

Supplementary Information

Electrospun Conductive Nanofiber Yarn for a Wearable Yarn Supercapacitor with High Volumetric Energy Density

Xianqiang Sun ^{1,2}, Jianxin He ^{1,2,*}, Rong Qiang ^{1,2}, Nan Nan ^{1,2}, Xiaolu You ^{1,2}, Yuman Zhou ^{1,2}, Weili Shao ^{1,2,*}, Fan Liu ^{1,2} and Rangtong Liu ^{1,2}

- ¹ Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007, China; liangjian791165@163.com (X.S.); qiangrong2009@126.com (R.Q.); 18037510635@163.com (N.N.); xiaoluyou0180@163.com (X.Y.); zhym_work@163.com (Y.Z.); liufan_a@hotmail.com (F.L.); ranton@126.com (R.L.)
- ² Collaborative Innovation Center of Textile and Garment Industry, Zhengzhou 450007, China
- * Correspondence: hejianxin771117@163.com (J.H.); weilishao@163.com (W.L.)

Electrochemical performance calculation

For all solid state SCs, the volumetric specific capacity (C_v) and mass specific capacity (C_m) calculations for the entire device follow the following equation:

$$C_V = \frac{I \times \Delta t}{V \times \Delta U'} \tag{1}$$

$$C_m = \frac{I \times \Delta t}{m \times \Delta U'} \tag{2}$$

Here, *I*, Δt , and ΔU represent the discharge current, discharge time, and potential window, respectively. V represents the volume of the two yarns and the surrounding electrolyte of the entire device, and m represents the mass of effective active material for the capacitor electrode material.

According to the constant current charge–discharge curves at different current densities, the volumetric energy density E_v and the power energy density P_v can be calculated, following the following equation:

$$E_V = \frac{1}{2} \times C_V \times \Delta U^2, \tag{1}$$

$$P_V = E_V / \Delta t. \tag{1}$$

Figure S1. (a) Electrospinning process diagram of nanofiber core yarn, (b) PAN nanofiber core-spun yarn diagram.

Figure S2. (a) I-V curves of 5 cm long nickel-coated yarns with different nickel coating times. (b) Variations of resistance of nickel-coated cotton yarns with lengths.

Figure S3. (a) Electron micrographs of single nanofibers of PNF/NiC-6, (b) PNF/NiC-12, (c) PNF/NiC-48, (d) PNF/NiC-72.

Figure S4. SEM graph and diameter distribution histogram of (**a**) PAN, (**b**) PNF/NiC-6, (**c**) PNF/NiC-12, (**d**) PNF/NiC-24, (**e**) PNF/NiC-48, (**f**) PNF/NiC-72 compound material.

Figure S5. XPS spectrum of PNF/NiC composite cotton yarn (a), XPS spectrum of S 2p (b).

Figure S6. Resistance increase of Ni-coated cotton yarn after 3000 bending cycles.

Figure S7. Bending curves of 500 cycles of PNF/NiC-24 composite yarns.

Figure S8. Conductivity curves of PNF/NiC-24 composite yarns with different mole ratios (mol:mol) of PEDOT and PSS.

Figure S9. Conductivity curves of different deposition time for PAN nanofiber core-spun yarns.

Figure S10. Volumetric capacity curve after in-situ deposition of PEDOT: PSS for different hours.

Figure S11. Galvanostatic charge and discharge curves of three SC yarns in series (a) and parallel (b).

Supplementary Tables

|--|

	Surface area(m ² ·g ⁻¹)	Pore volume(cm ³ g ⁻¹)	Pore size(nm)
Ni-coated yarns	1.755	0.002	1~50
PAN/Ni-coated yarns	3.549	0.012	1~50
PNF/NiC-6	4.543	0.003	1~50
PNF/NiC-12	5.180	0.004	1~50
PNF/NiC-24	5.329	0.018	1~50
PNF/NiC-48	2.089	0.001	1~50
PNF/NiC-72	0.893	0.001	1~50

Table S2. Specific capacitance of yarn electrode material deposited PEDOT: PSS for different hours.

Deposition time(h)	6	12	24	48	72
Volumetric capacitance (F·cm ⁻³)	30.88	39.52	55.36	44.48	38.72

Table S3. Migration	resistance of c	apacitors fo	r different de	eposition (time of PEDOT:	PSS.
rubie obt migration	reproteince or e	apacitors ro	i amercin a	epoblicon	unic of i LD O I.	100.

Deposition time(h)	6	12	24	48	72
Resistance(Ω)	76	43	16	47	64

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).