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Abstract: One ambitious objective of Integrated Computational Materials Engineering (ICME) is to
shorten the materials development cycle by using computational materials simulation techniques
at different length scales. In this regard, the most important aspects are the prediction of the
microstructural evolution during material processing and the understanding of the contributions of
microstructural features to the mechanical response of the materials. One possible solution to such a
challenge is to apply the Phase Field (PF) method because it can predict the microstructural evolution
under the influence of different internal or external stimuli, including deformation. To accomplish this,
it is necessary to take into account plasticity or, specifically, non-homogeneous plastic deformation,
which is particularly important for investigating the size effects in materials emerging at the micron
length scale. In this work, we present quasi-2D simulations of plastic deformation in a face centred
cubic system using a finite strain formulation. Our model consists of dislocation-based strain gradient
crystal plasticity implemented into a PF code. We apply this model to study the influence of grain
size on the mechanical behavior of polycrystals, which includes dislocation storage and annihilation.
Furthermore, the initial state of the material before deformation is also considered. The results
show that a dislocation-based strain gradient crystal plasticity model can capture the Hall-Petch
effect in many aspects. The model reproduced the correct functional dependence of the flow stress
of the polycrystal on grain size without assigning any special properties to the grain boundaries.
However, the predicted Hall-Petch coefficients are significantly smaller than those found typically
in experiments. In any case, we found a good qualitative agreement between our findings and
experimental results.
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1. Introduction

The properties of engineering materials are size-dependent if the microstructural length scale
falls into an order of a few microns to less than a micron [1,2]. The pioneering work of Hall and
Petch [3,4] motivated many researchers to study the underlying physics and the influence of the grain
size effect on the mechanical behavior of materials [5–10]. Within the domain of metallic materials,
the main plastic deformation mechanism is dislocation slip. This deformation mechanism depends
on the density and evolution of the dislocations, crystal structures, and crystallographic orientations,
and on the localization of deformation as a result of the gradients of the grain morphology and the
distribution of grain sizes [11].

Materials 2019, 12, 2977; doi:10.3390/ma12182977 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-8730-9734
https://orcid.org/0000-0002-3710-1169
http://dx.doi.org/10.3390/ma12182977
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/12/18/2977?type=check_update&version=2


Materials 2019, 12, 2977 2 of 18

The grain size effect is the manifestation of the fact that a polycrystal with larger grains experiences
larger strain incompatibility during plastic deformation. This generates higher internal stresses
in the microstructure which leads to lowering of yield strength and as the grain size is reduced,
an opposite phenomenon is observed [3,4]. For coarse grains, it is well understood that an increase
of the dislocation density results in a strengthening of the microstructure, which can be described by
Taylor’s hardening law [12]. In the case of fine or ultra-fine grained materials, their strength is grain
size dependent [2,5,13,14]. Furthermore, this is associated with the state of the material, e.g., its initial
dislocation density, which determines the strength of a material [15].

Because of a significant improvement in computational power in recent decades, the mechanical
behavior of crystals has been simulated extensively by using crystal plasticity (CP) models. Such
plasticity models relate the evolution of the plastic flow of a crystal as a result of its state and the
evolution of this state [11]. However, classical CP models do not include any intrinsic microstructural
length scale and therefore fail to describe the size dependent mechanical response of the materials [16].
This drawback can be coped with by employing strain-gradient CP models [17–19] that address size
dependent plasticity. These models have proven their capability to describe the non-homogeneous
deformation by taking into account the plastic strain at any material point and its influence on the
neighbouring points. This involvement of the plastic strain gradient can therefore capture the grain
size effect [17], and such models can also be formulated on the basis of dislocation mechanics. To serve
this purpose, the dislocations can be divided into two relevant categories: (1) statistically stored
dislocations (SSD) and (2) geometrically necessary dislocations (GND). The arbitrary dislocation
configurations occurring during plastic deformation generates SSD, whereas GND emerge from sites
of non-homogeneous deformation, mainly at the interfacial regions [20,21]. One main characteristic
of SSD configurations is that their net Burgers vector is zero, whereas GND configurations possess a
non-zero net Burgers vector. The evolution of SSD can be described on the basis of the Kocks-Mecking
law [22], and GND can be evaluated on the basis of Nye’s dislocation tensor [23].

