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Abstract: On the basis of the two-dimensional cellular automaton model, a three-dimensional cellular
automaton model of austenitizing process was established. By considering the orientation of pearlite
layer and the direction of austenite grain growth, the velocity of the interface was calculated during
the austenitizing process. The austenitizing process of GCr15 steel was simulated, and the anisotropy
of grain growth rate during austenitization was demonstrated by simulation results. By comparing
the simulation results with the experimental data, it was found that the calculated results of the
three-dimensional cellular automaton model established in this paper were in good agreement with
the experimental results. By using this model, the three-dimensional austenitizing process of GCr15
steel at different temperatures and under different processing times can be analyzed, and the degree
of austenitization can be predicted.

Keywords: three-dimensional cellular automaton model; austenitizing process; interfacial
movement velocity

1. Introduction

The structure of the bearing steel continuous casting billet at normal atmospheric temperature is
mainly composed of lamellar pearlite structure and carbide. Pearlite is a mixed structure formed by
the interleaving of lamellar ferrite and cementite. When the steel temperature exceeds the transition
temperature, the steel can spontaneously be an austenitizing transformation process. It is generally
believed that the austenitizing process is a transformation process of nucleation growth. The nucleation
rate of the nuclei and the growth rate of the grains together determine the rate of the austenitizing
transformation process.

Speiche et al. [1] pointed out that austenite can be nucleated at the interface between cementite and
ferrite. Roosz et al. [2] believed that austenite can nucleate at three interfaces of cementites and ferrites,
which are the internal interface of pearlite group, the interface on the edge of pearlite, and the interface
on the corner of pearlite. The relationship was obtained between the nucleation rate of austenite and
the morphology of pearlite by experiment. Shtansky et al. [3] observed the austenite nucleation inside
and at the boundary of the pearlite by using transmission electron microscopy. Another view is that
austenite nucleation is mainly at the boundary of pearlite clusters [4]. Li et al. [5] further pointed out
that austenite mainly nucleated at the interface of high-angle pearlite. Combining the two viewpoints,
it can be considered that austenite mainly nucleates at the boundary of the pearlite group, and also has
a certain nucleation inside the pearlite group.

For the austenitizing process, in addition to experimental observation of the metallographic phase
of the sample, many scholars have also carried out numerical simulation studies on the transformation
process of pearlite to austenite. Akbay et al. [6] established a simple model for the transformation of
lamellar ferrite and cementite into austenite, and obtained analytical solutions and numerical results
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under steady state conditions. Kong et al. [7] proposed a fixed integral formula of austenite volume
fraction during uniform heating on the basis of experiments, and obtained an approximate analytical
solution. Caballero et al. [8,9] obtained the definite integral formula of austenitization in isothermal
transformation process and uniform heating process based on the semi-empirical nucleation rate
and growth rate formula proposed by Roosz et al. [2], and the results had a high consistency with
the experimental results. Some scholars had obtained a simplified model of the moving velocity of
austenite and pearlite interface by analyzing the diffusion process, and combined it with the Avrami
model to obtain the definite integral expression of austenite volume fraction [10,11].

Commonly used methods for numerical simulation include the diffusion field model, the cellular
automaton, and the phase-field. Among them, the cellular automata method has attracted much
attention because of its advantages in dynamic system simulation. In simulation, by using the cellular
automaton, many scholars regard the transformation of pearlite to austenite as a result of random
transitions of the cells. The driving force of the transition is the sum of the energy barrier and the
difference of free energy between the two states. Therefore, the difficulty of this method lies in the
determination of the driving force [12–14]. Su et al. [15] established the cellular automaton model
based on the semi-empirical austenite nucleation and growth formula proposed by Roosz et al. [2].
This cellular automaton model can obtain the micro-organization of the austenitizing transformation
process. On the basis of the above two-dimensional cellular automaton model, a three-dimensional
model of the austenitizing transformation process of GCr15 steel was established by using the cellular
automata method, and the transformation process of pearlite to austenite was simulated.

2. Three-Dimensional Cellular Automaton Model

The cellular automaton model is a mathematical model that is time-discrete and spatially discrete.
Each discrete point is assigned a state parameter whose possible states are also discrete and finite.
The cellular automaton model follows the rules of local evolution. In the evolution process of each time
step, the state of a certain point is determined by the state of the points around it, defined as neighbors,
and is independent of other points. With the cellular automaton model, many complex continuous
changes can be discretized into simple local evolution processes to achieve the reproduction of some
complex phenomena.

A cellular automaton model consists of cells, state of the cell, cell space, neighbor’s types,
and evolution rules.

