iextfield for the contribution dependent on the external bias field. All integrals have
a dependence on the skyrmion radius rsky. In compact form:

E
(
rsky

)
= 2πt (lexch)

2

4Ã
3∑

i=1

Ii-exch ± 2D̃
4∑

i=1

Ii-DMI + KuV −KeffIani − µ0MsHextIextfield

 (7)

with E = E(rsky). The explicit expressions of the integrals appearing in Equation (7) are in the Appendix A
(Equations (A6)–(A14)). For every contribution of the total skyrmion energy, the radial integration is
carried out based on two substitutions. The first substitution is a change of variable: (1) ξ r = s. This
leads to eξ r = es and to r = 1/ξ s. The second substitution is a real substitution based on the change
of variable given in 1): (2) s es = x so that x = ξ r eξr. The transcendental equation s es = x admits the
solution s = W(x), allowing to write W(x) eW(x) = x, where W(x) is the Lambert function defined in the
real domain as a function of the real variable x and ds = W(x)/(x (1 + W(x))) dx, with W(0) = 0. This
allows writing every integral in terms of the variable x, with 0 ≤ x ≤ C and C = ξrdeξrd a quantity
depending on the dot radius. Hence, in these calculations the domain of the Lambert function is
restricted to the interval 0 ≤ x ≤ C, where W(x) ≥ 0.

Hence, all the integrand functions can be written as the product of a rational fractional function
f = f (B,x) and a fractional function g(W(x)) dependent on W(x). While the former function has an
explicit dependence on the skyrmion radius rsky via B and on the radial coordinate r, the latter function
has an explicit dependence only on the radial coordinate r being x = ξ r eξ r. The generic integral I for
every skyrmion energy contribution is expressed in the form:

I = K(B, ξ)

C∫
0

f (B, x)g(W(x))dx (8a)

where K = K(B,ξ) is a coefficient that is dependent on B and ξ and assuming different forms depending
on the considered integral and g(W(x)) is either g(W(x)) = W(x)/(1 + W(x)) or g(W(x)) = (W(x))2/(1 +

W(x)) depending on the considered integral.
The function g(W(x)) appearing in the integral of Equation (8a) is plotted in Figure 1 for 0 ≤ x ≤ C

for the two different functions appearing in the skyrmion energy integrals (see the next subsections for
the details). In Figure 1a the function W(x)/(1 + W(x)) is shown, while in Figure 1b it is the function
(W(x))2/(1 + W(x)). In the skyrmion energy integrals (see Section 2.2.1 for the details) it appears
either W(x)/(1 + W(x)) or (W(x))2/(1 + W(x)), depending on the integral. For the special case shown
corresponding to the parameters at T = 0 K (see Section 3 for their numerical values) C = 2 × 1013. Both
functions vanish for x = 0, are monotonically increasing functions but, while W(x)/(1 + W(x)) tends
asymptotically to 1 for increasing x, (W(x))2/(1 + W(x)) diverges for x→∞, exhibiting a trend similar to
that of W(x). The smooth behavior of W(x)/(1 + W(x)) for small x that is masked by the large x interval
is shown in more detail in the inset to Figure 1a for a reduced interval of x (0 ≤ x ≤ 100).

Because of the rescaled parameters used at higher temperatures, a reduction of the value of C
occurs without altering the qualitative behavior of the two functions.
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The generic integrand function h(x) of Equation (8a) does not have a primitive function for every
considered energy contribution, therefore the integral I cannot be solved analytically. However, from a
numerical check studying the behavior of the integrand functions, it has been found that, for every
energy contribution, the integral I is well approximated if calculated in the form:

I ' K(B, ξ)g(W(B ξ))

C∫
0

f (B, x)dx (8b)

namely, moving out of the integral the function g(W(x)) depending on the radial coordinate only, and
attributing to it a trend depending on the skyrmion radius via the dependence on B (with B = B (rsky))
and writing g(W(Bξ)) in place of g(W(x)). In this way, the radial dependence contained in g(W(x))
has been interchanged with the skyrmion radius dependence. This has been accomplished, first by
numerically calculating the integral of Equation (8b) whose integrand f (B,x) has a primitive function
for every energy contribution of Equation (7) (see the next subsections), and then by numerically
computing the ratio between the numerical integral of Equation (8a) and the integral of Equation (8b),
both depending on rsky for the values of the skyrmion radius in the interval 0≤ rsky ≤ rd. The calculation
was done for every energy contribution of Equation (7). The above-mentioned ratio turned out to
be approximately equal to the function g(W(Bξ)) for all skyrmion radii ranging in the interval 0 ≤
rsky ≤ rd. In particular, g(W(Bξ)) = W(Bξ)/(1 + W(Bξ)), g(W(Bξ)) = [W(Bξ)]2/(1 + W(Bξ)), or g(W(Bξ))
=1/(2ξ3) [W(Bξ)]2/(1 + W(Bξ)), with 0 ≤ B ≤ 1/ξ C depending on the integral studied (see the following
subsection for the details).

2.2.1. Calculation of Ferromagnetic Exchange Energy

In this subsection, the ferromagnetic exchange energy is computed. Taking into account
substitution (1), multiplying numerator and denominator by e4s, and substitution (2) I1-exch is rewritten
(Equation (A6)) as:

I1-exch = 2(Bξ)2
∫ C

0

x(
x2 + (Bξ)2

) 2
1

1 + W(x)
dx. (9a)

Taking into account substitution (1), multiplying numerator and denominator by e4s, and
substitution (2), I2-exch (Equation (A7)) is rewritten as:

I2-exch = 2(Bξ)2
∫ C

0

x(
x2 + (Bξ)2

)2

W(x)
1 + W(x)

dx. (9b)
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Now, by considering the sum I1-2exch of the two integrals of Equations (9a) and (9b) that does not
depend on W(x):

I1-2-exch = 2(Bξ)2
∫ C

0

x(
x2 + (Bξ)2

) 2 dx. (9c)

Performing the integral of Equation (9c) one gets:

I1-2-exch =
1

1 + (Pξ)2 (9d)

with P = B/C and, in explicit form, P =
rsky
ξ rd

eξ(rsky−rd). Hence, P does depend on rsky that is a
variable quantity.

Finally, taking into account substitution (1), multiplying numerator and denominator by e4s, and
substitution (2), I3-exch (Equation (A8)) becomes:

I3-exch = (Bξ)2
∫ C

0

x(
x2 + (Bξ)2

) 2

[W(x)] 2

1 + W(x)
dx. (10a)

Owing to the approximation of Equation (8b) the integral can be rewritten in the form:

I3-exch ' b(Bξ)2
∫ C

0

x(
x2 + (Bξ)2

) 2 dx (10b)

with b =
[W(C P ξ)] 2

1+W(C Pξ) . Solving the integral yields:

I3-exch '
1
2
[W(C P ξ)] 2

1 + W(C Pξ)
1

1 + (Pξ)2 . (10c)

The corresponding exchange energy Eexch = 8πt A Iexch with Iexch =
3∑

i=1
Ii-exch reads:

Eexch ' 8πtA

1 +
1
2
[W(C P ξ)] 2

1 + W(C Pξ)

 1

1 + (Pξ)2 . (11a)

As rsky→0, B and P→0 so that:

Eexch
(
rsky → 0

)
= 8π t A. (11b)

Hence, the limit 8π t A is recovered representing the absolute minimum of the exchange energy of
a continuous spin structure with integer topological charge [42,44].

