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Abstract: The objectives of this paper are to demonstrate the viability, and to validate, in part,
a multiscale method for calculating curvature tensors on measured surface topographies with two
different methods of specifying the scale. The curvature tensors are calculated as functions of scale, i.e.,
size, and position from a regular, orthogonal array of measured heights. Multiscale characterization
of curvature is important because, like slope and area, it changes with the scale of observation,
or calculation, on irregular surfaces. Curvatures can be indicative of the topographically dependent
behavior of a surface and, in turn, curvatures are influenced by the processing and use of the surface.
Curvatures of surface topographies have not been well- characterized yet. Curvature has been used
for calculations in contact mechanics and for the evaluation of cutting edges. Manufactured surfaces
are studied for further validation of the calculation method because they provide certain expectations
for curvatures, which depend on scale and the degree of curvature. To study a range of curvatures
on manufactured surfaces, square edges are machined and honed, then rounded progressively by
mass finishing; additionally, a set of surfaces was made by turning with different feeds. Topographic
measurements are made with a scanning laser confocal microscope. The calculations use vectors,
normal to the measured surface, which are calculated first, then the eigenvalue problem is solved for
the curvature tensor. Plots of principal curvatures as a function of position and scale are presented.
Statistical analyses show expected interactions between curvature and these manufacturing processes.
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1. Introduction

The objectives of this paper are to demonstrate the viability, and to validate, in part, how
surface topographies can be characterized by curvature tensors calculated from areal topographic
measurements of manufactured surfaces. In addition, two methods for specifying the scale are studied.
The machined, honed, and mass finished surfaces have regular and irregular topographic components.
The second-order curvature tensors vary with scale, position, and orientation, i.e., direction. They are
calculated from regular arrays of measured surface heights, producing multiscale characterizations
that are both position- and orientation-specific. The validation is tested by comparing the results with
expectations, based on the machining, honing, and finishing processes.

Appropriate characterization of topographies is essential for discriminating with confidence
surfaces with topographies that were created differently or that behave differently, and for discovering
strong correlations between processing and topographies, or between topographies and behavior.
The value of surface metrology for product and process design, i.e., the measurement and analysis of
surface topographies, is largely founded on these abilities to discriminate and correlate [1,2].

Topographies can have components that are regular, like form, and components that are irregular,
i.e., roughness. Sometimes the term roughness is used simply to refer to fine-scale topographies,
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even if they are highly regular, e.g., certain engineered surfaces. Surfaces that are essentially regular
might be sufficiently characterized by a few measurements and parameters. Irregular surfaces can
require millions of height measurements, multiscale geometric analyses, and statistics for sufficient
characterizations [2].

Curvature is particularly attractive as a characterization method. Curvature is approximately
the spatial derivative of the slope. No datum is required for the characterization of curvature, unlike
heights or slopes. This aspect of curvature characterization can be especially valuable when the
datum is not obvious, such as in characterizing redundant surfaces or voids, which can be measured
with tomography.

Curvature is an essential parameter for characterizing edges and surfaces. The curvature of cutting
edges has been discussed in the literature [3–5]. Curvature of peaks as a geometric property of surfaces
is important in contact mechanics (e.g., [6–8]). Characterizing the valleys of topographies by their
curvature also could be important for understanding crack initiation, fluid retention, and adhesion.
Vulliez et al. presented a strong functional correlation (R2 = 0.96) at a specific scale (610 µm) between
the curvature of machined surfaces and their fatigue limit [9]. Logically, some kind of multiscale
characterizations of curvatures of topographies could be used for discrimination and for correlation
with processing and behavior, as has been done with area-scale analysis [10]. This characterization
could be useful for surface research and for product and process design.

It is important to understand how the many ways of implementing multiscale in the analyses
of characterization parameters can influence the results. Two methods are used here, and the results
are compared.

Curvature has previously been calculated from profile measurements as a function of scale and
position, where the height, z, as a function of position, x, such that z = z(x) [9]. One method uses Heron’s
formula to calculate the curvature, based on three points from the profile. The scale is represented by
the spacing in x of the three height measurements selected for the calculation. The curvature can vary
with position and with scale along the profile.

