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Abstract: An accurate equivalent method of metal joint interface is of great significance to optimize
the dynamic performance of the whole machine. Therefore, it is necessary to establish an accurate
equivalent method of joint interface. The virtual material method is a precise equivalent method of
joint interface. The traditional virtual material method is based on the M–B fractal contact theory.
By modeling the contact mechanics of the joint interface, the physical properties of the virtual material
are obtained separately, such as elastic modulus, Poisson’s ratio and density. In this paper, Persson
contact theory is used to establish the interface contact mechanics model to find the physical properties
of virtual materials. The virtual material methods constructed by two theories are respectively applied
to the modal simulation to obtain the natural frequencies of the joint interface. By comparing the
natural frequencies obtained by modal experiment and modal simulation, it is found that the natural
frequencies obtained by the virtual material method based on Persson contact theory are closer to
the results obtained by the modal experiment, and the error is within 5%. The error of the natural
frequencies obtained by the virtual material method based on the M–B fractal contact theory is within
10%. Therefore, the Persson contact theory can establish a more accurate equivalent method of metal’s
joint interface.

Keywords: equivalent method of interface; Persson contact theory; virtual material method

1. Introduction

The part connecting the upper and lower surfaces between the components is called the mechanical
joint interface, which is ubiquitous in the mechanical structure. Through the study of the joint interface,
the scholars found that the 50% total stiffness, and more than 90% total damping of the machine tool
comes from the joint interface [1]. Therefore, the establishment of an accurate equivalent method of
joint interface is of great significance for engineering applications. According to the recent studies [2–6],
the equivalent method of joint interface includes a virtual material method, spring damping method,
and finite element method. By comparing the mode shapes and the natural frequencies obtained by
modal experiment and modal simulation [5], it is found that the virtual material method can better
simulate the metal joint interface than the other two methods.

A large number of studies have shown that [7–10] most of the machined surfaces have statistical
self-affine characteristics. The rough surface similarity is unique at different scales. Even at the atomic
scale, the surface morphology still has multi-scale, self-affine and non-stationary features, namely
fractal characteristics. The function simulates a rough surface with good agreement with the measured
surface. Its fractal roughness parameter G, fractal dimension D and Hurst exponent H are dimension
independent. Therefore, the fractal theory can reflect the actual surface contour of the assembly
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joint interface more realistically and reliably. In addition, many scholars [11–14] study the relevant
characteristics of the joint interface through fractal theory, and explain the importance of fractal theory
to the research of the joint interface.

The virtual material method was proposed by Tian Hongliang [2]. This method uses the M–B
fractal contact theory [15,16] to establish the contact mechanics model of the mechanical joint interface,
and obtains the physical parameters of the virtual material from the microscopic point of view,
such as Poisson’s ratio, density, elastic modulus, etc. Through the comparison of experiments and
simulations [2,5], it is found that the error of the virtual material method established by the M–B
fractal contact theory is large, which is about 10%. However, the M–B contact mechanics model has
certain limitations. The contact mechanics model ignores the interaction between the asperities. When
the pressing force is small, this assumption is approximately true, but when the pressing force is
relatively large, the interaction between the asperities cannot be ignored. Therefore, it will affect the
establishment of the equivalent model. In recent years, Persson et al. used mathematical methods such
as fractal geometry and frequency domain transformation to draw a set of contact mechanics theory
considering scale effect [17–27]. The mechanics model considers the effect of scale effects on contact
behavior and the interaction between asperities. In order to consider the effect of the surface roughness
scale effect on the contact behavior, the model assumes that the deformation of the surface asperities or
dimples is approximately equal to the height of the surface asperities or the depth of the dimples. This
assumption applies only to situations where the pressing force (actual contact area) is large, but it does
not apply to situations where the pressing force (actual contact area) is relatively small. This boundary
condition is suitable for the metal joint interface studied in this paper. Through experimental and
theoretical calculations [26], it is found that, with the increase in pressure, the theoretically calculated
stiffness between the joint interface can be well fitted to the actual stiffness between the joint interface.

Constructing an accurate equivalent method of joint interface can accurately analyze the dynamic
performance of the whole machine. In this paper, two different joint interface contact mechanics
theories are used to construct the equivalent model of the joint interface, namely the virtual material
method. Through the comparative analysis of modal experiment and modal simulation, a better
theoretical method for constructing the equivalent model of the joint interface is obtained.