(1) The cell. The cell is the basic unit of the cellular automaton model, and is the carrier of various
state parameters and the executor of the evolution rules. In the simulation of the evolution of the
material, the cell is the unit of material that is discretized. For a two-dimensional model, the shape of
the cell is mainly square, regular hexagon, and equilateral triangle. For a three-dimensional model,
the shape of the cell is mainly truncated octahedron, cube, and sphere.

(2) The state of the cell. The state of a cell includes all states of a finite number of discrete material.
In principle, one cell can only have one state, but multiple states can exist simultaneously in the actual
application process.

(3) The cell space. The space is a collection of the cells. The set of multiple cells can be seen as a
cell space.

(4) The neighbor’s type. For a specific lattice point, the lattice points of the local area that are
involved in the evolution rule are called the neighbor lattice point. The distance between one lattice
point and the specific lattice point is generally used to determine whether the lattice point is the
neighbor. For a space composed of square or cube cells, there are three main types of cells, namely Von
Neumann type neighbors and Moore type neighbors, as shown in Figure 1.

(5) The evolution rules. The cell and cell space are the basic unit of the model. To realize the
dynamic evolution process of the model, it is necessary to add the evolution rule. The evolution rule is
built according to a specific physical process. In the evolution rule, only the state of the specific lattice
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point and its neighbor’s type can be considered to determine the state of the specific lattice point at the
next moment.
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The boundary conditions of the cellular automaton model mainly include fixed boundary
conditions, symmetric boundary conditions, and periodic boundary conditions. The periodic boundary
condition was used in the calculations in this paper. During the calculation process, all lattice points
were updated synchronously.

3. Three-Dimensional Cellular Automata Simulation of the Austenitizing Process

The austenitizing process can be decomposed into three processes: nucleation, austenite nucleus
growth, and austenite grain collision. The nucleation process occurs on the pearlite matrix and is related
to the local morphology of the pearlite matrix and the driving force of the pearlite phase transition.
In general, the trigeminal intersection and interface of the pearlite mass are easier to nucleate, and the
nuclei may also be formed between the two pearlite layers. After the nucleation process is completed,
the newly formed austenite nuclei form a new phase interface with the pearlite matrix. The phase
interface is generally propelled to the pearlite matrix under the action of diffusion driving force, so that
the pearlite transforms into austenite. The moving velocity of the interface between the austenite and
the pearlite is related to the solute diffusion coefficient in the material and the thickness of the pearlite
layer. As the austenite nucleus continues to grow, when the two austenite grains meet at a certain
point, the interface between the pearlite and the austenite transforms into an austenite grain boundary,
that is, the austenite grain collision. The two collided austenite grains will continue to move caused by
the grain boundary curvature, that is, the austenite grain growth.

3.1. Mathematical Description of the Austenitizing Process

Speiche et al. believe that the austenite nucleation process is instantaneous, that is, the nucleation
position has been exhausted in the initial stage of austenitizing transformation. However, Roosz et al.
believe that the austenite nucleation process is continuous, that is, the nucleation rate remains constant
during the austenitizing transformation process. In the study by Speiche et al., the C content of the
steel was 0.96%, and in the study by Roosz et al., the C content of the steel was 0.78%. Studies by
Dernfeld [16] have confirmed that this difference in nucleation is mainly due to differences in C content.
The composition of GCr15 steel studied in this paper is shown in Table 1. Its C content was about 1%,
which is closer to Speiche’s research. It can be considered that the nucleation process was instantaneous.
Therefore, in this paper, the number of austenite grains in the sample which was rapidly cooled after
complete austenitization was used, instead of the number of austenite nuclei at the beginning of
the transformation, thereby obtaining the number of austenite nuclei per unit volume. As shown in
Figure 2, after more than 1000 grains, the instantaneous nucleation density (N/V) of austenite was
1.687 × 1015 m−3. N is the number of austenite nuclei and V is the volume.
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Table 1. Composition of GCr15 steel.

Component C Si P S Fe

Mass fraction (%) 1 0.25 0.25 0.25 Bal.
component Cr Mn Mo Ni Cu

Mass fraction (%) 1.5 0.35 0.1 0.30 0.25
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The interfacial moving velocity of austenite in different directions determines the austenitizing
process of GCr15 steel. The research on the interface velocity of austenite growth in pearlite mainly
includes numerical simulation based on solute diffusion and the nucleation and growth model that
was proposed by Roósz et al. [2] on the basis of experimental research. Gaude-Fugarolas et al. [17]
proposed that the austenitizing process is controlled by C diffusion, and the interface velocity can be
calculated as follows:

v =
1

r f − r0
(ln r f + ln r0)D(

cγθ − cγα

cγα − cαγ
), (1)

where v is the average velocity of the austenite interface, in meters per second; rf and r0 are the farthest
and closest distances of diffusion, respectively, in meters; rf is half of the thickness of the pearlite layer;
r0 is a few lattice thicknesses, about 10−8 m; D is the diffusion coefficient of the main element’s diffusion
in austenite, in meters squared per second; cγθ is the molar concentration of solute in austenite at the
interface between austenite and cementite; cγα is the molar concentration of solute in austenite at the
interface between austenite and ferrite; and cαγ is the molar concentration of solute in ferrite at the
interface between ferrite and austenite.