Here it is shown how curvature can be calculated from areal measurements, i.e., on regular
orthogonal arrays of heights, z, in x and y such that z = z(x,y). Curvature can be characterized as a
second-order tensor that can vary with position and scale. This is more complicated than calculating
curvature from a profile, and the results can be more valuable. The result of an eigenvalue calculation
gives the values and orientations of the maximum and minimum curvatures as a function of position
and scale. In addition to the curvatures themselves, these results can be used to characterize the
anisotropy, or directionality, of a surface, based on curvature orientation [11].

A study of the commonly used techniques for curvature estimation was presented by Petitjean [12].
Recent studies tend to concentrate on the triangular meshes because they are commonly used in
representations in many computer-assisted design (CAD) or graphics programs. Many [13–15] use
piecewise surface approximations, e.g., Bezier, quadratic, or polynomial. Thiesel et al. introduced a
robust method for calculating the curvature tensor, based on vectors normal to the surface, which does
not involve local surface interpolation [16]. That method calculates a curvature tensor with components
that are constant within a certain triangular region on the surface. Coeurjolly et al. described a novel
class of estimators of digital shapes, which are based on integral invariants [17]. They used a local
approximation to convert discrete height data into continuous functions. An interesting study was
presented recently by Foorginejad and Khalili, in which they introduced a method named umbrella
curvature [18], which involved normal vectors and vectors between the point of estimation and their
neighbors in order to estimate local curvature. Lai et al. described a method that connects profile and
surface curvature. They searched principal curvatures by calculating profile curvature in multiple
directions and looking for maximum and minimum values [19].

The physical determination of the height at a point on a real surface is problematic. During surface
measurements, discrete heights are determined over lateral, or spatial, sampling zones, rather than at
points. The height at a mathematical point, which is infinitesimally small, cannot be measured on a
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surface. Measured heights are determined at a certain lateral spacing, or sampling intervals, which
might or might not exceed the size of the sampling zone. Nonetheless, the measured heights over
zones are treated here, for the calculation, as an array of mathematical points, z = z(x,y).

The actual, measured, areal surface, although continuous by the general definition of a surface,
could represent an actual surface that is nowhere differentiable. However, digital representations
of measured surfaces are commonly approximated as smooth. This approximation facilitates
characterization by a series of curvatures that can vary with position and scale.

In the following development of the curvature calculation, a surface will be considered to consist
of a collection of heights at points on a regular, spatial grid. The surface will be considered differentiable
at the scales and locations required for the calculations of normal vectors to patches, or defined regions,
on the surface.

The approach here is to use a representation of areal surfaces based on heights used to calculate
vectors normal to the surface. The curvature tensor is considered constant over the size of the region
that represents the scale. This method for curvature estimation uses normal vectors at points that
represent the center of patches, over which the normal vectors are calculated.

Three ways to compute the normal vectors are given in [20]:

1. Covariance matrix, which computes the unit normal vectors from the neighboring points about a
central point.

2. Average areal gradient, which uses horizontal and vertical differences of neighboring points
around the central point.

3. Average depth change, which calculates horizontal and vertical differences from
averaged neighbors.

In this work, the first method, covariance matrix, is used, because of its small estimation error in
multiscale applications and the simplicity of implementation [21].

The characteristics of aluminum alloy 6061-T6, used in this study, may lead to the formation
of built-up edge (BUE) when cut. This phenomenon increases the mechanical load on the cutting
edge, making efficient chip flow difficult and the chip-removal process inefficient. Alloying elements
(in particular, silicon present in this aluminum alloy), and the treatment methods, influence the
machining properties [22,23]. The influence of machining parameters on the resulting surface texture
for hard-to-cut materials was analyzed by Krolczyk et al. [24] and Twardowski et al. [25].

2. Materials and Methods

2.1. Preparation and Measurement of the Surfaces

Two different sets of surfaces were manufactured from aluminum alloy (6061 T6), the surface
topographies were measured, and the measurements were analyzed. The topographies were
measured with an Olympus LEXT 4100 OLS laser scanning confocal microscope (Olympus Corporation
Shinjuku, Tokyo, Japan) with a 50× objective (NA 0.93). The measurement regions were cropped to
0.11 mm × 0.11 mm for the turned and 0.075 mm × 0.075 mm for the edge. The sampling interval is
about 250 nm.