2.2.2. Calculation of DMI Energy

This subsection is devoted to the calculation of DMI energy. As shown above this calculation
is valid for both IDMI and bulk DMI energy. Taking into account substitution (1), multiplying the
numerator and denominator by e4s, and substitution (2), I1-DMI (Equation (A9)) becomes:

I1-DMI = ±B

C∫
0

x2[
x2 + (Bξ)2

] 2

W(x)
1 + W(x)

dx. (12a)
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Because of the approximation of Equation (8b) I1-DMI can be rewritten as:

I1-DMI ' ±c B

C∫
0

x2(
x2 + (Bξ)2

) 2 dx (12b)

with c = W(C P ξ)
1+W(C Pξ) . The computation of the integral leads to:

I1-DMI ' ±
1

2ξ
W(C P ξ)

1 + W(C Pξ)

arccotg(Pξ) −
Pξ

1 + (Pξ)2

. (12c)

Taking into account substitution (1), multiplying numerator and denominator by e4s, and
substitution (2), I2-DMI (Equation (A10)) becomes:

I2-DMI = ∓B3ξ2

C∫
0

1(
x2 + (Bξ)2

)2

W(x)
1 + W(x)

dx. (13a)

According to the approximation of Equation (8b) the integral can be rewritten in the form:

I2-DMI ' ∓B3ξ2c

C∫
0

1(
x2 + (Bξ)2

)2 dx. (13b)

Carrying out the integration yields:

I2-DMI ' ∓
1

2ξ
W(C P ξ)

1 + W(C Pξ)

arccotg(Pξ) +
Pξ

1 + (Pξ)2

. (13c)

Taking into account substitution (1), multiplying numerator and denominator by e2s, and
substitution (2), I3-DMI (Equation (A11)) reads:

I3-DMI = ∓B

C∫
0

1

x2 + (Bξ)2

W(x)
1 + W(x)

dx. (14a)

The integral is rewritten in the form:

I3-DMI ' ∓c B

C∫
0

1

x2 + (Bξ)2 dx. (14b)

Solving the integral yields:

I3-DMI ' ∓
1
ξ

W(C P ξ)
1 + W(C Pξ)

arccotg(Pξ) . (14c)

Taking into account substitution (1), multiplying numerator and denominator by e2s, and
substitution (2), I4-IDMI (Equation (A12)) is rewritten as:

I4-DMI = ∓B

C∫
0

1

x2 + (Bξ)2

[W(x)] 2

1 + W(x)
dx (15a)
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where the −(+) in front refers to chirality χ = +1 (χ = −1). The integral can be approximated in the
form taking into account the approximation of Equation (8b):

I4-DMI ' ∓bB

C∫
0

1

x2 + (Bξ)2 dx. (15b)

The calculation of the integral yields:

I4-DMI ' ∓
1
ξ

[W(C P ξ)]2

1 + W(C Pξ)
arccotg(Pξ) . (15c)

The total DMI energy is expressed as EDMI = ±4π t D lexch IDMI with IDMI =
4∑

i=1
Ii-DMI and reads:

EDMI ' ±(4πt D lexch)
[
∓

1
ξ

((
[W(C P ξ)]2+W(C P ξ)

1+W(C Pξ)

)
arccotg(Pξ) + W(C P ξ)

1+W(C Pξ)

(
Pξ

1+(Pξ)2

)) ]
(16)

with b = b (P) and c = c (P).

2.2.3. Calculation of the Effective Anisotropy Energy

Taking into account substitution (1), multiplying numerator and denominator by e2s, and
substitution (2), Ieff

ani (Equation (A13)) turns out to be:

Ieff
ani =

1
ξ2

C∫
0

(
x2
− (Bξ)2

) 2

x
(
x2 + (Bξ)2

) 2

[W(x)] 2

1 + W(x)
dx. (17a)

Adding and subtracting 4(Bξ)2 x2 at the numerator of the integrand function yields:

Ieff
ani =

1
ξ2


C∫

0

1
x

[W(x)] 2

1 + W(x)
dx− 4

C∫
0

(Bξ)2x(
x2 + (Bξ)2

) 2

[W(x)] 2

1 + W(x)
dx

. (17b)

In particular:

Ieff
ani1 =

1
ξ2

C∫
0

1
x

[W(x)] 2

1 + W(x)
dx (17c)

and:

Ieff
ani2 = −

4
ξ2

C∫
0

(Bξ)2x(
x2 + (Bξ)2

) 2

[W(x)] 2

1 + W(x)
dx. (17d)

Ieff
ani1 is solved exactly yielding:

Ieff
ani1 =

1
2ξ2

[W(C)] 2. (17e)

Because of the approximation of Equation (8b), Ieff
ani2 is rewritten as:

Ieff
ani2 ' −

4
ξ2 b

C∫
0

(Bξ)2x(
x2 + (Bξ)2

) 2 dx. (17f)
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Solving the integral one gets:

Ieff
ani2 ' −

1
ξ2

[W(C Pξ)]2

1 + W(C Pξ)

 2

1 + (Pξ)2

 (17g)

with Ieff
ani = Ieff

ani1 + Ieff
ani2 > 0. Substituting Equations (17e) and (17g), the effective anisotropy energy Eani

= −2π (lexch)2t KeffIeff
ani reads:

Eeff
ani
' −πKefft(lexch)

2 1
ξ2

[W(C)]2 −
[W(CPξ)]2

(1 + W(CPξ))
4(

1 + (Pξ)2
) . (18)

This term must be added the quantity Ku V that leads to a rigid shift of the skyrmion internal energy.

2.2.4. Calculation of the External Field Energy

Taking into account substitution (1), multiplying numerator and denominator by e2s, and
substitution (2), Iextfield (Equation (A14)) takes the form:

Iextfield =
1
ξ2

C∫
0

1
x

 x2
− (Bξ)2

x2 + (Bξ)2

 [W(x)] 2

1 + W(x)
dx. (19a)

Adding and subtracting 2(Bξ)2 at the numerator of the integrand function yields:

Iextfield =
1
ξ2


C∫

0

1
x
[W(x)] 2

1 + W(x)
dx−

C∫
0

2
x

(Bξ)2

x2 + (Bξ)2

[W(x)] 2

1 + W(x)
dx

. (19b)

In particular:

Iextfield1 =
1
ξ2

C∫
0

1
x
[W(x)] 2

1 + W(x)
dx (19c)

and:

Iextfield2 = −
2
ξ2

C∫
0

1
x

(Bξ)2

x2 + (Bξ)2

[W(x)] 2

1 + W(x)
dx. (19d)

Iextfield1 is solved exactly yielding:

Iextfield1 =
1

2ξ2
[W(C)] 2. (19e)

Owing to the approximation of Equation (8b), singling out the divergence of the integrand function
in x = 0 and checking numerically the integral of Equation (19d), Iextfield2 is rewritten as proportional
to the coefficient b weighted by 1/(2ξ3):

Iextfield2 ' −
1

2ξ3 b
2
ξ2

C∫
ε

1
x

(Bξ)2

x2 + (Bξ)2 dx. (19f)

with ε→0 and xε (ε,C). Solving the integral one gets:

Iextfield2 ' −
1

2ξ5

[W(CPξ)] 2

1 + W(CPξ)

ln

 (Pξ)2

1 + (Pξ)2

+ 2 ln
(C
ε

). (19g)
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The Zeeman energy due to the external bias field reads:

Eextfield ' ∓πt (lexch)
2µ0MsHext

1
ξ2

[W(C)] 2
−

1
ξ3

[W(CPξ)] 2

1 + W(CPξ)

ln

 (P ξ)2

1 + (P ξ)2

+ 2 ln
(C
ε

). (20)

Attention must be paid to the computation of Eextfield because of the last term strictly depending on
the value of ε with ε→0. In the numerical calculations, from the comparison with the exact calculation
it is found that ε = 0.001. The total energy E = Eexch + EIDMI + Eani + Eextfield of the magnetic chiral
skyrmion (either Néel or Bloch magnetization texture) in the presence of a perpendicular external
magnetic field is the sum of the energy contributions appearing in Equations (11a), (16), (18), and (20).
It has been shown that, according to the most accurate magnetization distribution for chiral skyrmions
hosted in ultrathin cylindrical dots available, the total energy can be expressed as a combination of
transcendental functions.