For austenitizing process and cementite dissolution processes in high carbon low alloy steels,
Hillert [18] proposed two models. In the case of low superheat, the pearlite dissolution process
depended on the diffusion of alloying elements; when the temperature is above a certain critical
temperature, the pearlite dissolution process does not depended on the diffusion of alloying elements,
and the austenitizing process depends on diffusion of carbon elements. Because of the difficulty in
calculating the transition temperature, it is difficult to determine the solute elements, and thus it is
difficult to implement the model in Equation (1). Therefore, this paper uses the semi-empirical model
proposed by Roósz:

v = E
1
σ2

0

exp
(
−

Q
k∆T

)
, (2)

where E is the empirical constant and Q is the austenite growth process activation energy. According to
the experimental results [19], the empirical constant and activation energy are 3.406 × 10−19 m3/s and
6.995 × 10−22 J/atom, respectively. k is the Boltzmann constant, ∆T is the degree of superheat, and σ0 is
the pearlite layer spacing. As shown in Figure 3, the measured value of σ0 was 0.227 µm.
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The above is the austenite boundary perpendicular to the direction of the pearlite layer, that is,
the austenite growth rate was calculated when the austenite interface growth direction was parallel to
the pearlite layer. According to the study of reference [20], it can be seen that the direction in which
austenite grains move in the pearlite had a significant effect on the austenite interface moving velocity.
The austenite growth process was solute atoms diffusing from cementite through austenite to ferrite.
Therefore, the following flow conservation relationship should be satisfied at the austenite and ferrite
interface:

v(cγα − cαγ) = J/σα, (3)

where J is the solute flow rate through austenite, in mol·s−1
·m−2. σα is the thickness of the ferrite layer,

as shown in Figure 4, in meters. The diffusion distance from cementite to ferrite is 1/2 of the thickness
of the layer, so the flow rate J can be approximated by the following formula:

J =
2(cγθ − cγα)

σ0
. (4)
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The two distance parameters (σ0 and σα) in Equations (3) and (4) are proportional to the spacing of
the layers, and it can be inferred that the austenite interface moving velocity is inversely proportional
to the square of the layer thickness. This result is consistent with the form in the semi-empirical model
Equation (2).

As shown in Figure 5, when the direction of austenite growth is at an angle to the direction of the
pearlite layer, the distance parameters in Equations (3) and (4) are multiplied by 1/sinω. Considering
this situation, the moving velocity in Equation (2) will be calculated as follows:

v1 = E
1
σ2

0

exp
(
−

Q
k∆T

)
(1− cos2 ω), (5)
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cosω =

∣∣∣∣→n1 ·
→
n2

∣∣∣∣∣∣∣∣→n1

∣∣∣∣∣∣∣∣→n2

∣∣∣∣ , (6)

where
→
n1 is the normal vector of the pearlite layer and

→
n2 is the moving direction vector of the austenite

grain boundary. In the calculation process, the
→
n1 is the normal vector which is assigned randomly

by the program in the initial tissue formation process of pearlite, and the same pearlite group has
the same value. The

→
n2 is related to the relative position of the austenite point and the pearlite point.

When the position of the interface pearlite grid is determined, a vector can be determined relative to a
certain austenite neighbor.
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3.2. Simulation Results and Analysis

A three-dimensional cellular automaton model was established in this paper. The shape of the
cell was a cube, and the neighbor type was a Moore-type neighbor. There were two states of the
cell, one state was pearlite, and the other was austenite. For each pearlite cell, a laminar normal
direction vector was assigned, and adjacent cells having the same normal vector formed a pearlite
cluster. For each newly formed austenite nucleus, an austenite orientation was imparted, austenite
grains were formed by austenite nucleation, and new austenite was formed by austenite nucleus
growth. The orientation of the newly formed austenite cell was the same as the orientation of the
austenite nuclei.