One set of surfaces was manufactured by turning a rod, initially 25.45 mm in diameter, on a Haas
SL10 CNC lathe (Haas Automation, Inc., Oxnard, CA, USA), first to a diameter of 24.29 mm, then to
22.30 mm in a final pass, making final cutting depth, ap, equal to 0.995 mm. The feeds were 0.2, 0.1,
0.05, 0.01 mm/rev. The spindle speed was 1000 rpm. Kennametal carbide inserts (VNMG 160404ms,
KC5525, Kennametal Inc., Pittsburgh, PA, USA), with a tool nose radius of 0.4 mm, were used. The
following tool geometry was applied: lead angle of 93◦, both inclination angle and orthogonal rake
angle equal to 0◦.

Another set of surfaces was prepared by mass finishing a part with an edge that was milled and
honed. First, two sides were side-milled to create an edge at a corner, with an angle of approximately
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90◦. The two faces were then honed by hand, using emery paper to remove a burr left from milling.
The first measurement of the edge was taken after the honing. The part was subsequently placed in a
BelAir FMSL 8T series centrifugal disk mass-finisher (Bel Air Finishing Supply Corporation, North
Kingstown, RI, USA) and then measured after finishing for 2.5 and again after 7.5 min. The abrasive
media was R-1000, a polyester pyramid with a height of 6.4 mm, with zirconia particles embedded.

2.2. Analysis for Estimation of the 3D Curvature Based on Vectors Normal to Surface Patches

This analysis calculates curvature tensors at each scale in the data set and each location on the
surface where there are a sufficient number of measured heights for the calculation. The calculated
curvatures are considered to be constant over the triangular patches, which are the regions used for
the curvature calculations. The range of scales available in a measurement goes from the sampling
interval to the size of the measured region.

First, three unit normal vectors are calculated, one for each vertex on the triangular patch that is
used for the curvature tensor calculation (Figure 1). A covariance matrix method for computing unit
normal vectors is used. At each vertex, the closest 3 × 3 neighborhood of measured heights is used
for computing the normal vector. The edges of the measured region are excluded, due to insufficient
measured heights, 2 × 2 or 3 × 2 neighborhoods of heights, instead of 3 × 3.
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Next, using the Weingarten curvature tensor, T, a symmetric 3 × 3 matrix is calculated, assuming
that the surface is continuous and everywhere differentiable (within the patch) [26]. The resulting
eigenvalues are, κ1, κ2, 0, where the first two represent the principal curvatures. The resulting
eigenvectors include k1, k2, the corresponding principal directions for the principal curvatures, and n,
the unit normal vector for the triangular patch.

Note that new local and global coordinate systems are introduced here for these calculations.
Whereas measured, global heights were z(x,y), as is usual in the literature, these are represented below
as x(u,v). Normal vectors are calculated from these global heights. Curvatures are calculated in a
local coordinate system. This local coordinate system (u,v) is in the plane defined by the three points
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that constitute a single triangular patch. To calculate the curvature directions, transfers from the local
systems (u,v) to the global (x,y) system are necessary.

At each scale, the surfaces that are considered here are completely defined by their partial
directional derivatives and the partial directional derivatives of the unit normal vectors. Given the
surface x(u,v) and its partials xu and xv, a unit normal vector n and its partials can be computed by the
following formula:

n =
xu × xv

‖ xu × xv ‖
, nu =

∂n
∂u

, nv =
∂n
∂v

(1)

These four vectors have the following dependencies:

1. xu, xv, nu, nv are coplanar.
2. nuxv = nvxu.

The computation of T from xu, xv, nu, nv is a straightforward application of classical concepts of
differential geometry [26]. The coefficients of the first and second fundamental form, or shape, tensor
can be calculated as:

E = xu · xu, F = xu · xv, G = xv · xv, (2)

L = −nu · xu, M1 = −nu · xv, (3)

M2 = −nv · xu, N = −nv · xv. (4)

Then the Weingarten curvature matrix can be created,

W =

( LG−M1F
EG−F2

LG−M1F
EG−F2

LG−M1F
EG−F2

LG−M1F
EG−F2

)
(5)

with its eigenvalues κ1, κ2 and its corresponding eigenvectors:

w1 =

(
w11

w12

)
, w2 =

(
w21

w22

)
. (6)