Although strain-gradient CP models are sensitive to microstructural features, they still lack the
capability to describe the plastic deformation of a material in connection to the evolution of the
microstructure during the processing steps [24]. This microstructural evolution is essentially related
to the movement of interfaces or a changing chemical composition of materials. Such changes can
numerically be tracked with the help of phase field models [25]. These models are very flexible and
can incorporate certain physical phenomena of interest by including properly defined energy densities
into the description of the total energy of the system. Therefore, the characteristics of these two types
of models can be superimposed to predict the mechanical response of materials along with their
microstructural evolution.

Phase field models found numerous applications in materials science during the last decades,
mainly to predict solidification dynamics [25]. The pioneering work of Khachaturyanet al. in the
framework of phase-field microelasticity [26] set a new dimension of phase field modeling and enabled
the development of phase field models to describe the elastic as well as the plastic deformation of
materials. One variation of the PF method is the multi phase field model (MPF), which can predict the
behavior of a system by incorporating an unlimited number of phase fields/physical quantities.

Some studies report how the phase field is coupled with isotropic plasticity [27] or CP [28] to
analyze the finite or infinitesimal strains in larger material volumes. Recent studies also show an
increasing trend towards discrete-dislocation-dynamics-based phase field models [29–36] to describe
plastic deformation, but such models can only be applied to smaller systems due to the associated
computational cost. The non-homogeneous deformation in the framework of phase field modeling
has, however, been addressed by only a few researchers, who employed strain-gradient CP coupled
with a phase field model like, for example, the work by Aldakheel on fracture analysis of metals [37].
Such an approach of coupling is very significant because it has paved the way to predict the response
of complex microstructures under various boundary conditions. It can simultaneously track the
microstructural evolution during material processing and the non-homogeneous deformation resulting
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from the external boundary conditions, which leads to the description of the mechanical properties of
materials on the basis of their process history.

In our work, we present a dislocation-based strain-gradient CP coupled with the MPF model.
One prominent advantage of the proposed framework is its capability to capture not only the material
process history by tracking the evolution of the microstructure but to assess at the same time the
dislocation structures to the level of finite strains as a result of plastic deformation.

The outline of this study is as follows. The second section comprises the model description
including the MPF, deformation kinematics, and strain-gradient CP. The third section illustrates the
simulation setup including the boundary conditions and the employed parameters. The fourth section
presents and discusses the evolution of dislocation densities, the resulting flow stress and the governing
mechanisms for the grain size effect. The fifth section discusses the results.

2. Model

The model used for our analysis consists of a MPF model as described in the Section 2.1. It involves
the contribution of the elastic energy which is explained in the Section 2.2. This elastic energy is
calculated with the help of the plastic strain predicted by a strain-gradient CP model, which is
elaborated in the Section 2.3.

2.1. The Multi Phase Field Model

The MPF model followed in our work is the one developed by [38]. It can describe the
microstructural evolution under the influence of different internal or external stimuli because of
its strong interface tracking capability. It allows us not only to study a system with multiple
components/phase fields including thermodynamic phases, chemical elements, number of grains,
crystal orientations, and morphology, but also to address multi-physical phenomena simultaneously.
A basic constraint, however, is that the summation of the magnitudes of all the individual phase fields
fα and fβ should be equal to 1 in the respective bulks of the phases whereas the sum of the magnitudes
of all the phase fields should be equal to the unity inside the interfacial region. Hence the value of
each phase field φα varies as 0 6 φα 6 1 while traversing from the bulk of one phase field to the other
phase field and given as

N

∑
α=1

φα(x) = 1. (1)

The evolution of the phase fields/microstructure is driven by the minimization of the total energy
of the system. Therefore, an energy function is defined that can take into account all the energy
densities of interest. It usually includes, but is not limited to, the energy contributions of the chemical,
interfacial, and elastic aspects that lead to the evolution of a system. A general equation to describe the
total energy content of a system is as follows

F =
∫

Ω
( f int + f el). (2)

Here, F is defined as the energy functional to describe the state of the system, f int is the interfacial
energy density, and f el is the elastic energy density. These quantities are integrated via the size of the
domain Ω.