In this paper, the C#.net was used to program the three-dimensional cellular automaton model of
the austenitizing process of bearing steel, and the simulation was carried out using the self-compiled
program. The initial organization of the pearlite was formed by the Monte-Carlo method when the
calculation was started, as shown in Figure 6. The size of the pearlite in the initial structure was the
same as the pearlite measured in the actual initial structure [19]. According to the conclusions in
reference [5], it was assumed that the austenite nuclei were formed at the trigeminal boundary of the
pearlite cluster. The austenite nucleation process was instantaneous, and no new austenite nucleation
was formed during the growth of austenite grains.
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In this paper, there were three kinds of distance between the central cell and the neighbor cell.
The first one was the cell being coplanar with the central cell; the distance was a cell side length a.
The second was the cell being co-edge with the center cell; the distance was

√
2a. The third was the cell

being co-apex with the central cell, and the distance was
√

3a. For a pearlite cell, when a neighbor
cell was austenite, the probability that the center cell translated to austenite under the action of the
neighbor cell was determined by the following equation:

p = v1∆t/L, (7)

where L is the distance between the neighbor and the central cell, in meters and ∆t is the calculated
time step, in seconds. The austenite interface moving velocity v1 is determined by Equation (5),
and the moving direction of the austenite grain boundary is related to the direction of the pearlite layer.
The normal vector

→
n1 of the pearlite layer is randomly assigned in the initial tissue. The direction of

austenite movement
→
n2 is a vector pointing from the center of the neighboring austenite cell to the

center cell, which can be calculated from the coordinates of the cell. The transformation of the central
cell is the result of the action of all austenitic cells in its neighbors, so the total transition probability of
the central cell is

P =
∑

pi, (8)

where pi is the transition probability of the action of the austenite cell i on the central cell in the neighbor
cell.

Using this model, the austenitizing process was calculated under isothermal conditions, and the
calculated temperatures were 755 ◦C, 765 ◦C, 770 ◦C, 780 ◦C, and 800 ◦C. The calculation results are
shown in Figure 7. It can be seen from the figure that the calculation results are in good agreement
with the experimental results [19]. The maximum relative error at 765 ◦C, 770 ◦C, 780 ◦C, and 800 ◦C
was less than 4%, and the maximum relative error at 755 ◦C was less than 8%. This indicated that
the cellular automaton model proposed in this paper can better simulate the transformation process
of pearlite to austenite. It can also be seen from the figure that with the initial organization of the
pearlite of this paper, the time when 80% of the pearlite transformation to austenite was at about
5 s, 10 s, 15 s, 27 s, and 100 s at 800 ◦C, 780 ◦C, 770 ◦C, 765 ◦C, and 755 ◦C, respectively. Increasing
the temperature can speed up the conversion of pearlite to austenite. When the temperature was
increased from 755 ◦C to 765 ◦C, the conversion speed was increased by about four times. When the
temperature was increased to 770 ◦C, the conversion speed was increased by about seven times. When
the temperature was increased to 780 ◦C, the conversion speed was increased by about 10 times. When
the temperature was increased to 800 ◦C, the conversion was almost instantaneous.
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While accurately simulating the austenitizing process, the model of this paper can also clearly
demonstrate the anisotropy caused by the direction of the pearlite layer during austenite grain growth.
As shown in Figure 8, the orange line in the figure is the boundary of the original pearlite mass, and the
position of the austenite nucleus is at the trigeminal junction of the pearlite mass. It can be seen from
the figure that the velocity of austenite grains growing in all directions was not the same, similar to
the phenomenon observed in the experimental diagram. The cellular automaton model in this paper
reproduced the anisotropy of austenite growth. Because of the different conditions of the growth
process, the grains with better growth conditions obtained a relatively large volume, while the grains
with poor growth conditions had a small volume.
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4. Conclusions

In this paper, a three-dimensional cellular automaton model for the transformation of bearing
steel pearlite to austenite was established. In the austenitizing process, because of the angle between
the orientation of the pearlite and the growth direction of austenite, the austenite had different
growth velocity in different directions. In this paper, the austenitizing process of pearlite was
predicted by the three-dimensional cellular automaton model, and the expression of interfacial
movement velocity of pearlite layer orientation and austenite grain growth direction was considered
comprehensively. The anisotropy of grain growth in the pearlite was analyzed. The calculation results
of the three-dimensional cellular automaton model in isothermal condition were in good agreement
with the experimental results; the maximum relative error between calculation and experimental
results at 765 ◦C, 770 ◦C, 780 ◦C, and 800 ◦C was less than 4%, and the maximum relative error at 755 ◦C
was less than 8%. Increasing the temperature can speed up the conversion of pearlite to austenite.
When the temperature was increased from 755 ◦C to 765 ◦C, 770 ◦C and 780 ◦C, the conversion speed
was increased by about 4 times, 7 times, 10 times, respectively; when the temperature was increased to
800 ◦C, the conversion was almost instantaneous.
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