As magnetic parameters Ms, A, D, and Ku vary with T according to the following scaling laws
A(m) = A (T = 0 K) m (T)3/2, D (T) = D(T = 0 K) m(T)3/2, and Ku (T) = Ku (T = 0 K) m(T)3.6 [35] also ξ = ξ
(T), the exchange lexch = lexch (T), the upper integral limit C = C(T). Moreover, the total skyrmion energy
is E = E (T), an internal energy depending on temperature. Note that the thermal effects incorporated
in the temperature-dependent magnetic parameters affect also the skyrmion modes. Indeed, they
activate not only the skyrmion breathing mode, the only mode that preserves the skyrmion symmetry,
but also other skyrmion modes such as, e.g., the skyrmion translational mode that, in principle, breaks
the skyrmion symmetry.

The skyrmion radius can be obtained by minimizing the internal energy E, ∂E/∂rsky = 0, and
∂2E/∂rsky

2 > 0. For the sake of convenience, all terms of the skyrmion energy are divided by 8 π t A
setting (D/2A) lexch = α, (Keff/8 A) (lexch)2 = β, and (µ0MsHext/8A) (lexch)2 = γ, with α, β > 0 and γ > 0 (γ
< 0) if Hext > 0, along +z (if Hext < 0, along −z). The energy minimization condition is rewritten as
∂g(P)/∂rsky = 0, with the dimensionless quantity g(P) = E/(8 π t A) having the meaning of a reduced
energy given by:

g(P) =
(
1 + 1

2 b
)

1
1+(Pξ)2 ±

α
ξ

(
∓(b + c) arccotg(Pξ) ∓ c Pξ

1+(Pξ)2

)
−
β
ξ2

(
[W(C)]2 − b 4

1+(Pξ)2

)
∓

γ
ξ2

(
[W(C)] 2

−
1
ξ3 b

(
ln

(
(P ξ)2

1+(P ξ)2

)
− ln

(
ε
C

)2
)) (21a)

where the + (−) sign in front of the coefficient α/ξ2 multiplies the − (+) signs inside the round brackets,
b = b (CPξ), c = c (CPξ), and the − (+) sign in front of the coefficient γ/ξ2 refers to mz = −1 (mz = +1) in
the core center (r = 0) and mz = +1 (mz = −1) at the skyrmion border (corresponding to S = −1 (S = +1)).

Since it has been found from the numerical calculations that the equilibrium skyrmion radius, rsky

(E = Emin) << rd for the range of temperatures investigated with Emin the skyrmion energy minimum,
b is expanded to the second order, viz. b ≈ (CPξ)2 and c to the first order, viz. c ≈ CPξ getting:

g(P) '
(
1 + 1

2 (CPξ)2
)

1
1+(Pξ)2 ±

α
ξ

(
∓

(
C2(Pξ)2 + CPξ

)
arccotg(Pξ) ∓ C(Pξ)2

1+(Pξ)2

)
−
β
ξ2

(
[W(C)]2 −C2(Pξ)2 4

1+(Pξ)2

)
∓

γ
ξ2

(
[W(C)] 2

−
1
ξ3 C2(Pξ)2

(
ln

(
(P ξ)2

1+(P ξ)2

)
− ln

(
ε
C

)2
))

.
(21b)

As P = P(rsky) it is ∂ g(P)
∂rsky

=
∂ g(P)
∂P

∂P
∂rsky

with ∂P
∂rsky

=
(ξrsky+1)

ξ rd
eξ(rsky−rd) = P

(
ξ+ 1

rsky

)
. Hence,

∂ g(P)
∂rsky

=
∂ g(P)
∂P

(
P
(
ξ+ 1

rsky

))
= 0. But ξ+ 1

rsky
, 0 always for 0 ≤ rsky ≤ rd and P = 0 for the trivial case

rsky = 0 so that the minimization condition is rewritten in the form:

∂ g(P)
∂P

= 0. (22a)
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The minimization condition yields a fifth-degree equation in P. This gives two physical solutions,
the smallest one corresponding to the equilibrium skyrmion radius r0 sky at the minimum skyrmion
energy (∂2E/∂rsky

2 > 0) and the larger one to the skyrmion radius at the energy maximum ((∂2E/∂rsky
2

< 0) and three unphysical solution.
To calculate r0 sky (defined as mz (r0 sky) = 0) from Equation (22a), some reasonable approximations

have been made in order to get a simple analytical expression of the equilibrium skyrmion radius.
First, all terms of the form 1 + powers of (Pξ) were approximated to 1, taking into account that in
correspondence of the energy minimum the value of the skyrmion radius is such that P→0 (B <<
C, B→0). Second, arccot[Pξ] was expanded to the zero-order, viz. arccot[Pξ] ≈ π/2, introducing a
coefficient ∆ = π/2 + η (T) with ∆ = ∆ (T). Here, η is a very small coefficient (see Section 3 for the
numerical details) depending on T and decreasing approximately with the same rate as ξ (T) that
includes the effects of the other approximations and that, for the sake of simplicity, was added, as
a small correction, to π/2. For the minimization calculation at Hext , 0, the term proportional to

ln
(

(P ξ)2

1+(P ξ)2

)
− ln

(
ε
C

)2
that appears in the expression of the derivative ∂g(P)/∂P has been neglected,

assuming that B = C P has the same order of infinitesimal of ε (ε = 0.001) for the values of B crucial for
searching the equilibrium radius ranging between 0 and those corresponding to the equilibrium radius
itself that are still very small if compared to C. Owing to these approximations, it is possible to extract
the equilibrium skyrmion radius from the following first degree equation in B via B = P C:(

8β±
2γ
ξ3 − 2αξ∆ + ξ2

)
B− α∆ = 0. (22b)

The equilibrium skyrmion radius in dimensionless units is calculated from B0 = r0 sky exp(ξ r
0sky

).
In particular, r0sky in the absence of an external magnetic bias field, γ = 0, reads:

r0 sky '
1
ξ

W
(

α ξ ∆
8β − 2αξ∆ + ξ2

)
. (22c)

Instead, r0sky when the skyrmion is subjected to a perpendicular external magnetic bias field,
γ , 0, takes the form:

r0 sky '
1
ξ

W

 α ξ ∆

8β ± 2γ
ξ3 − 2αξ∆ + ξ2

 (22d)

with α = α (T), β = β (T), γ = γ (T), and ∆ = ∆ (T). The skyrmion radius is proportional to the Lambert
function W(y) depending on the magnetic parameters that are, in turn, scaled as a function of T and
the parameter ξ. Here, ±2γ refers to mz = −1 (mz = +1) in the core center (r = 0) and mz = +1 (mz = −1)
at the skyrmion border (corresponding to S = −1 (S = +1)). Moreover, 8β −2αξ ∆ ± 2γ/ξ3 +ξ2 > 0 for
the scaled parameters used at every T and for any external magnetic field investigated ensuring the
positivity of the argument y of W(y). This result is general and valid for both magnetization textures.

Note that the determination of the skyrmion size as a function of the magnetic parameters has
been the subject of several investigations [45–47]. The expressions of r0 sky of Equations (22c) and (22d)
have some similarities with other expressions of the equilibrium skyrmion radius recently derived in
the literature from the minimization of the skyrmion energy, where r0 sky is a function of the magnetic
parameters appearing in a fractional form [45,46]. However, note that, in the present approach, the
equilibrium magnetization distribution is an accurate 2D distribution that recovers for Q = 1 and D = 0
the Belavin–Polyakov soliton solution, while in those studies the magnetization distribution had the
form of an approximated cosine-like variation or resulted from a 360◦ domain-wall distribution.