f int =
N

∑
α=1,β>α

8σαβ

η

[
− η2

π2 (∇φα · ∇φβ) + φαφβ

]
. (3)

The interfacial energy density takes into account the interfacial thickness η and the energy σαβ

of the interface between the α and β phase/grain, which may be taken as isotropic or anisotropic.
The interfacial width is chosen in such a way that it forms a diffused and stable interface during the
evolution. The field variables or material properties at diffuse interfaces are evaluated by taking their
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linearly weighted average, more detail is provided in [39]. The elastic energy density is assumed to be
a function of the elastic stiffness Cα, total strain εα, eigenstrain (which is a stress-free strain) ε∗α, and

plastic strain ε
(p)
α produced in each phase field φα as given below

f el =
1
2

N

∑
α=1

φα

[
εα − ε∗α − ε

(p)
α

]
Cα

[
εα − ε∗α − ε

(p)
α

]
, (4)

2.2. Elasticity

To describe finite strain, a generalized stress-strain relation is used:

σα = Cα : εel
α . (5)

In this equation Cα is the 4th order elastic stiffness tensor, σα is the 2nd Piola-Kirchhoff stress,
“:” represents double contraction in the form (aij):(bij) = ∑i ∑j aij bji and εel

α is the Lagrangian strain.
Now, as the stiffness tensor and the elastic strains are known for each phase field, the evaluation of the
driving force is simple. The continuum mechanical homogenization sets several rules and evaluates
effective values of mechanical properties with the help of phase fraction and the parameters related to
the phase. The resulting total strain ε should be weighted as the average of strains associated with a
phase field as

ε =
N

∑
α=1

φα

(
εel

α + ε∗α + ε
(p)
α

)
=

N

∑
α=1

C−1
α : σ +

N

∑
α=1

φαε∗α +
N

∑
α=1

φαε
(p)
α . (6)

2.3. Plasticity

Plastic deformation is described in terms of plastic shear rate γ̇s on a slip system s. It is calculated
by using a dislocation-based strain-gradient CP model, which is taken from [40]. In this model,
the plastic flow rule for a slip system is defined by Orowan’slaw. The shear strain rate of the slip
system s is associated with the velocity νs and the total dislocation density ρtotal, which is assumed to
be the mobile dislocations on the same slip system and given as follows

γ̇s = ρs
totalbνs, (7)

where b defines the magnitude of the Burgers vector. The dislocation slip velocity νs on the same slip
system s is defined as

νs = ν0

∣∣∣∣τs

τs
c

∣∣∣∣ 1
m

. (8)

Here, m describes the strain rate sensitivity of the material, and ν0 is the reference velocity of
the dislocations, τs is the resolved shear stress along the slip system s, and τs

c is its critical value to
start the dislocation slip, known as critical resolved shear stress (CRSS). It is defined through Taylor’s
hardening law as

τs
c = τ0 + c1Gb

√
ρs

total, (9)

where τ0 is the lattice friction stress/static yield stress, c1 is a geometrical factor, and G is the shear
modulus. ρs

total is a measure of the total dislocation content of the slip system s, in our study it consists
of SSD and GND, as follows

ρs
total = ρs

SSD + ρs
GND. (10)
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The magnitude of this total dislocation density in Equation (9) at the initial state is ρtotal(i) and
it is assumed as equivalent to the initial magnitude of ρs

SSD. The evolution of SSD is based on the
Kocks-Meckinglaw:

ρ̇s
SSD = (k1

√
ρs

SSD + ρs
GND − k2ρs

SSD

)
γ̇s. (11)

where k1 is a measure of storage of SSD, while k2 is the measure of annihilation of SSD. Plastic strain is
summation of the product of shear strain γ̇ and the symmetric part of the Schmidt tensor Ps for every
s slip system. Schmidt tensor is described through the direction vector of dislocation slip ds and the
vector of the slip plane normal ns. Thus, evolution of plastic strain is given by

ε̇(p) =
N

∑
s=1

γ̇sPs , Ps =
1
2
(ds ⊗ ns + ns ⊗ ds). (12)