The eigenvalues are used to calculate the Gaussian curvature, K, and the mean curvature, H; and
the eigenvectors are used to calculate the principal directions k1 and k2 as it follows:

K = κ1κ2, H =
1
2
(κ1 + κ2), (7)

k1 = w11xu + w12xv, k2 = w21xu + w22xv. (8)

Having all necessary components, curvature matrix T can be constructed:

T = PDP−1, (9)

where P = (k1, k2, n) and,

D =

 κ1 0 0
0 κ2 0
0 0 0

. (10)

Theisel et al. [16] presented a new technique for estimating curvature tensor T in a triangular
mesh. That method shows better error behavior than a cubic fitting [13] and is independent of rotations
of the mesh and does not involve any parameterization or fitting. The accuracy of Theisel’s method
depends primarily on the accuracy of the estimation of the unit normal vectors, which was the first
part of the curvature computations above.



Materials 2019, 12, 257 6 of 20

In that normal approach, only a single (non-degenerate) triangle, with the vertices x0, x1, x2 and
the corresponding normals n0, n1, n2, are considered (see Figure 1). A point and normal vector on the
triangle can be obtained by applying linear interpolation in local coordinates (u,v), with the origin x0

and the base vectors x1 − x0 and x2 – x0:

~
x =

~
x(u, v) = x0 + u(x1 − x0) + v(x2 − x0), (11)

~
n =

~
n(u, v) = n0 + u(n1 − n0) + v(n2 − n0), (12)

The idea that stands behind the introduction of interpolated
~
x and

~
n is to use them for calculating

vectors xu, xv, nu, nv and, subsequently, curvature matrix T. Unit normal vectors and their derivatives
can be computed following Theisel et al. [16]:

n(u, v) =
~
n

‖ ~
n ‖

, nu =
∂n
∂u

, nv =
∂n
∂v

(13)

For the partials of the surface, we can obtain:

~
xu(u, v) =

∂
~
x

∂u
= x1 − x0,

~
xv(u, v) =

∂
~
x

∂v
= x2 − x0 (14)

In order to assure that condition 1 (xu, xv, nu, nv are coplanar) is met,
~
xu and

~
xv are projected onto the

plane defined by nu and nv:

xu =
~
xu − (n

~
xu)n, xv =

~
xv − (n

~
xv)n. (15)

Now, the curvature matrix T can be computed, by applying Equations (13)–(15) into Equations (2)–(10).

2.3. Multiscale Curvature Characterization Analysis

Multiscale characterizations can be achieved in several ways [2]. Two different methods of
specifying the scale of the curvature analyses are described here. These two methods both apply to
the selection of the measured heights that are used for the estimation of the normal vectors and to the
selection of three points that form the triangular patches.

The first multiscale method here is down-sampling, shown in Figure 2. In this down-sampling,
more measured heights are skipped with each iteration of the multiscale calculations, in order to
achieve increasingly larger scales. At the finest, or nominal, scale, the spacing is the sampling interval.
At two times the nominal scale, the spacing it is twice the sampling interval, for which every other
measured height is used. At three times the sampling interval, every third measured height would be
used. The scale here is the length of the horizontal interval in x and y, between the measured heights
used in each analysis for determining the curvature.

The down-sampling is applied for both the selection of the measured heights for calculating
the normal vectors and for selecting the points that define the triangular patches for the eigenvalue
problem. To determine the position for calculating the curvature, even at the large scales, the iterations
are performed at each location. That is, the calculation is indexed horizontally, one sampling interval
for each locational calculation.