According to Equations (22c) and (22d), as T increases, ξ decreases for the scaled parameters used
and W(x) increases leading to an increase of r0sky for any fixed external field amplitude and for any
magnetization texture. The equilibrium skyrmion radius in dimensional units reads R0 sky = r0 sky lexch

at any T and for any external magnetic field and the equilibrium skyrmion diameter is D0 sky = 2 R0 sky.
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For the case considered in the numerical calculations (Nèel skyrmion with S = −1 and radially outward
magnetization, χ = +1), it has been found that this behavior is confirmed. This trend characterizing
the equilibrium skyrmion diameter as a function of T is indeed consistent with the one obtained
calculating the skyrmion energy via the numerical evaluation of the integrals and of the equilibrium
skyrmion diameter (for the comparison of the equilibrium skyrmion diameter calculated by means
of Equations (22c) and (22d) and numerically, see Section 3.1). Because of the invariance of the DMI
energy, this trend occurs also for a Nèel skyrmion with S = +1 and radially inward magnetization, χ =

−1. However, due to the generality of Equations (22c) and (22d), this behavior characterizes r0sky also
for a Bloch skyrmion (either S = +1 and counter-clockwise chirality, χ = +1, or S = −1 and clockwise
chirality, χ = −1).

Moreover, at fixed T, r0sky has different trends with increasing Hext (either positively or negatively).
In particular, for a Néel or a Bloch skyrmion with S = −1 and χ = +1 and Hext > 0 (Hext < 0), r0sky

reduces (increases) with increasing the positive (negative) amplitude of the external magnetic field
leading to a positive (negative) increase of γ, γ > 0 (γ < 0), confirming recent micromagnetic and
numerical calculations [43].

Finally, according to Equations (22c) and (22d), at fixed magnetic parameters for a given T, the
equilibrium skyrmion radius does not have an explicit dependence on the dot radius. By means of a
comparison with the equilibrium radius calculated from the numerical minimization of the skyrmion
energy it has been found that, for the magnetic parameters used, this is approximately valid for a dot
radius Rd > 50 nm. For Rd ≤ 50 nm R0 sky depends on the dot radius and reduces with decreasing Rd

as found by Tejo et al. [44] so that, in this regime Equations (22c) and (22d) are not anymore valid.

2.3. Statistical Thermodynamic Properties of Skyrmion Diameters Population

In this section the statistical thermodynamics aspects of chiral magnetic skyrmions at equilibrium
are investigated taking into account the strict analogy with the particles behavior in an ideal gas.
In particular, key quantities to understand their thermodynamic behavior such as the partition function
and the free energy are calculated within a microcanonical ensemble. Finally, the pressure is determined
and an equation of state linking pressure, volume, and temperature is proposed.

2.3.1. Partition Function and Free Energy of a Skyrmion Diameters Population within a
Microcanonical Ensemble

Let us calculate the partition function and the free energy of a skyrmion diameters population
within a microcanonical ensemble. Very recently, it has been shown that, starting from a canonical
ensemble, a skyrmion diameters population can be approximately described within a microcanonical
ensemble due to the small fluctuations of the energy around the average energy. To calculate the
partition function, the expression of the configurational entropy at thermodynamic equilibrium
resulting from an average over the 3D equilibrium Maxwell–Boltzmann distribution of skyrmion
diameters is recalled [39]:

S ' kB

ln
 (kBT)

3
2 + 2(kBT)

1
2 a < Dsky >

2

a
3
2 < Dsky >2 t

+ 1
2

3kBT + 2a < Dsky >
2

kBT + 2a < Dsky >2


+ S0 (23)

with a = a(T) a parameter proportional to the parabola curvature, <Dsky> = <Dsky(T)> the average
skyrmion diameter, and S0 = kB (2 ln 2+1/2 ln π). <Dsky> was calculated as a spatial integral of Dsky

over the 3D Maxwell–Boltzmann distribution [39]. The reason for performing the analysis in a 3D
space instead of a 2D (the magnetization distribution is indeed planar) results from the observation,
via micromagnetic simulations, that the thickness of the nanodot (even though less than 1 nm) can be
important to establish the behavior of the diameters distribution. Strictly speaking, Equation (23) was
derived for a Nèel skyrmion with S = −1. However, as already outlined in [39], this expression can
be considered valid also for a Nèel skyrmion with skyrmion number S = +1 and applies also to the
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Bloch skyrmion with S = ±1. Indeed, the energy takes the same form for any magnetization texture
and its trend in the vicinity of the minimum can be approximated by a quadratic dependence on the
skyrmion diameter.

Note that, as for the ideal gas, configurational entropy expressed by Equation (23) fulfills the
requirement of additivity (entropy is indeed an extensive thermodynamic quantity), is consistent
with the definition of temperature and with the second principle of thermodynamics, and with the
adiabatic invariance for slow changes occurring in the system. On the other hand, due to its classical
derivation, S does not fulfil the third principle of thermodynamics or Nernst principle according
to which S = 0 J/K for T = 0 K, but S → −∞ as T→0 K, showing a similar behavior to that of the
Sackur–Tetrode equation expressing the entropy for an ideal gas as a function of T [39].

Equating the calculated configurational entropy to S = kB lnW representing the general entropy
definition valid for a microcanonical ensemble, W can be determined. In statistical mechanics, the
quantity W represents the number of microscopic possibilities to realize the macroscopic state. More
specifically, W can be regarded as the statistical multiplicity of the energy level having value <E> or as
the degeneracy of the ground state of the skyrmions population having average energy <E>. One gets:

W ' K e
−

2a <Dsky>
2

2a <Dsky>
2+kBT

2a < Dsky >
2 (kBT)

1
2 + (kBT)

3
2

a
3
2 < Dsky >2

(24)

where K = 4
√
π e3/2/t is a constant at fixed dot thickness t. The statistical multiplicity of a skyrmion

diameters population depends not only on T but also on the geometric and magnetic parameters of the
magnetic system that, in turn, have an intrinsic dependence on T.

It can be noted that W = 0 for T = 0 K: at the absolute zero the ground state is no longer
degenerate. With increasing T there is an enhancement of the degeneracy. This means that the
higher the temperature the greater the probability to populate the ground state levels of skyrmion
diameters population.

In [39], it has been also shown that the partition function of the skyrmion diameters population
within a canonical ensemble can be approximated by the one of the microcanonical ensemble that in
the discrete limit reads Z ≈W e − <E>/(k

B
T). Hence, replacing W given in Equation (24), the explicit

expression of the partition function within a microcanonical ensemble is obtained:

Z � K
e
− (

2a <Dsky>
2

2a <Dsky>
2+kBT

)
e −

5/2kBT+2 a(D0sky)
2

2 kBT

a
3
2 < Dsky >2

(
2a < Dsky >

2 (kBT)
1
2 + (kBT)

3
2

)
(25)

where <E>� (5 kBT+2a(D0 sky)2)/2 is the average energy calculated in [39] as <E>� a <Dsky
2> and D0 sky

= D0 sky (T) is the equilibrium skyrmion diameter with D0 sky � <Dsky>, especially at low T. Looking
at Equation (25) it can be observed that the partition function of a skyrmion diameters population
depends on fractional powers of T. However, there is a combined dependence on T1/2 and T3/2 if
compared to the partition function for an ideal gas whose particles follow a 3D MB distribution where
there is only a T3/2 dependence. Moreover, the fractional dependence on T appearing in the rational
fraction is weighted by an exponential term that also depends on T. This exponential dependence
differentiates the partition function Z of a skyrmions population from that of the particles of a 3D
ideal gas.