The resulting plastic strain is then used in Equation (4) to determine the contribution of the
system’s elastic energy and to predict the concurrent microstructural evolution. The gradient of the
evolution of this plastic strain defines the evolution of the Nye’s dislocation tensor described by

Λ̇ = (−ejklε̇
(p)
il,k )

Tei⊗ej, (13)

where −ejkl is the third order permutation tensor(having a value of 1 with even permutation of the

indices, −1 with odd permutation order and 0 otherwise), ε̇
(p)
il,k defines the partial derivative of the

plastic strain rate with respect to the coordinate k, such that ejkl ε̇
(p)
il,k is the rotation of the plastic strain

rate, and ⊗ represents the diadic product between the Cartesian ei and ej unit vectors, which define
the components of the resulting tensor. The evolution of GND can now be described as follows

ρ̇s
GND =

1
b
(|dsΛ̇ls|+ |dsΛ̇ds|). (14)

Here, d and l refer to the slip direction vector and to the line direction vector used to evaluate
the edge (first term in this equation, l is normal to d) and screw components (second term, where l is
parallel to d) of GND. These vectors are given in Table 1 for each slip system.

Table 1. Crystallographic vectors.

Slip System Plane Normal Slip Direction Line Direction
s n d l

1 [111] [110] [112]
2 [111] [101] [121]
3 [111] [011] [211]
4 [111] [110] [112]
5 [111] [101] [121]
6 [111] [011] [211]
7 [111] [110] [112]
8 [111] [101] [121]
9 [111] [011] [211]
10 [111] [110] [112]
11 [111] [101] [121]
12 [111] [011] [211]

3. Simulation Setup

The dislocation-based strain-gradient CP model is implemented with an explicit integration
scheme into the open source phase field code OpenPhase [41]. The mechanical problems in this context
are solved by using the spectral elastic solver [28], which maintains the mechanical equilibrium on
the basis of the Saint-Venanthyperelastic material model [42]. This material model extends the typical
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linear elasticity to the nonlinear regime and relates the Lagrangian strain with the 2nd Piola-Kirchoff
stress. In the present study, we focus on the Face-Centred Cubic (FCC) system, and we consider the
dislocation glide on the crystallographic slip systems {111}〈110〉. Furthermore, we assume the total
dislocation density to be equivalent to SSD as well as to the mobile dislocation density at the start of the
simulations. The material parameters that we apply are mostly taken from the literature [20,40,43,44]
and are summarized in Table 2.

Table 2. Parameters used in this study.

Parameters Symbol Value Unit Ref.

Anisotropic elastic constant C11 108.2 GPa [43]
Anisotropic elastic constant C12 61.3 GPa [43]

Shear Modulus C44 = G 28.5 GPa [43]
Strain rate sensitivity m 0.025 -
Lattice friction stress τo 80 MPa

SSD storage parameter k1 2 × 109 - [40]
SSD annihilation parameter k2 10 - [40]

Initial total dislocation density ρtotal(i) 1 × 1013 m−2

Geometrical factor for flow stress c1 0.3 - [20,44]
Referential dislocation velocity ν0 1 × 10−3 ms−1

Interfacial energy σαβ 0.24 Jm−2 [28]
Spacediscretization ∆x 0.1 µm
Timediscretization ∆t 1 µs
Interfacial width η 4.5 ∆x

Domain size Ω 128 × 128 ∆x
Length of Burger’s vector b 0.286 nm

To perform micromechanical simulations, quasi-2D periodic Representative Volume Elements
(RVE) consisting of 64 grains with a regular hexagonal shape, are generated with the general Voronoi
tessellation by embedding the tessellation module of the Voro++ library [45] into OpenPhase. For the
sake of computational efficiency, the number of grains has been kept 64 with a honeycomb structure
consisting of eight rows and eight columns. The number of grains is reasonable to obtain good statistics
for this study. Furthermore, a similar honeycomb structure with similar random crystallographic
orientation sets is used for all RVEs to avoid any unwanted influences, which can affect simulation
results. Four RVEs with grain diameters of 16, 1.6, 0.8 and 0.4 µm are created to investigate the
influence of the grain size on the mechanical response of the material. To exclude the influence of
texture on the deformation behavior, similar sets of random crystallographic orientations are assigned
to all RVEs, resulting into a microstructural texture index value close to 1, this index is a measure of
the randomness of crystal orientations and the value 1 refers to completely random orientations i.e.,
absence of any texture. The geometry of an RVE used in this study is shown in Figure 1a. The color
of each grain corresponds to the color code of the Inverse Pole Figure (IPF), usually evaluated by an
Electron Backscatter Diffraction (EBSD) analysis, and black arrows denote the loading direction.