2. Materials and Methods

The specimens, made of the same material (GB: 45#, JIS: S45C, ANSI: 1045, DIN:C45), had
L = 0.2 m length, l = 0.06 m thickness. The specimens were pressed by the pressure 0.125 MPa by six
bolts, as shown in Figure 1. The specimens are machined by milling and have a surface roughness of
approximately 3.2 µm. The physical properties of the specimens are shown in Table 1. Considering
that the joint interface of the machine is usually composed of the same material, the specimens of the
same material are selected.
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Table 1. Physical properties of specimens.

Parameter Specimens

Elastic modulus: E(GPa) 209
Poisson‘s ratio: µ 0.3

Density: ρ
(
kg/m3

)
7850

Roughness: Ra(µm) 3.2
Yield strength: σy(MPa) 355

Hardness: H(MPa) 190

The microscopic contact portion of the two contact surfaces of the fixed joint interface is assumed
to be a virtual isotropic material as described in Ref. [2]. The length and width of the virtual material
are the length and width of the specimens, respectively. The elastic modulus, Poisson’s ratio, and
density of the virtual material are obtained by some theoretical methods and the thickness of the virtual
material is determined according to the actual gap between the two surfaces, which is the virtual
material method. In the following, the virtual materials are constructed by Persson contact theory and
M–B fractal contact theory, respectively, so as to find a better theoretical method for constructing the
equivalent model of joint interface.

2.1. Virtual Material Method Based on Persson Contact Theory

2.1.1. The Surface Roughness Power Spectrum

The data of specimens’ surfaces height are acquired by a coordinate measuring machine (ACCURA
II AKTIV; Carl Zeiss AG, Oberkochen, Germany, as shown in Figure 2a. The sampling interval of the
data is a = 0.001 m. Experiment takes 200× 200 data points of surface height. The data are fitted to the
surface of the specimens by software (MATLAB 2014; MathWorks, Inc., Natick, MA, USA), as shown
in Figure 2b.
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According to the authors in [27], the surface roughness power spectrum C(q) can be written as:

C(q) =
(2π)2

A

〈∣∣∣hA(q)
∣∣∣2〉, (1)
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where A is the surface area, hA(q) is the Fourier transform of the surface height h(x), which can be
written as:

hA(q) ≈
a2

(2π)2

∑
n

hn(Xn)e−i(2πmxnxa+2πmynya)/L, (2)

where a is the length of the specimen, and nx = 1, 2, · · · , 200, ny = 1, 2, · · · , 200, mx and my are integers
between 0–199.

Mean square roughness amplitude can be obtained from the acquired data of the surface height:

h2
rms =

〈
h2

〉
=

1
N2

∑
n

(
hn − h

)2
, (3)

where N= 200, h is the average of the surface height, 〈· · · 〉 indicates statistical average of the physical
quantities in angle brackets.

Substituting the values of the surface profile height into Equations (1) and (2), the surface
roughness power spectrum can be obtained, as shown in Figure 3, where qr = 2π/L is characteristic
frequency, q0 = 2π/λ0 is minimum cut-off frequency, q1 = 2π/λ1 is maximum cut-off frequency, λ0 is
long-wavelength roll-off and λ1 is short wavelength cut-off.
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2.1.2. The Normal Stiffness Model of Interface

According to the authors in [26], the dimensionless elastic energy stored in the Hertz mesoscale
deformation field for depth of indentation is written as:

U′0 =
4
3
κ0χ

−1/(1+H)

(
3F′

4

)(1+2H)/(1+H)

, (4)
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where κ0 = 2/5 is the root-mean-square curvature of the surface, F′ is the dimensionless normal force,
H= 3−D is the Hurst exponent, and χ is the dimensionless prefactor which is obtained by:

χ =

(
2−H
Hs0

)1/2
πH−2

βq0hrms
, (5)

where β =
√

8/3π when q1/qr � 1, 1/s0 = 1 + H
[
1− (qr/q0)

2
]
.

The dimensionless elastic deformation energy [25] that is stored in microasperity contacts within
the Hertz mesoasperity contact region is obtained by:

U′1 =
4
3
κ1χ

−1/(1+H)

(
3F′

4

)(1+2H)/(1+H)

, (6)

where κ1 = γ
(

2−H
π4β2H

)1/2
is the prefactor, γ ≈ 0.4 according to Ref. [26].