Similarly to the configurational entropy, the partition function has a combined dependence on
geometric and magnetic parameters. Taking into account the relation between the Helmholtz free
energy F and the partition function of the microcanonical ensemble expressed as F = −kBT lnZ, the
relation F � <E> − T S can be easily found, with F = F(T) for every T (the symbol � results from the
approximated form of Z), the well-known thermodynamic relation generally used for ferromagnets.
For this case, because of the definition of S as an expectation value, F, while depending on T, is regarded
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as an average free energy. Note that the Zeeman energy is included in <E> and, for this reason, still
one deals with the Helmholtz free energy F. However, if this contribution is thought as separated from
the other skyrmion energy contributions to the average energy one would deal with the Gibbs free
energy G. Within this framework, the two approaches are equivalent.

2.3.2. Skyrmion Diameters Population Pressure and Equation of State

From the free energy, it is possible to derive, in complete analogy with the pressure exerted by the
particles of a gas on the walls of a container, the pressure p of the skyrmion diameters population.

Taking into account the infinitesimal relation dF =− S dT − p dV it is p =− (∂F/∂V)T. In explicit form:

p = −

(
∂F
∂V

)
T

. (26)

Equation (26) gives the pressure generated by skyrmion diameters population at a fixed
temperature T. If a container filled with an ideal gas is expanded instantaneously, the temperature of
the gas does not change at all. Analogously, if the skyrmion size is allowed to fluctuate instantaneously,
the skyrmion diameter deviates from the average value and, as a result, the skyrmion volume fluctuates
around its average value. This process occurs without affecting the temperature, as occurs for particles
in an ideal gas.

To calculate the pressure, one could substitute either F � <E> − T S or F = −kB T ln Z in
Equation (26). However, unlike for the case of an ideal gas, the thermodynamic variables <E>, S,
and Z within this framework have a dependence not on the generic volume V but on the average
skyrmion volume <V> with in addition <V> = <V(T)>, that is the dependence on V is mixed with
that of T. Therefore, it is convenient to argue in terms of densities of thermodynamic variables. Let us
introduce a free energy density f = f (Dsky) dependent on skyrmion diameter with f = e − T s, where
e = e(Dsky) is the internal energy density (internal energy per unit volume e = E/V) and s = s(Dsky)
the configurational entropy density (configurational entropy per unit volume). These quantities are
expressed taking into account the approximation on the skyrmion energy in the vicinity of the minimum
via a quadratic dependence [39] on Dsky, viz. E = a (Dsky − D0sky)2 used to calculate <Dsky> and the
skyrmion configurational entropy expressed in Equation (23). Note that, for the total computation of
the energy, an energy shift of b = E (D = D0 sky) would be added to this expression that gives the energy
in the minimum. This harmonic approximation is reasonable because the main contribution to the
configurational entropy results from skyrmion diameters around the energy minimum. In particular:

e � a (Dsky − <Dsky>)2/V (27)

where V = 1
4 π Dsky

2 is the skyrmion volume for a given Dsky and the symbol � was introduced
because, for consistency with the definition of entropy density (see below), D0 sky has been replaced
with <Dsky>. For the scaled parameter used, this approximation holds in the region of metastability
being the difference between <Dsky> and D0 sky less than 10 %. The volume V is at most equal to the
dot volume V = 1

4 π Dd
2, with Dd = 2 Rd the dot diameter.

Instead, the entropy density can be derived from the definition of the Boltzmann order function at
equilibrium equivalent (apart from the sign) to the Shannon information entropy. First, the Gaussian
diameters distribution or probability density appearing in the Boltzmann order function at equilibrium

is considered, f0 = N e −
a (∆Dsky)

2

kBT , with ∆Dsky = Dsky − <Dsky> expressing the deviation from the
average skyrmion diameter at a given T and N the normalization constant. The normalization
constant has the dimension of an inverse of a volume and is obtained by normalizing to one skyrmion
having different sizes and diameters in different instants of time, giving rise to a skyrmion diameters
population at each T in the range of temperatures corresponding to the metastable state, as shown
by micromagnetic simulations [39]. Here, f 0 has the meaning of a Gaussian probability density. In
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principle, one should normalize the Gaussian distribution in the usual way, performing a volume
integration of f 0. This results in a value of N that has an explicit dependence on T, on <Dsky>, and
on magnetic parameters through a, and is crucial for the calculation of the configurational entropy.
However, to have a strict connection with the magnetic skyrmion volume V = V(Dsky) that strictly
depends on the skyrmion diameter Dsky for each T, one takes, without loss of generality, C =1/V. Hence,

one writes f0 = 1
V e −

a (∆Dsky)
2

kBT . Note that f 0 is not anymore, strictly speaking, a Gaussian distribution
because V∝ (Dsky)2 leading to a singularity of f 0 for vanishing Dsky. However, for diameters different
from zero its trend is almost superimposable to that of the corresponding Gaussian, with a slight
downshift of the maximum (with respect to the maximum for Dsky = <Dsky> of the Gaussian) that
increases with increasing temperature and a slight variation of the standard deviation and of the full
width at half maximum.

In view of the above arguments the entropy density s = −kB f 0 ln f 0 can be written in the form:

s = −kB
1
V

e−
a (∆Dsky)

2

kBT ln
< V >

V
+

1
V

e −
a (∆Dsky)

2

kBT
a
(
∆Dsky

)2

T
. (28)

This expression can be derived from the integrand of the Boltzmann order function H0 defined in
the continuum limit as an integral over spatial coordinates and evaluated at equilibrium replacing the
normalization constant C obtained integrating the Gaussian distribution over the spatial coordinates [39]
with the volume V of the skyrmion and rescaling lnf 0 to ln(f 0 <V>) for dimensional reasons. According
to these definitions, the pressure is rewritten in the form:

p = − < V >

[(
∂ e
∂V

)
T
− T

(
∂ s
∂V

)
T

]
(29a)

where <V> � 1
4 π <Dsky>2 is the average volume according to the approximation <Dsky

2> ≈ <Dsky>2

that holds for the range of temperatures considered. Indicating the source of pressure having energy
nature with pE = −<V> (∂e/∂V)T, one obtains substituting Equation (27):

pE ' < V >
a
(
∆Dsky

)2

V2 . (29b)

One notes that this pressure contribution is always positive and, at fixed a, it decreases with
increasing V.

Labeling with pS = <V> T (∂s/∂V)T the source of pressure having entropic nature, via Equation (28),
yields:

pS =
< V >

V2 e−
a (∆Dsky)

2

kB T
[
kBT

(
ln
< V >

V
+ 1

)
− a

(
∆Dsky

)2
]

(29c)

with <V>/ V = <Dsky>2 /Dsky
2. This contribution is negative for low volumes, positive for intermediate

volumes close to the average volume, and again positive for high volumes bigger than the average
volume and is thus responsible for the oscillatory behavior of the pressure curve, especially the one
present at high volumes (see Section 3.4). Moreover, pS is about one order of magnitude less than pE.

Pressure p is obtained by summing the two contributions of Equations (29b) and (29c), viz.
p = pS + pE:

p '
< V >

V2

e− a (∆Dsky)
2

kB T
((

ln
< V >

V
+ 1

))
kBT + a

(
∆Dsky

)2
1− e−

a (∆Dsky)
2

kBT


 (29d)
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where the symbol ' results from the approximated energy contribution to the pressure.
Straightforwardly, p written in terms of dimensionless variables reads:

p '
1
V

[(
f
(
∆Dsky

) g(v)
v

)
kBT +

1
v

fc
(
∆Dsky

)
a
(
∆Dsky

)2
]

(29e)

where f (∆Dsky>) = e -a (∆D
sky

)2/k
B

T and g(v) = ln(1/v) +1, with v = V/<V> (v = Dsky
2 /<Dsky>2) a

dimensionless variable and f c(∆Dsky>) = 1 − e -a (∆D
sky

)2/k
B

T. At fixed T, pressure reduces with
increasing V but exhibits a superimposed fluctuating behavior for V > <V> for each T (for the details of
the numerical calculations, see Section 3) due to the statistical dependence on the skyrmion diameters
contained in the coefficient of kBT and in the second term on the second member. This statistical aspect
differentiates the skyrmion population behavior from that of pressure exerted on the walls of a box by
the particles of an ideal gas that has a monotonic behavior as a function of V for fixed T.