After heights are skipped in this down-sampling routine, just the nine, not-skipped, measured
heights are used to calculate the normal unit vectors at each scale. These are the eight heights closest
to the apexes of the triangular patches (Figure 2a) and the central point (apex) used for the eigenvalue
problem. The spacing between the heights is scale-dependent and increases with the scale (Figure 2b).
These triangles are always equilateral, right triangles in projection on a horizontal plane. The projected
length of the short sides are equal to the scale. More details of the method and its application for
multiscale analysis can be found in work by Bartkowiak and Brown [27]. The calculation of the
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curvature tensor is done for the next location distant from the previous, by using the original sampling
interval (Figure 2b).
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In the second, multiscale method considered here, no in-between heights are skipped in normal
estimation, while the values for the scales are determined identically to the first method (Figure 3).
In this way, each iteration by both methods includes the same measured regions, and they are signified
by the same scale. The second method uses all the measured heights in the neighborhood, instead of
just nine. The size of a neighborhood changes with scale. For the nominal scale, both methods use the
same measured heights for the calculation of the unit normal vectors. For larger scales, the number of
heights grows with the multiplication of the original sampling interval s, so that the neighborhood
consists of (1 + 2s) × (1 + 2s) points. For instance, for a scale equal to three times the sampling interval,
it is necessary to consider 7 × 7 heights, for calculating the unit normal vector for an apex that is
centrally placed inside the neighborhood.
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In both methods, the normal unit vectors, and curvatures, are not estimated along the edges
of the measured region, where entire neighborhoods cannot be formed. This second method can be
time-consuming for the larger scales, because the covariance calculation includes more points.
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3. Results

In the following sections, renderings of the measurements of the studied surfaces are shown at
different scales. The calculated curvatures and Gaussian and mean curvatures are shown as a function
of position and are plotted versus scale, along with the standard deviations.

3.1. Prepared Edge, Honed and Mass-Finished

Renderings of topographic measurements with three downsized scales of the machined and
honed edge, as well as two finishing times, are presented in Figure 4. With the increasing scale,
surfaces appear smoother, because the fine-scale details are skipped in the down-sampling.
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Figure 4. Renderings of topographic measurements of the edge machined and honed (0 min), and after
2.5 and 7.5 min of mass finishing, at three scales: 5× original sampling interval (1.25 µm), 10× (2.50 µm),
and 15× (3.75 µm).

The principal, κ1, curvatures, those with the largest magnitude, calculated by the down-sampling
method, are shown as a function of position on the surface and the scale of calculation in Figure 5.
Convex curvatures are negative and concave are positive, as usual.

At the largest scales, there is little variation in curvature. The magnitudes of the curvatures tend
to increase with decreasing scale. Many small regions of convexity at the smallest scales are evident in
Figure 5. The curvature of the prepared edges cannot be discriminated at the finest scales. At these fine
scales, a multitude of fine features, with large principal κ1 curvatures, masks the curvature of the edge.
The curvatures on the honed part are clearly visible at 10× nominal scale. The curvature of the part
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that was mass-finished for 2.5 min is relatively uniform at the largest scales (10× and 15×). Concave
features are clearly visible at 15×. The effect of mass-finishing is evident at all three scales.

The principal κ2 curvatures, minimum in magnitude, calculated by the down-sampling method,
are shown as a function of position on the surface and the scale of calculation in Figure 6. Similar to
κ1 at the large scales, there is little variation in curvature. The magnitudes of the curvatures tend to
increase with decreasing scale. A positive curvature region is evident around the manufactured edge
at 5× and 10× nominal scale. However, its value is significantly lower than the κ1 curvature. The
mass finishing process decreases the magnitude of κ2 curvature for all three scales shown.Materials 2018, 11, x FOR PEER REVIEW  9 of 21 
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Figure 5. Maximum principal curvature, κ1, on the prepared edge as a function of position, calculated
using the down-sampling method for three scales.

The principal κ1 and κ2 curvatures, calculated by the increasing neighborhood method, are shown
as a function of position on the surface and the scale of calculation in Figures 7 and 8, respectively.
These show the same trends as the down-sampling method. The variability of curvatures for finer scales
is higher for the increasing neighborhood method, when comparing the same scales. For the same
subregions, both minimal and maximal curvature take greater values. For larger scales, more points
are used in the calculation of the normal vectors, so artifacts and fine-scale features influence more
points in their normal vectors estimation, which make these results more sensitive to local variations.
The expected smoothing effect is less evident when compared to the down-sampling method.



Materials 2019, 12, 257 10 of 20
Materials 2018, 11, x FOR PEER REVIEW  10 of 21 

 

 

Figure 6. Minimum principal κ2 curvature, as on the prepared edges, a function of position calculated, 
using the down-sampling method for three scales. 