The total dimensionless elastic energy is now given by the sum of the two contributions
Equations (4) and (6):

U′ =
4
3
κχ−1/(1+H)

(
3F′

4

)(1+2H)/(1+H)

, (7)

κ = κ0 + κ1. (8)

The total dimensionless stiffness of the interface is written as:

k′ =
F′

dU′/dF′
= θ

(
F′

q0hrmss1/2

)1/(1+H)

. (9)

Dimensionless to Equation (9) is written as:

Khrms

E∗
= θ

(
hrms

2πλr

λ2
r

L2

)H/(1+H)( p
s1/2E∗

)1/(1+H)

, (10)

where θ is the prefactor that is obtained by Ref. [26], p = F/A0 is the surface pressure, and E∗ is the
equivalent elastic modulus.

The elastic modulus E and the shear modulus Gτ of the interface can be written as [28]:

E = hKn/A0, (11)

Gτ = Kτh/A0, (12)

where Kτ is the tangential contact stiffness, and h = 0.8 is the thickness of the virtual material according
to Ref. [2]. The ratio of the tangential contact stiffness to the normal contact stiffness is 0.25–0.35.
Without loss of generality, Kτ/Kn is taken as 0.35, according to Ref. [29].

The Poisson’s ratio and density of the virtual material can be described as [4,30] respectively:

υ =
E

2Gτ
− 1, (13)

ρ =
ρ1h1 + ρ2h2

h1 + h2
, (14)

where ρ1, ρ2 and h1, h2 are the density and thickness of specimen1 and specimen2, respectively.
The physical properties of the virtual material obtained by Equations (10)–(14) are as follows:

E1 = 0.0591 Gpa, ν1= 0.429, ρ1 = 7850 kg/m3 and h1 = 0.8 mm.
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2.2. Virtual Material Method Based on M–B Fractal Contact Theory

The shape of the rough microcontacts on the actual surface is usually an ellipsoid. Since the
contact area of the ellipsoid is much smaller than the radius of the curvature of itself, the microcontact
can be approximated as a sphere. The contact between the two planes can be seen as a series of bumps
in contact with each other. The contact of the two sphere microcontacts is shown in Figure 4.
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According to the authors in [31], the normal load of an elastic microcontact is obtained from the
hemispherical positive stress of hemisphere:

F =
4
3

E∗
√

R0d
3
2 , (15)

where R0, d, E∗ are the equivalent curvature radius of the two contacting microcontacts, the deformation
of contact point as shown in Figure 4, and the equivalent elastic modulus of the two contact rough
surfaces, respectively:

R0 =
R1 ×R2

R1 + R2
, (16)

d = GD−1a′1−0.5D, (17)

1
E∗

=
1−µ2

1

E1
+

1−µ2
2

E2
, (18)

where µ1, µ2 and E1, E2 are Poisson’s ratio and elastic modulus of two objects that constitute the
joint interface; a = a′/2 = πR0d is the area of a micro contact point. G and D are fractal parameters.
According to the authors in [2], fractal parameters are determined by the roughness of the surface of
the joint interface. When the metal surface roughness ranges from 0.4 µm to 3.2 µm, the values of G
and D are more accurate.

From Equation (15), the actual normal contact compressive stress of an elastic microcontact is
written as:

P =
F
πr2 =

F
a
=

4E∗

3π

√
d

R0
=

4E∗
√
ε

3π
, (19)

where ε = d/R0 is the normal compressive strain of an elastic micro-contact point.
Differentiating Equation (19), the elastic modulus of two contacting microcontacts is expressed as:

e =
dP
dε

=

√
2

9π3 E∗G1−Da′0.5D−0.5. (20)

The statistical distribution of the truncated micro-contact area a′ can be described as [31]:

n(a′) = 0.5Dψ1−D/2a′1
0.5Da′−1−0.5D

(
0 < a′ ≤ a′1

)
, (21)
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where ψ describes the domain extension factor for the micro-contact size distribution associated with
D:

a′1 = 2a1 =
2(2−D)

D
ψ0.5D−1Ar, (22)

a′2 = 2a2 = 2G2
(2E∗

H

) 2
D−1

, (23)

where a1 is the truncated area of the largest elastic micro-contact, a2 is the critical truncated area
demarcating the elastic and plastic deformation regimes, Ar is actual contact area and H is the hardness
of material.