By inspecting Equations (29b) and (29c), one notes that both sources of pressure depend on the
confining skyrmion potential or skyrmion energy whose curvature in the vicinity of the absolute
minimum is determined by the coefficient a, in turn depending on the magnetostatic field and the
exchange interactions. From Equation (29e) one gets:

p V '
(

f
(
∆Dsky

) g(v)
v

)
kBT +

1
v

fc
(
∆Dsky

)
a
(
∆Dsky

)2
. (30)

Equation (30) is the equation of state for a skyrmion diameters population and is the main result
of this study. The second member contains a term proportional to T weighted by a coefficient in turn
depending on f (∆Dsky>) and a term proportional to the square deviation of Dsky from <Dsky> in turn
weighted by f c(∆Dsky>). This equation describes any single chiral skyrmion diameters population
independently of its magnetization texture and ferromagnetic material considered.

Straightforwardly, for Dsky = <Dsky> it is p =kBT/V, the pressure exerted by a single particle (N = 1)
on the walls of the container of volume <V> = V that, in turn, yields pV = kBT, the equation of state for
an ideal gas for N = 1.

It is interesting to derive the asymptotic behavior of the equation of state in the limit for a(Dsky −

<Dsky>)2 << kBT for small fluctuations of diameters around the average value <Dsky>. This regime is
named the small fluctuations regime. This occurs at low temperatures, especially in the presence of an
applied bias field characterized by sharp Gaussian distribution [35].

For a(∆Dsky)2 << kBT, the exponential e−a (∆D
sky

)2/k
B

T in Equation (30) is expanded to the first-order
in (∆Dsky)2 and the fourth-order term a2(∆<Dsky>)4/kBT is neglected being a2(∆<Dsky>)4 << kBT,
yielding:

pV +
g(v)

v
a
(
∆Dsky

)2
'

g(v)
v

kBT. (31)

Equation (31) is the equation of state of a skyrmion diameters population in the small fluctuations
regime and is valid for values of Dsky very close to <Dsky>. For Dsky = <Dsky> one gets g(v) = 1 and
v = 1 so that again the ideal gas law pV = kBT for N = 1 is obtained.

3. Results and Discussion

In this section the main numerical results are discussed. The numerical calculations were carried
out for an outwardly Neel skyrmion with S = −1 (magnetization in the core center along −z) hosted
in a Co dot of Rd = 200 nm and t = 0.8 nm using the following magnetic parameters at T = 0 K:
saturation magnetization Ms = 600 KA/m, exchange stiffness constant A = 20 pJ/m, IDMI parameter
D = 2.0 mJ/m2, Ku = 0.6 MJ/m3 (for example Co), and the scaled values at T , 0 according to the scaling
laws expressed in Section 2 [35]. However, note that the model can be numerically applied to other
magnetization textures present in ultrathin cylindrical dots. In Table 1 the values of a and <Dsky> used
in the numerical calculations presented in this Section are summarized [39].
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Table 1. Calculated a and <Dsky> used in the numerical calculations39.

T (K)
a(×10−5

J/m2)
µ0H = 0 mT

<Dsky>
(nm)

µ0H = 0 mT

a(×10−5

J/m2)
µ0H = 25

mT

<Dsky>
(nm)
µ0H = 25

mT

a(×10−5

J/m2)
µ0H = 50

mT

<Dsky>
(nm)
µ0H = 50

mT

0 8.58 - 13.12 - 17.25 -
50 6.42 31.18 11.15 24.68 15.03 21.44
100 5.15 35.20 9.67 27.35 13.85 22.86
150 3.86 40.97 8.46 30.06 12.57 24.70
200 2.69 48.99 7.33 33.19 11.28 26.95
250 1.62 62.00 6.33 36.75 10.04 29.61
300 0.71 88.12 5.32 41.56 9.02 32.29

The values of the equilibrium diameters for every temperature and external bias field are listed
in Table 2.

Table 2. Calculated D0 sky used in the numerical calculations39.

T (K) D0 sky (nm)
µ0H = 0 mT

D0 sky (nm)
µ0H = 25 mT

D0 sky (nm)
µ0H = 50 mT

0 26.88 21.73 19.75
50 30.83 24.42 21.22
100 34.43 26.83 22.42
150 39.64 29.23 24.02
200 46.85 32.03 26.03
250 58.46 35.24 28.43
300 81.28 39.64 30.83

3.1. Numerical and Analytical Equilibrium Diameters: A Comparison

In this subsection the equilibrium diameters calculated by means of Equations (22c) and (22d)
via D0sky = 2R0sky are compared with the ones determined numerically. The numerical calculations
were performed minimizing the skyrmion energy of Equation (7) using Equations (A6)–(A14) and
determining the equilibrium radius as a function of temperature and for different bias external
fields. The results of this comparison are shown in Figure 2. The overall agreement is very good for
the whole range of temperatures investigated, with a more pronounced discrepancy, especially at
high temperatures.

Materials 2019, 12, x FOR PEER REVIEW  21  of  30 

 

Table 1. Calculated a and <Dsky> used in the numerical calculations39. 

T (K) 
a(×10−5 J/m2) 

μ0H = 0 mT 

<Dsky> (nm) 

μ0H = 0 mT 

a(×10−5 J/m2) 

μ0H = 25 mT   

<Dsky> (nm) 

μ0H = 25 mT 

a(×10−5 J/m2) 

μ0H = 50 mT 

<Dsky> (nm) 

μ0H = 50 mT 

0  8.58  ‐  13.12  ‐  17.25  ‐ 

50  6.42  31.18  11.15  24.68  15.03  21.44 

100  5.15  35.20  9.67  27.35  13.85  22.86 

150  3.86  40.97  8.46  30.06  12.57  24.70 

200  2.69  48.99  7.33  33.19  11.28  26.95 

250  1.62  62.00  6.33  36.75  10.04  29.61 

300  0.71  88.12  5.32  41.56  9.02  32.29 

The values of the equilibrium diameters for every temperature and external bias field are listed 

in Table 2. 

Table 2. Calculated D0 sky used in the numerical calculations39. 

T (K) 
D0 sky (nm) 

μ0H = 0 mT 

D0 sky (nm) 

μ0H = 25 mT 

D0 sky (nm) 

μ0H = 50 mT 

0  26.88  21.73  19.75 

50  30.83  24.42  21.22 

100  34.43  26.83  22.42 

150  39.64  29.23  24.02 

200  46.85  32.03  26.03 

250  58.46  35.24  28.43 

300  81.28  39.64  30.83 

3.1. Numerical and Analytical Equilibrium Diameters: A Comparison 

In this subsection the equilibrium diameters calculated by means of Equations (22c) and (22d) 

via D0sky = 2R0sky are compared with  the ones determined numerically. The numerical calculations 

were performed minimizing the skyrmion energy of Equation (7) using Equations (A6)–(A14) and 

determining the equilibrium radius as a function of temperature and for different bias external fields. 

The results of  this comparison are shown  in Figure 2. The overall agreement  is very good for the 

whole range of temperatures investigated, with a more pronounced discrepancy, especially at high 

temperatures. 

 

Figure  2.  Comparison  between  Dsky  obtained  numerically  (solid  lines  with  squares)  and  Dsky 

calculated according to Equations (22c) and (22d) (dashed lines with circles). Black lines: Dsky at μ0Hext 

= 0 mT. Green lines: Dsky at μ0Hext = 25 mT. Red lines: Dsky at μ0Hext = 50 mT. 