To solve the phase field evolution, interfaces between the crystals/grains are diffused for obtaining
a certain interfacial thickness η. The interfacial energy σαβ is assumed to be isotropic in order to prevail
any effect of interfacial anisotropy and subsequent influence on the grain size effect. The periodic
boundary conditions are applied to all of the phase fields along the regular computational grid. Same
boundary condition is applied in the thickness direction of RVE. Isothermal and uniaxial tensile strain
is applied at room temperature as loading condition with a constant strain rate of 0.1 s−1 to produce a
total deformation of 5%. Grain growth is restricted by assuming very low interfacial mobility.

|ε(p)| =
√(

ε2
1 + ε2

2 + ε2
3 +

1
2

ε2
4 +

1
2

ε2
5 +

1
2

ε2
6

)
(15)
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The flow stress is homogenized by taking the volume average of the von Mises equivalent stress
σvM, whereas the equivalent plastic strain ε(p) is calculated by the Frobenius norm [46] as given in
Equation (15), in which ε1, ε2, ε3 represent the normal strains and ε4, ε5, ε6 represent the shear strains
of the strain tensor in Voigt notation. Yield strength is calculated by taking an offset of the elastic part
of the stress-strain curves at 0.2% of the total strain as shown in Figure 1b.

Figure 1. (a) Orientation distribution, (b) flow stress for a polycrystal with grain diameter of 0.4 µm
and an offset of 0.2% of global plastic strain to define the onset of plastic yielding

The distribution of equivalent stress and strain in the RVEs with a grain diameter of 0.4 µm,
corresponding to the green colored arrow pointing to the yield point in Figure 1b, is shown in Figure 2a
and Figure 2b, respectively. Because this stage of deformation appears at the onset of plasticity,
a certain degree of shear band is observable, and the stress concentration along grain boundaries is
not pronounced. The global values of dislocation densities ρtotal, ρSSD and ρGND are evaluated by
taking the volume average of the local quantities. Each simulation is run using OpenMP algorithm.
The simulations of RVEs with the grain size of 16 µm are run on 8 cores and have taken approximately
18 h. Other simulations of RVEs with grain sizes of 1.6, 0.8, and 0.4 µm, are run on 16 cores and have
taken roughly 7, 14.5, and 27 h respectively.

Figure 2. Distribution of (a) equivalent stress and (b) equivalent plastic strain corresponding to the
onset of plastic deformation, which is defined here by a global plastic strain of 0.2%.

4. Results and Discussion

In order to investigate the influence of the grain size, first of all we evaluated the distributions
of ρGND, ρSSD and ρtotal in all RVEs at 5% total strain, and then we applied the volume averaged
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homogenization scheme to investigate the evolution of these quantities with respect to the plastic
deformation. After that, we also analyzed the global flow stress σvM, ρGND, ρSSD and ρtotal from all
RVEs at the onset of plasticity and at the total strain of 5.0%. Finally, the sensitivity of the selected
material parameters is studied and reported.

4.1. Effect of the Grain Size on the Distribution of Dislocation Density

Figure 3 shows the distribution of ρGND in all RVEs at a global plastic strain of 5%. Comparing
to RVEs with a smaller grain diameter, the distribution of ρGND in the RVE in Figure 3d with a grain
diameter of 16 µm is rather small and negligible. By decreasing the grain diameter, ρGND increases
and tends to concentrate along the grain boundaries. Such observed concentration of ρGND along the
grain boundaries is consistent with the large strain gradients in these regions of strain incompatibility
between neighboring grains.

Figure 3. Distribution of geometrically necessary dislocation density ρGND in the deformed RVEs with
a grain diameter D of (a) 16 µm (b) 1.6 µm (c) 0.8 µm (d) 0.4 µm at a global plastic strain of 5%.