The equivalent elastic modulus can be obtained as:

E =

∫ a′1
a′2

en(a′)ada′

A0
=

2(2D−9)/2E∗Dψ1−D/2G1−Da′D/2
(
a′1

0.5
− a′2

0.5
)

3π(1+D)/2(lnγ)1/2A0

(
a′1 < a′ < a′2

)
, (24)

where γ is the scaling parameter, and A0 is nominal contact area.
The physical properties of the virtual material obtained by Equations (11)–(24) are as follows:

E2 = 0.1253 Gpa, ν2 = 0.429, ρ2 = 7850 kg/m3 and h2 = 0.8 mm.

3. Modal Simulation, Modal Experiment and Results

3.1. Modal Simulation

The virtual material method is modeled in three dimensions through software (SOLIDWORKS
2018; Dassault Systemes, Waltham, MA, USA). The model is imported into software (ANSYS Workbench
14.0; ANSYS, Inc., Pittsburgh, PA, USA). The physical parameters listed in Table 1 are assigned to
specimen1 and specimen2. The physical parameters obtained by Persson contact theory and M–B
fractal contact theory are respectively assigned to virtual materials. The mesh diagram of the model
is shown in Figure 5. The grid has a total of 140,517 nodes and 75,588 elements. The pressing force
of 0.125MPa is applied to the specimens as the boundary condition. Finally, the modal analysis is
performed to obtain the first five natural frequencies of the specimens, as shown in Table 2.
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Table 2. The first five natural frequencies of the model obtained from modal simulation.

Frequency f1(Hz) f2(Hz) f3(Hz) f4(Hz) f5(Hz)

Persson contact theory 720.4 1141.3 1355.0 1524.1 1635.1
M–B contact theory 745.5 1201.8 1403.8 1600.1 1725.2
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3.2. Modal Experiment

The experimental setup (PSV-I-500; Polytec GmbH, Waldbronn, Germany) is as shown in Figure 6a.
The experimental specimens are suspended by two elastic ropes in front of the exciter to reach the
boundaryless condition and excited by an exciter. Experimental data are acquired by laser scanning
specimens. Finally, the processing of the data is shown in Figure 6b. The first five natural frequencies
of the specimens are shown in Table 3.
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Table 3. The first five natural frequencies of the model obtained from the modal experiment.

Frequency f1(Hz) f2(Hz) f3(Hz) f4(Hz) f5(Hz)

Modal experiment 693.8 1093.8 1292.2 1459.4 1567.2

3.3. Results

The first five natural frequencies and errors obtained from modal experiment and modal simulation
are shown in Table 4. By comparison analysis, the error of the first five natural frequencies obtained by
the virtual material method based on Persson contact theory is within 5%. The error of the virtual
material method based on the M–B fractal contact theory is within 10%.

Table 4. The errors of the first five natural frequencies obtained from modal experiment and
modal simulation.

Order 1 2 3 4 5

Error of Persson 3.78% 4.34% 4.86% 4.43% 4.34%
Error of M–B 7.45% 9.87% 8.57% 9.63% 10.0%

4. Conclusions

According to the authors in [5], the first five modal shapes obtained by the virtual material method
are consistent with those obtained by the experiment. In addition, it is found that the virtual material
method can better simulate the metal joint interface than the spring damping method and the finite
element method. Therefore, it can be proved that the virtual material method can be equivalent to
the metal joint interface. However, the traditional virtual material method is based on fractal contact
theory and has certain limitations. The contact mechanics model ignores the interaction between the
asperities. When the pressing force (actual contact area) is small, this assumption is approximately
true, but when the pressing force (actual contact area) is relatively large, the interaction between the
asperities cannot be ignored. Therefore, it will affect the establishment of the equivalent model. In
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this paper, the Persson contact theory is used to compute the physical properties of virtual materials.
The Persson contact theory takes into account the interaction between the asperities. In addition, when
the pressing force (actual contact area) of the joint interface is larger, the more accurate the result is,
which is suitable for the mechanical joint interface. According to the results of modal experiment and
modal simulations, the fact that the error of the first five natural frequencies obtained by the virtual
material method and the modal experiment based on Persson contact theory is within 5%, compared
with the 10% error of the traditional virtual material method, is a great improvement. Therefore,
the physical parameters of virtual materials obtained by Persson contact theory are more accurate,
which is more suitable for establishing the virtual material method, so as to achieve accurate analysis
of the performance of the whole machine.
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