Figure 2. Comparison between Dsky obtained numerically (solid lines with squares) and Dsky calculated
according to Equations (22c) and (22d) (dashed lines with circles). Black lines: Dsky at µ0Hext = 0 mT.
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In the numerical calculations, the values of the coefficient η appearing in ∆ = π/2 + η of Equations
(22b), (22c) and (22d) summarized in Table 3 were used. The coefficient η was fitted at T = 0 K to the
value of D0 sky evaluated numerically for three different amplitudes of the external field and linearly
reduces with T with the same rate of decrease of ξ with T.

Table 3. Calculated values of η used in the numerical calculations.

T (K) η
µ0H = 0 mT

η
µ0H = 25 mT

η
µ0H = 50 mT

0 0.18 0.14 0.10
50 0.16 0.12 0.08
100 0.14 0.10 0.06
150 0.12 0.08 0.04
200 0.10 0.06 0.02
250 0.08 0.04 0
300 0.05 0.01 −0.02

These results are easily generalizable to the case with skyrmion number S = +1 and other
magnetization skyrmion textures (e.g., to a Bloch skyrmion) in the region of metastability.

3.2. Energy of the Skyrmion State and of Perpendicular Uniform State: A Comparison

In Figure 3a, the skyrmion energy evaluated at the energy minimum as a function of temperature
in the skyrmion state in the region of metastability is displayed and compared to the skyrmion energy
of the ideal uniform state in the presence of an external magnetic field aligned along +z (magnetization
distribution along +z in the whole dot and parallel to the external magnetic field).
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Figure 3. (a) Skyrmion state energy minimum compared to uniform state energy minimum for µ0Hext

= 0 mT and in the presence of an external field of amplitude µ0Hext = 25 mT and µ0Hext = 50 mT,
respectively. Continuous lines: skyrmion energy minimum vs. T. Dashed lines: corresponding energy
of the uniform state for the same external bias field amplitudes; (b) Equilibrium skyrmion diameter
vs. the external bias field. Continuous black line: analytical calculation from the minimization of
the skyrmion energy. Red circles: experimental data obtained with spin-polarized scanning tunnel
microscopy [48] at T = 4.2 K.
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The skyrmion energy was calculated by numerically integrating Equation (7) and expressing the
total skyrmion energy using Equations (A6)–(A14). Instead, the energy of the ideal uniform state along
+z is expressed as:

Euniform =
(1

2
µ0M2

s − µ0MsHext

)
V. (32)

As expected, the energy of the uniform state is downshifted with respect to that of the skyrmion
state at each T [44]. Between the two minima, there is an energy barrier, mainly due to the ferromagnetic
exchange and the i-DMI contributions, and the energy minimum of the uniform state is lower with
respect to that of the skyrmion state. This behavior marks the metastability of the skyrmion state. In
particular, with increasing temperature, the two minima tend to merge. To benchmark the model,
the equilibrium diameters computed as a function of the external bias field (continuous black line)
have been compared with the ones obtained with spin-polarized scanning tunnel microscopy (red
circles) and the result of the comparison is shown in Figure 3b. Also in this case, the equilibrium
diameters were calculated by numerically minimizing the skyrmion energy of Equation (7) using
Equations (A6)–(A14). The geometric and magnetic parameters used in the calculations are: Rd =

25 nm, t = 0.408 nm, A = 2.0 pJ/m, D = 3.9 mJ/m2, K = 2.5 MJ/m3, and Ms = 1.1 MA/m. The magnetic
parameters are typical values for thin-film ferromagnetic systems, such as the bilayer of PdFe on Ir (111)
single crystal substrate [48]. Note that in that case the external field is anti-parallel to the magnetization
at the center of the skyrmion core but with mz (r = 0) = +1 and Hext along −z. This configuration is
equivalent to the one studied in this work with mz (r = 0) = −1 and Hext along +z. The agreement is
very good for the whole interval of external bias fields studied.

3.3. Microcanonical Partition Function and Free Energy of the Skyrmions Population

The partition function and the Helmholtz free energy of the skyrmion diameters population
studied within a microcanonical ensemble are shown in Figure 4. The partition function was calculated
according to Equation (25) by varying the temperature T at fixed external magnetic field. The Helmholtz
free energy is computed via the relation F = −kBT lnZ. The values of the average skyrmion diameters
entering in the expressions of Z and F are the ones listed in Table 1 for the three different amplitudes of
the external bias field, µ0Hext = 0 mT, µ0Hext = 25 mT, and µ0Hext = 50 mT.
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Looking at Figure 4a, ln Z increases with increasing T, reflecting the increase of Z with T, a number
ranging between 0 and 1. Instead, one notes that the effect of the external magnetic field is to reduce
Z. This can be understood taking into account the physical meaning of the partition function in
statistical thermodynamics. Z encodes how the probabilities are partitioned among the different
microstates, based on their individual energies. The partition function Z for T→0 K vanishes and,
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for T , 0 K, increases with T. Due to the disordering effect introduced by the temperature on the
thermodynamic system, with increasing T the partitioning probability among different microstates of
the skyrmion diameters population increases. The ordering effect of the external bias field as in the
case of configurational entropy [39] partially contrasts with the disordering effect of T attenuating the
increase of Z with T.

On the other hand, the trend of the Helmholtz free energy (with F > 0) as a function of T in
the presence of an external bias field is almost constant while, in its absence, F decreases with T. F
merges asymptotically towards a value of about 6 × 10−21 J as T→0 K (see Figure 4b), masking almost
completely the effect of Hext. The behavior of the Helmholtz free energy F as a function of T is different
with respect to the one of <E> that increases with T.

The effect of the external magnetic field leading to a downshift of Z and F would be similar
considering the case with Hext applied along –z and mz(r = 0) = +1 (S = +1). Instead, an opposite
behavior leading to an upshift of the same thermodynamic quantities in the cases of an applied field
parallel to mz (either along −z (mz(r = 0) = −1 and S = −1) or along +z (mz(r = 0) = +1 and S = +1)
should be expected.

3.4. Skyrmions Population Pressure and Equation of State

The pressure of the skyrmions population as a function of the volume V of the skyrmion diameters
population is shown in Figure 5 at fixed T. For each temperature T at fixed external bias field, volumes
considered correspond to the diameters belonging to the range of about ±3σ<Dsky>, where σ<Dsky>

is the standard deviation of the Gaussian distribution centered at the average diameter <Dsky>.
In Figure 5a, pressure p vs. volume V in the absence of an external bias field at different temperatures
(isotherms) is displayed. p was determined by means of Equation (29e) and its calculation takes into
account the Gaussian distribution of skyrmion diameters fluctuations from <Dsky> at each temperature
and external bias field, with <Dsky> given in Table 1 and the volume approximately computed as
V ≈ 1

4 π < Dsky>2.
The general trend at all temperatures is the dramatic increase of p with decreasing V below a given

volume, depending on the temperature T. This means that, for a skyrmion of reduced size, the pressure
exerted on the region of the ferromagnet just outside the skyrmion core is very high if compared
to a skyrmion of intermediate size. Moreover, at fixed volume, pressure reduces with reducing the
skyrmion temperature in a way similar to that of the particles of an ideal gas with decreasing T.