With respect to the modified form of the Kocks-Mecking law (Equation (11)), the evolution of SSD
ρ̇s

SSD depends directly upon the ρs
GND. Therefore, the distribution of the ρSSD in all RVEs as illustrated

in Figure 4, shows that ρSSD also increases with decreasing grain size. However, comparing to Figure 3,
the effect of the grain size is much less prominent. As the plastic deformation progresses, storage and
annihilation of SSD compete with each other to maintain a state of dynamic equilibrium. In addition,
the ρSSD distribution in all deformed RVEs shows patterns similar to those of the distribution of the
equivalent plastic strain as shown in Figure 2, which represents, however, the local plastic strain at a
global value of 0.2%.
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Figure 4. Distribution of statistically stored dislocation density ρSSD in the deformed RVEs with the
grain diameter D of (a) 16 µm (b) 1.6 µm (c) 0.8 µm (d) 0.4 µm at a global plastic strain of 5%.

The total dislocation density distribution in the deformed RVEs at a stage of 5% total strain is
shown in Figure 5. Because ρGND is much smaller than ρSSD, the pattern of the distribution of ρtotal
for the RVE with a large grain diameter of 16 µm in Figure 5a is similar to the ρSSD distribution in the
same RVE, as shown in Figure 4a. By decreasing the grain diameter, the pattern of the total dislocation
density distribution exhibits an equivalent combination of ρSSD and ρGND distributions, where both
shear bands and localized dislocation density can be observed at grain boundaries.

Figure 5. Distribution of total dislocation density ρtotal in the deformed RVEs with a grain diameter D
of (a) 16 µm (b) 1.6 µm (c) 0.8 µm (d) 0.4 µm at a global plastic strain of 5%.
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To investigate the contribution of grain size on the evolution of dislocation densities and on the
hardening behavior of the material, global dislocation densities ρGND, ρSSD, ρtotal and flow stress σvM

have been plotted versus the total strain in Figure 6. From these curves, all dislocation densities start
to increase sharply after a total strain of approximately 0.3%.

Figure 6. Effect of grain size on the evolution of the global (a) geometrically necessary dislocation
density, (b) statistically stored dislocation density, (c) total dislocation density, (d) flow stress.

In the next step, the influence of grain size on dislocation densities and on the yield stress has
been investigated at the onset of plasticity. Firstly, the yield stress measures taken at an offset of 0.2%
and 0.5% strain are plotted against the inverse square root of the grain diameter as shown in Figure 7a.
The fitted trend lines indicate that the yield stress increased linearly with respect to the inverse square
root of the grain diameter and hence followed the Hall-Petch relationship.

To understand the contribution of dislocation densities on grain boundary strengthening, the ρSSD
and ρGND at a total strain of 0.5% and 5% are evaluated from all of the RVEs and plotted against the
inverse square root of the grain diameter as shown in Figure 7b. Comparing the global plastic strains
of 5.0% with 0.5%, ρSSD and ρGND rose in all simulations. The strain gradient or grain size affected
the global ρSSD negligibly at the small plastic strain, but the effect got prominent at the higher plastic
strain, which is indicated by a small increase in the slope of the linear regression i.e., solid red line.
To understand this observation, we refer to the evolution of SSD (ρ̇SSD) given in Equation (11), which
involves GND (ρGND). For the case of ρGND, the influence of the grain size is strong at smaller plastic
strain and stronger at larger plastic strain.
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The value of the Hall-Petch coefficient evaluated at 0.2% offset is 0.004 MPa m1/2, which is
much lower as compared to the experimental findings reported in [5,9]. It is commonly observed
in experiments [5,7,10] that a decrease in grain size leads to an increase in initial yield strength.
This behavior is not captured by our modelbecause our formulation follows the Nix/Gao-type
theory as explained in [47], which describes a prominent change in hardening rate with decreasing
microstructural length scale, while the influence of the length scale on initial yield stress is negligible.
A similar observation can be made in Figure 6d, in which hardening rate increases but the initial
yield stress does not increase significantly with decreasing grain size. In other work [13], it has
been explained in terms of dislocation density concentration in the vicinity of grain boundaries.
El-Awady [48] has discussed rigorously the dependence of initial yielding and initial dislocation
density on grain size. However, the strain gradient plasticity models, which are based on the classical
Kocks-Mecking dislocation evolution law, are not able to capture this behavior without the introduction
of suitable prior adjustments. Cheong et al. [8] have employed a grain size dependent initial SSD for
different RVEs and [49] have assumed specific storage of GND at grain boundaries prior to plastic
deformation and found a dependency of yielding stress on grain size with an exponent of −1.5. Our
results follow qualitatively the trends of flow curves reported by [6]. One observation shows that
the value of Hall-Petch coefficient increases slightly with progressing plastic deformation, which is
consistent with the experimental results reported by [8,10,50]. suggestions