The principal κ1 and κ2 curvatures, calculated by the increasing neighborhood method, are 
shown as a function of position on the surface and the scale of calculation in Figures 7 and 8, 
respectively. These show the same trends as the down-sampling method. The variability of 
curvatures for finer scales is higher for the increasing neighborhood method, when comparing the 
same scales. For the same subregions, both minimal and maximal curvature take greater values. For 
larger scales, more points are used in the calculation of the normal vectors, so artifacts and fine-scale 
features influence more points in their normal vectors estimation, which make these results more 
sensitive to local variations. The expected smoothing effect is less evident when compared to the 
down-sampling method. 

Figure 6. Minimum principal κ2 curvature, as on the prepared edges, a function of position calculated,
using the down-sampling method for three scales.Materials 2018, 11, x FOR PEER REVIEW  11 of 21 

 

 

Figure 7. Maximum principal curvature, κ1, on the prepared edge, as a function of position calculated, 
using the increasing neighborhood method, for three scales. 

 
Figure 8. Minimum principal curvature, κ2, on the prepared edge as a function of position calculated, 
using the increasing neighborhood method for three various scales. 

Mean and standard deviations of the principal curvatures on the prepared edges, calculated by 
the down-sampling method, are shown, versus the log of the scale, in Figure 9a. The mean values of 
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using the increasing neighborhood method, for three scales.
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Figure 8. Minimum principal curvature, κ2, on the prepared edge as a function of position calculated,
using the increasing neighborhood method for three various scales.

Mean and standard deviations of the principal curvatures on the prepared edges, calculated by
the down-sampling method, are shown, versus the log of the scale, in Figure 9a. The mean values of
principal curvatures change with the scale for all the surfaces. The standard deviation of principal
curvatures decreases regularly with increasing scale, i.e., the distribution of the curvatures is distinctly
varied at the finer scales. For larger scales, the dispersion measure decreases, as fewer fine-scale surface
features, characterized by high curvature, become evident, and mean values of principal curvature
tend to indicate the general shape of the edge. The curvatures of microfeatures are generally greater
than the overall form or waviness, which is quantified as larger values of standard deviations in
comparison with the mean. It appears that the mean κ1 discriminates the edges for scales greater than
4µm, with a sufficient sample size, because the variance is large. Mean values of κ1 are negative for
all calculated scales, which is consistent with the overall convexity of the surface perpendicular to
the prepared edge. Logically, the means of the minimum principal curvatures, κ2, are smaller. Their
proximity to zero, particularly at large scales, is consistent with the straightness of the surfaces parallel
to the prepared edge.

Statistics calculated by the method are presented in Figure 9b. It appears that the mean and
standard deviations of κ1 might be used to discriminate the prepared edges for some scales between
4 and 10 µm. The greatest differences between those two methods appears at the greatest scales.
Similar trends appear for κ2. Standard deviations of maximal curvatures take greater values when
calculated by increasing the neighborhood method, which supports the effect of microfeatures that is
evident with growing scales.
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3.2. Cutting Tool Edge and Turned Surfaces

Renderings of measurements representing three downsized scales and feed rates of the prepared
surfaces and tool edge are presented in Figure 10. The figure presents surfaces for various scales. Both
the turned surfaces and the tool edges are examples of clearly anisotropic textures. With increasing
scales, fine-scale ridges and valleys tend to be smoothed. Both principal curvatures were calculated for
the prepared region of 700 × 700 heights.
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Figure 10. Renderings of surfaces turned at four feed rates, at three scales.

The principal, κ1, curvatures, those with the largest magnitudes, calculated by the down-sampling
method, are shown as a function of position on the surface and the scale of calculation in Figure 11.
Similar to the mass finished surfaces, at the largest scales the variation in curvature decreases. The
magnitudes of the curvatures have a tendency to increase with decreasing scale. The three top ridges on
the surface, machined at 0.05 mm/rev, and the two ridges for the surface, machined at 0.1 mm/rev, are
evident as blue stripes at larger scales. At finer scales, the anisotropic character of all of the machined
surfaces becomes less visible. At finer scales, a multitude of fine features, with large principal κ1

curvatures, masks the directional features. The curvatures of the main valleys are more evident at
larger scales for surfaces machined at 0.05, 0.1 and 0.2 mm.
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Figure 11. Maximum principal curvature, κ1, as a function of position calculated for turned surfaces,
using the down-sampling method for three scales.