Looking at Figure 5b, it can be observed that the pressure curve (depicted for T = 100 K) in the
presence of an external magnetic field along −z that is anti-parallel to the static magnetization at the
core center (mz(r =0) = +1) at fixed volume shifts towards lower values so that, at a given value of V,
the effect of a bias field is to reduce pressure in a way similar to the reduction of the configurational
entropy [39]. This trend is also typical for other temperatures and higher external magnetic fields.
The skyrmion pressure curves intersect the curve p =kBT/V of the ideal gas at V = <V>: for µ0Hext =

0 mT it is V = 7.78 × 10−25 m3, for µ0Hext = 25 mT it is V = 4.70 × 10−25 m3 and for µ0Hext = 50 mT
it is V = 3.28 × 10−25 m3. One notes that the intersection with the ideal gas curve occurs at lower
volumes in the presence of an external magnetic field. At intermediate and high volumes (V > <V>)
there is an oscillatory behavior of the pressure curve superimposed to the monotonic behavior that is
enhanced with increasing the amplitude of the external bias field (see Figure 5c). Similar conclusions
are drawn for other values of temperature in the region of skyrmion metastability. Because of this
oscillatory behavior introduced by the diameters distributions f and f c, unlike for the universal law for
an ideal gas characterized by the universal constant R = PV/T at any T, the classical thermodynamics
of a skyrmions population cannot be strictly characterized by a universal constant.
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Figure 5. (a) Solid lines with symbols: pressure of the skyrmions population calculated according
to Equation (29e) as a function of the skyrmion volume at different temperatures in zero applied
magnetic field (black line with down triangles: T = 50 K, red line with squares: T = 100 K, cyan line
with diamonds: T = 150 K, green line with stars: T = 200 K, blue line with up-triangles: T = 250 K,
magenta line with circles: T = 300 K). (b) Solid lines: as in panel (a) but for T = 100 K and µ0Hext = 0
mT (red line), µ0Hext = 25 mT (green line), µ0Hext = 50 mT (blue line). Dotted line: pressure p = 1/V kB

T according to the ideal gas law for N = 1. (c) Pressure of the skyrmions population as a function of
the skyrmion volume for T = 100 K and µ0Hext = 0 mT (red line), µ0Hext =25 mT, µ0Hext =50 mT for
volumes V > <V>.

For values of V close to <V>, Equation (31) expressing pressure P in the small fluctuation regime
can be applied. A similar shift towards lower values of the pressure curve would occur for the external
magnetic field applied along −z and a Néel skyrmion with the magnetization at the centre of the
core mz(r = 0) = +1 (S = +1). Instead, for the cases where the the effect is to increase the skyrmions
population pressure at a given volume V.

These results can be easily generalized to other cases (e.g., external magnetic field is parallel to
mz(r = 0) either along +z or along −z) and to Bloch skyrmions in the region of metastability, leading to
conclusions about the qualitative trends of p obtained similar to the ones drawn for the case studied.
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4. Conclusions

In this paper, the equilibrium statistical mechanics and thermodynamic properties of a skyrmion
diameters population in an ultrathin cylindrical dot were investigated. An analytical expression of
the internal skyrmion energy valid for any type of magnetization texture, consisting of a combination
of transcendental functions, was obtained. From the minimization of the internal skyrmion energy
it was found that the equilibrium diameter of a single chiral skyrmion, both in the hedgehog and
vortex-like configurations, can be expressed in terms of a Lambert function whose argument depends
explicitly on the magnetic parameters characterizing the magnetic skyrmion at each temperature.
Unlike other formalisms based on 1D domain wall distributions, this was accomplished starting from
a recently proposed 2D equilibrium magnetization that reduces to the Belavin–Poliakov solitonic
solution in the isotropic case and for dominating exchange interaction. Exploiting the analogy between
the behavior of particles in a gas and a population of skyrmions diameters, the Helmholtz free energy
and the partition function were calculated treating the diameters population within the framework
of a microcanonical ensemble. It was shown that, like for particles in an ideal gas, the skyrmions
population is also characterized by a pressure strictly depending on the confining potential at each
temperature, and in turn related to the exchange and magnetostatic interaction characterizing magnetic
skyrmions. It was found that skyrmions pressure decreases monotonically with the volume but for
volumes higher than the average volume an oscillatory behavior is superimposed onto the monotonic
behavior because of the entropic contribution to the pressure that is one order of magnitude less than
the average energy contribution. This trend occurs at each temperature and external field amplitude.
An equation of state for a skyrmions population, regarded as the equivalent of the equation of state
for an ideal gas, was derived and it was shown that it is valid for any type of magnetization texture.
The equation of state reduces to that of an ideal gas when the skyrmion volume equals the average
skyrmion volume at each temperature and external bias field.

These theoretical results on the thermodynamic properties of chiral magnetic skyrmions could
pave the way for calorimetric measurements that allow determining the heat released or absorbed by
the ferromagnetic system hosting the skyrmion and could enable the measurement of the free energy,
exploiting the relations between heat exchanged and entropy, and heat exchanged, internal energy,
and work done by the system. In this way, a direct measurement of the specific heat characterizing a
population of skyrmions in a ferromagnetic system could also be carried out. These measurements
would also enable verifying the predicted equation of state characterizing the statistical thermodynamic
behavior of a skyrmions population and to experimentally determine the corresponding pressure.
Finally, the analysis extended to very low temperatures would allow exploring quantum effects on the
thermodynamic variables.
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Appendix A

In this Appendix, some steps leading to the derivation of the different contributions to the total
skyrmion energy are outlined.

In order to integrate the energy density of Equation (4) of the main text, the following trigonometric
identities are considered:

sin
(
2arctan

[B
r

e− ξr
])

cos
(
2arctan

[B
r

e − ξr
])

= 2B
r
(
r2e − ξr

− B2 e− 3ξr
)

(r2 + B2e− 2ξr)
2 (A1)
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sin2
(
2arctan

[B
r

e − ξr
])

= 4B2 r2 e− 2ξr

(r2 + B2e− 2ξr)
2 (A2)

cos
(
2arctan

[B
r

e− ξr
])

=
r2
− B2e− 2ξr

r2 + B2e− 2ξr (A3)

cos2
(
2arctan

[B
r

e−ξr
])

=

(
r2
− B2e −2ξ r

r2 + B2e −2ξ r

)2

. (A4)

Substituting Equations (A1)–(A4) into Equation (4) and performing some trivial algebraic
manipulations, one gets:

εtot
(
r, rsky

)
= 4Ã B2

[
(2+2rξ+r2ξ2)e−2ξr

(r2+B2e−2ξr)
2

]
± 2D̃ B

[
±
(r2
−B2 e−2ξr)e −ξr

(r2+B2e−2ξr)
2 ∓

(1+rξ)e−ξr

r2+B2e−2ξr

]
+Ku −Keff

(
r2
−B2e−2ξr

r2+B2e−2ξr

)2
∓ µ0MsHext

r2
−B2e−2ξr

r2+B2e−2ξr .
(A5)

Equation (A5) is Equation (5) of the main text. The integrals appearing in the compact expression
of the energy given in Equation are listed the following. The integrals for the exchange contribution are:

I1-exch = 2B2

rd∫
0

r e−2ξr

(r2 + B2e−2ξr)
2 dr (A6)

I2-exch = 2B2ξ

rd∫
0

r2 e−2ξr

(r2 + B2e−2ξr)
2 dr (A7)

I3-exch = (Bξ)2

rd∫
0

r3 e−2ξr

(r2 + B2e−2ξr)
2 dr. (A8)

Instead, the integrals for the DMI (either IDMI or bulk DMI) are:

I1-DMI = ±B

rd∫
0

r3e−ξ r

(r2 + B2e−2ξ r)
2 dr (A9)

I2-DMI = ∓B3

rd∫
0

r e−3ξr

(r2 + B2e−ξr)
2 dr (A10)

I3-DMI = ∓B

rd∫
0

r e−ξ r

r2 + B2e−2ξ r dr (A11)

I4-DMI = ∓Bξ

rd∫
0

r2e−ξr

r2 + B2e−2ξ r dr. (A12)

The integral for the effective anisotropy reads:

Ieff
ani =

rd∫
0

(
r2
− B2e−2ξr

)2

(r2 + B2e−2ξr)
2 rdr. (A13)
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Finally, the integral associated to the external bias field is:

Iextfield =

rd∫
0

r2
− B2e−2ξr

r2 + B2e−2ξr rdr. (A14)
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