Figure 7. (a) Hall-Petch coefficient calculated at an offset of 0.2% and 0.5% of total strain, (b) evolution
of ρSSD and ρGND at 0.5% and 5% of total strain with variation in grain size.

The governing mechanism of strengthening does not only depend on the stored dislocations but
also on their annihilation. Therefore, the next section of this work aims at investigating the influence
of material parameters that control the initial state and influence of evolution of dislocation densities
on the deformation mechanism.

4.2. Averaged Stress and Dislocation Density Under the Influence of Model Parameters

Firstly, we have studied the influence of the initial total dislocation density ρtotal(i) on the grain
size effect. The value of the initial total dislocation density is varied from 1012 to 1015 m−2, whereas
other parameters are set according to Table 2. The higher value of initial total dislocation density
corresponds to an unannealed material configuration whereas lower initial dislocation density mimics
an annealed microstructure. We have plotted the evolution of ρGND, ρSSD, ρtotal, and flow stress σvM

versus the total strain resulting from the simulations as shown in Figure 8.
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Figure 8. Effect of variation of initial total dislocation density on the global (a) geometrically necessary
dislocation density, (b) statistically stored dislocation density, and (c) total dislocation density (d)
flow stress.

Since ρtotal(i) is assumed to be equivalent to ρSSD, an increase in ρtotal(i) results in an increasing
ρSSD, but it does not lead to any significant change in ρGND. Furthermore, a larger value of ρtotal(i)
suppresses minimally the influence of grain size on the evolution of ρSSD. This results into an increase
of yield stress for all RVEs, but the effect of the grain size on the hardening behavior diminishes as
shown in Figure 8d. This can be correlated to the experimental results from [10], that the grain size
effect resulting from plastic deformation of unannealed (higher initial dislocation density) materials is
weaker as compared to that resulting from plastic deformation of annealed specimens (lower initial
dislocation density).

Secondly, to investigate the influence of SSD storage parameter k1, we have compared simulations
using parameters from Table 2 with simulations with k1 of 4 × 109 and 9 × 109, and the results are
shown in Figure 9. In general, a larger value of k1 elevates the evolution of ρSSD significantly but
suppresses the evolution of ρGND. Consequently, by increasing k1, ρtotal increases non-linearly and
results into a more pronounced hardening behavior. However, because the contribution of ρGND is
suppressed, the influence of the grain size on the hardening behavior is minimized.
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Figure 9. Influence of variation of SSD storage on the global (a) geometrically necessary dislocation
density, (b) statistically stored dislocation density, (c) total dislocation density, (d) flow stress.

Thirdly, the effect of SSD annihilation parameter k2 on the evolution of global dislocation densities
and flow stress is evaluated as plotted in Figure 10. We have increased the magnitude of k2 to 30 and
50. With a lower value of k2, lesser SSD annihilate so the rate of storage of ρSSD is higher. The opposite
of this happens with a larger k2, which also promotes the influence of the grain size on ρGND by
increasing the rate of storage of ρGND as observable in Figure 10a. This effect is, however, of minor
importance and it also results into an increase of ρtotal, but at a lower rate with increasing the total
strain. As a consequence, a weaker strain hardening behavior is observed but because of the higher
storage of the ρGND, the influence of the grain size is enhanced.