The principal κ2 curvatures, minimum in magnitude, calculated by the down-sampling method,
are shown as a function of position on the surface and of the scale of calculation in Figure 12. Similar
to κ1 at the large scales, there is little variation in curvature. The magnitudes of the curvatures tend
to increase with decreasing scale. At finer scales, the directional nature becomes more visible at the
ridges, appearing as lines of high-magnitude curvature. At larger scales, for all the measured surfaces,
the minimum curvature tends to zero, indicating that the surface is flat in one direction. The feed rate
influences the magnitude of the κ2 curvature at all three of the scales shown.

The principal κ1 and κ2 curvatures, calculated by the increasing neighborhood method, are shown
as a function of position on the surface and the scale of calculation in Figures 13 and 14, respectively.
These show the same trends as the down-sampling method. As in the previously studied surfaces,
at larger scales, more heights are used in the calculation of the normal vectors, which makes these
results more sensitive to artifacts and local variations. For the same subregions, principal curvatures
take greater values for the increasing neighborhood method, and the smoothing effect is less evident.

Mean and standard deviations of the principal curvatures on the prepared edges, calculated by
the down-sampling method, are shown versus the log of the scale in Figure 15a. The mean values
of the principal curvatures change with the scale for all the surfaces. The standard deviations of the
principal curvatures decrease regularly with increasing scale, i.e., the variance of the curvatures is
larger at the finer scales. The mass-finished edge shows the same tendency.
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Figure 14. Minimum principal curvature, κ2, as a function of position for turned surfaces, using the
increasing neighborhood method for various scales.

The maximum curvatures decrease linearly (R2 > 0.93) with feed rate, for scales between
0.75 and 1.25 µm. Other scales show the same trend, although the correlations are weaker
(0.42 > R2 > 0.67). In addition, the mean κ1 discriminates the surfaces for scales between 0.75–1.25 µm,
where the variance is large.

The mean and standard deviations of the minimum principal curvatures, κ2, are smaller than for
maximum curvature, κ1. Their proximity to zero, particularly at large scales, is consistent with the
straightness of the surfaces that are parallel to the prepared edge.

Standard deviations of both principal curvatures show mediocre to poor correlation with feed
rate (R2 < 0.72 for maximum and R2 < 0.17 for minimum), suggesting that the variance of curvatures
is not influenced strongly by feed. The strongest correlations were observed between the feed rates
and the mean minimum curvatures (R2 > 0.8 for scales between 0.75 and 3.25 µm, with a maximum of
0.982 at 2.75 µm). This suggests that minimum curvature is feed-dependent.

Statistics calculated by the method are presented in Figure 15b. It appears that the mean and
standard deviations of κ1 might be used to discriminate the prepared edges for some scales between
2.25 and 4.75 µm. The coefficients of determination R2 for regression analysis for the same range take
values greater than 0.81. These means of minimum curvatures correlate more weakly than when they
are calculated using the down-sampling method (maximum R2 = 0.74). The greatest differences in the
statistical parameters between those two calculation methods appears at the largest scales. Similar
trends appear for κ2.

For both methods, the mean of principal curvatures of the tool edge take similar values for larger
scales. The variation of the curvatures for the tool edges is greater than in the resulting turned surfaces.
This suggests that large-scale features on the tool edge are transferred to the machined surface, whereas
fine-scale details on the tool are not.
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4. Discussion

The viability of this method of calculation of unit normal vectors and applying eigenvalue analyses
to areal topographic measurements has been clearly demonstrated for all the variations studied. The
results are consistent with the expected curvatures and tendencies with scale, feed, and mass-finishing
times on the manufactured surfaces studied here. Curvatures in 3D can be calculated as a function
of position and scale directly from a regular spatial array of heights. The presented method requires
estimation of unit vectors normal to the surface prior to estimation of the curvature tensor. The method
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is sensitive to the quality of the estimation of the normal vectors. Two calculation methods present
similar results for multiple scales; however, they vary in the computational time. The smoothing
effect is less evident for the increasing neighborhood method, which can suggest its potential for
discrimination. The down-sampling method takes, on average, 1/10 of the time in comparison with
the increased-neighborhood method.