Finally, the evolution of the global dislocation densities is investigated with respect to a change in
the grain size at two particular strain levels with two different SSD annihilation parameters. From the
global dislocation densities at 0.5% of the total strain i.e., at the onset of plasticity as shown in Figure 11a,
ρGND becomes larger and surpasses ρSSD, The ρSSD does not increase significantly with a decreasing
grain size at this strain. This means that the contribution of GND to the onset of plasticity is higher
and overcomes SSD at smaller grain sizes. k2 does not, however, affect the evolution of the dislocation
densities because the material is still at the early stage of deformation. It is also clear that the chosen
values 10 and 50 of k2 have a negligible effect on the behavior of dislocation densities. For the case
of a larger plastic strain of 5.0% as plotted in Figure 11b, the effect of k2 is much more significant.
With the relatively lower k2 of10, annihilation is not pronounced and resulted in an increase of the
ρSSD. At 5.0% of plastic strain, ρGND does not exceed ρSSD. However, by increasing the value of k2 to
50, the evolution of SSD is more suppressed, therefore ρSSD becomes smaller than ρGND at a smaller
grain size. This demonstrates that at a larger applied total strain, the dominating type of dislocations
during plasticdeformation strongly depended on the values of of k1 and k2.
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Figure 10. Effect of variation of dislocation annihilation on the global (a) geometrically necessary
dislocation density, (b) statistically stored dislocation density, (c) total dislocation density, (d) flow stress.

Figure 11. Effect of dislocation annihilation on ρSSD and ρGND at (a) 0.5% plastic strain and (b) 5%
plastic strain.

5. Conclusions

In this work, we have implemented dislocation based strain-gradient crystal plasticity into a
multi-phase-field framework and investigated the grain size effect together with the contribution
of statistically stored dislocation density (SSD) and geometrically necessary dislocation density
(GND). Thus, this model is able to predict the behavior of materials in response to applied
mechanical loads and describe the changes in mechanical behavior in relation to dislocation densities.
The strain-gradient-based nature of the model allows us to analyze the influence of grain size on the
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strength of a polycrystal. The results are obtained through a series of quasi-2D simulations under
different conditions imposed on RVEs with different grain sizes, and the results correlate with the
literature. In summary, we can conclude that:

• Our work shows that by applying a dislocation-based strain gradient crystal plasticity model,
we can capture many aspects of grain boundary strengthening as it is observed in experiments.
This conforms to the Hall-Petch model in which the introduction of special properties for grain
boundaries is not necessary.

• The model introduced in our work is capable of recapturing the Hall-Petch relation with an
exponent of −0.5 for the grain size dependence. Furthermore our model is consistent with the
experimental observations of the evolution of the Hall-Petch coefficient with progressing plastic
deformation and the initial state of the material with respect to dislocation density.

• The value of the Hall-Petch coefficient predicted by our model is significantly smaller than those
observed through experiments and the strain gradient plasticity is unable to explain the grain
boundary strengthening at the onset of plastic yielding. This has been discussed in light of
the initial state of the material in particular with respect to the initial GND density prior to
mechanical testing.
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Nomenclature

CP Crystal plasticity
MPF Multi phase field
GND Geometrically necessary dislocations
SSD Statistically stored dislocations
RVE Representative volume element
τs Resolved shear stress on s slip system
τs

c Critical resolved shear stress on s slip system
νs Dislocation velocity on s slip system
ν0 Initial dislocation velocity
ε(p) Equivalent plastic strain
γ̇ Shear strain rate
c1 Geometrical constant
G Shear modulus
s Arbitrary slip system
Ω Domain/system size
φ Order parameter/phase field parameter
α Arbitrary name for a phase phase/grain
F Total free energy of the system
f int Interfacial free energy
f el Elastic or mechanical free energy
N Total number of slip systems or phases
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η Interfacial width
ρtotal Density of dislocations
ρSSD Density of SSD
ρGND Density of GND
k1 SSD storage parameter
k2 SSD annihilation parameter
m Strain rate sensitivity parameter
σαβ Interfacial energy between arbitrary phase or grain α and β

Ps Symmetric part of Schmidt tensor on slip system s
σvM von Mises equivalent stress
ε Total strain tensor
εel Elastic strain tensor
ε∗ Eigen strain tensor
ε(p) Plastic strain tensor
σij Stress tensor
Λ Nye’s dislocation tensor
C Stiffness tensor
F Deformation gradient
b Burgers vector
d Slip direction vector
l Slip plane tangent vector
n Slip plane normal vector
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