At the finer scales, the principle curvatures tend to increase with decreasing scale for all measured
surfaces, because fine-scale details have larger magnitude curvatures. The principal curvatures
calculated for particular scales tend to decrease with time in the mass finisher. The feed rate influences
the curvature of the resulting topographies. In the cases studied, the mean of values for the principal
curvatures are more appropriate for discrimination and correlation than standard deviations.

The important criterion for adding value with texture characterization methods is their ability
to correlate with some phenomena of interest, such as processing or performance. The inclusion
of multiscale methods in a characterization and analysis provides an important dimension for
improvement, as has been demonstrated many times previously [2,9,28,29]. Some surface topographies
cannot be well represented by smooth functions at all, or any, scales. Thus, a method of curvature
calculation that does not require fitting smooth geometries, like quadratic forms, might be appropriate.
The same can be said for the profiles.

The lengths of irregular profiles change with scale, as do the slopes [30]. Not surprisingly, then,
the curvature also changes with scale and, naturally, with position, also. As with the area-scale analysis,
correlations between curvature and topographically related behavior or processing might only be
found over a narrow range of scales. Determination of appropriate scales for strong correlations and
confident discriminations can follow the method previously reported for scale-based correlation, using
multiscale regression and discrimination tests [9]. Multiscale characterizations of curvature have the
potential to enable new, strong correlations and confident discriminations.

A recent study involving ENS-Cachan (Ecole normale supérieure de Cachan) and WPI (Worcester
Polytechnic Institute) showed that multiscale analysis of curvatures of profiles could be successful for
determining fatigue limits [9]. This is logical, because positive curvatures relate to stress concentrations
that increase the likelihood of crack initiation. In addition, curvature has appeal as an appropriate
geometric characterization for many kinds of contact mechanics. Because the curvature changes with
position, appropriate statistical characterizations must be used as well [2].

Whitehouse [31] discusses sensitivity to scale and notes that it should be four to five times
greater than the sampling interval. He also proposes that a better approximation can be found using
a seven-point average to determine the slopes for the first step of the double-difference method.
However, the sampling interval is often dictated by the measurement instrument, and it can be
somewhat arbitrary with regard to the scale of the topographically related interactions of interest.
A better approach could be to examine all the scales available in the measurement. Subsequently,
these can be compared for regression and discrimination tests as a function of scale. This can lead to
identification of the scales of interaction for the phenomena of interest.

The richness of the multiscale tensor curvature characterizations suggest that they have a strong
potential for many kinds of applications in engineering, forensics, paleontology, physical anthropology,
and archaeology.

5. Conclusions

The viability of these methods has been demonstrated for multiscale characterization of curvature
tensors on measured topographies (z = z(x,y)). The analyses are based on calculating unit-normal
vectors to the surface, at three proximal locations, and then using an eigenvalue approach to the
problem of calculating the curvature tensors. The curvature tensors of measured topographies can be
calculated and studied over a range of scales and positions. These methods are useful and feasible,
and they have been demonstrated successfully for a variety of surfaces.
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The validity of these methods has been furthered by the demonstrable consistency of the results
with expectations on manufactured surfaces. These expectations include the nature of the curvature
as shown by principal curvature values and their orientations relative to manufactured features
on the surfaces. Mean curvature values and variance provide further validation of these methods
by meeting expectations. The multiscale analyses and resulting multiscale characterization, using
curvature tensors on areal measurements of topographies, also meets with the expectations based on
the manufactured features.

The two methods studied here, for calculating the unit-normal vectors on the surface and
systematically adjusting the scale of calculation, show the expected differences. The increasing
neighborhood method, i.e., the second method, in contrast to the down-sampling method, has been
shown to lead to a decrease in the variation of the curvatures. This suggests that the neighborhood
method could be valuable when there is a concern that irregularity in the topographic data might be
masking interesting tendencies. This comparison, which is consistent with expectations, demonstrates
the viability and furthers the demonstration of the validity of both of these methods.

6. Patents

The multiscale curvature analysis in terms of outlier removal is the subject of patent application:
Measurement equipment with outlier filter, US20180038687A1.
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