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Abstract: In this study, simultaneous adsorption of cationic dyes was investigated by using binary
component solutions. Thiourea-modified poly(acrylonitrile-co-acrylic acid) (TMPAA) polymer was
used as an adsorbent for uptake of cationic dyes (malachite green, MG and methylene blue, MB)
from aqueous solution in a binary system. Adsorption tests revealed that TMPAA presented high
adsorption of MG and MB at higher pH and higher dye concentrations. It suggested that there are
strong electrostatic attractions between the surface functional groups of the adsorbent and cationic
dyes. The equilibrium analyses explain that both extended Langmuir and extended models are suitable
for the description of adsorption data in the binary system. An antagonistic effect was found, probably
due to triangular (MG) and linear (MB) molecular structures that mutually hinder the adsorption of
both dyes on TMPAA. Besides, the kinetic studies for sorption of MG and MB dyes onto adsorbent
were better represented by a pseudo-second-order model, which demonstrates chemisorption between
the polymeric TMPAA adsorbent and dye molecules. According to experimental findings, TMPAA is
an attractive adsorbent for treatment of wastewater containing multiple cationic dyes.

Keywords: adsorption; poly(acrylonitrile-co-acrylic acid); thiourea; cationic dyes; binary system;
isotherms; kinetics

1. Introduction

Rapid growth in population and industrial activities have ensued in accumulation of pollutants
in the environment due to their waste disposal without any treatment [1,2]. It is reported that
about 1.2 trillion tons of non-treated industrial wastewater and storm water are discharged into the
environment per annum [3,4]. Industries such as paint, textile, paper, rubber, leather, petroleum,
pharmaceutical, and food are major contributors, enhancing the concentration of contaminant present
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in wastewater [5–8]. Over 100,000 synthetic dyes—cationic, anionic and dispersive—have been
broadly used in the aforementioned industries generating volumes of wastewater annually. They are
by design highly stable molecules not easy to biodegrade, made to resist degradation by chemical,
biological, and light exposure, as well as their multifarious chemical structure [9]. These pose a big
challenge and are harmful to ecological and environmental systems-reducing light penetration and
photosynthesis [10,11]. Under anaerobic conditions, some cationic dye-bearing wastewater breaks
down into hazardous aromatic amines, causing critical health problems to animals and humans [12].
Treatment of industrial wastewater especially dye bearing wastewater in order to meet stringent
discharge regulations in industrial operations is a major concern globally.

Various developed technologies are available for isolation of dye ions present in wastewater such
as anaerobic decomposition, membrane separation, precipitation, electrocoagulation, and flocculation.
Photo-oxidation and biological degradation has also been proposed and cited for the treatment of
color containing effluents. Conversely, this method is relatively expensive and complex. Alternatively,
adsorption remains the most common and efficient decontamination technology for dye bearing
industrial effluents [13–15]. Many researches have been made on the possibility of adsorbents using
mineral sorbents, activated carbon, peat, chitin, rice husk, soy meal hull, and other agricultural wastes.
The sorption capacity of these adsorbents is not very effective to improve adsorption performance [16].
Preparation of new polymer-based adsorbents with functional groups that have significant effects
on the efficiency, selectivity, and reusability is of utmost concern for researchers, due to the germane
role of the adsorbent in adsorption technique. Several chelating resins have been prepared through
grafting of monomers onto natural or synthetic polymer matrix and conventional polymerization of the
monomers such as acrylonitrile (AN), acrylic acid (AA), methacrylic acid (MA), and divinylbenzene
(DVB-80) [17]. Furthermore, chemical modification of a synthesized polymer milieu by a chelating
moiety such as amine, thiourea, and amino-acids has also been used to produce new/modified polymeric
adsorbents [15,16,18,19]. In such studies, the carboxyl and amine groups have been established to be two
most effective functional groups for removal of organic and inorganic pollutants from aqueous solutions.

Moreover, previous researches on dye adsorption were carried out explicitly in single dye
systems and scanty study reports were available in binary dye systems. Our previous work reports
in detail preparation and characterization of thiourea-modified poly(acrylonitrile-co-acrylic acid)
(TMPAA) and its adsorption capacities towards MG and MB in a single dye system [20–22]. Generally,
multiple components of dyes coexist in real industrial wastewater systems. This multiplicity in actual
applications may affect the dye adsorption process either in antagonistic or synergistic manner [23,24].
Therefore, it is imperative to investigate adsorption of dye both in single and multiple dye systems.
Herein, this study aims to assess TMPAA applicability for the adsorptive removal of cationic dyes
from aqueous solution in binary systems. Binary adsorption isotherms and kinetics of MG and MB
uptake by TMPAA polymer were also investigated.

2. Materials and Methods

2.1. Chemicals and Reagents

All chemical reagents purchased were analytical grade, used without further purification except
acrylonitrile (AN) and acrylic acid (AA) (Acros Organics, Morris, NJ, USA) purified by aluminium
oxide (Merck, Darmstadt, Germany) with glass wool. Potassium persulphate (KPS) and sodium
bisulphate (SBS) (R&M Chemicals, Essex, UK) were used as initiators for free radical polymerization.
Methanol and ethanol were purchased from Systerm ChemAR (Shah Alam, Malaysia). Thiourea
(R&M Chemicals, Essex, UK) was used to modify the synthesized copolymer. Hydrochloric acid
and sodium hydroxide (R&M Chemicals, Essex, UK) were used for the pH adjustment. The two
cationic dyes, malachite green (MG) and methylene blue (MB) purchased from Acros Organics, NJ,
USA, were used as adsorbate. Their general properties and structures are shown in Table 1 and
Figure 1, respectively.
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Figure 1. Molecular structures of (a) malachite green and (b) methylene blue. 

Table 1. General properties of cationic MG and MB dyes. 
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λ max (nm) 617 665 
Molecular Weight (g/mol) 364.92 319.85 

Charge (+) (+) 
Chemical Formula C23H25ClN2 C16H18ClN3S 
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water was initially purged with N2 gas for 30 min at 40 °C. Then, AN and AA were introduced into 
the reaction medium followed by KPS and SBS (as initiator). The solution was stirred mechanically 
at 200 rpm, and the reaction was allowed for 120 min. The produced copolymer (poly(AN-co-AA)) 
was soaked in methanol, filtered, and washed successively with methanol and deionized water. The 
copolymer was oven dried at 45 °C until a constant mass white powder. 

For surface functionalization, 6.0 g of thiourea and ethanol/deionized water (1:2% volume) were 
mixed and stirred continuously at 200 rpm for 0.5 h at 70 °C. Then, 5.0 g of poly(AN-co-AA) was 
added to the solution for 5 h at 100 °C. Then, the resulting solids, thiourea-modified poly(AN-co-AA) 
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controlled at 25 °C, and 100 rpm agitation speed. The other set of experiments was carried out at 
constant MG concentrations (20 and 100 mg/L) while MB was varied from 20 to 100 mg/L. TMPAA 
at 0.5 g was mixed with the dye solutions and kept at 100 rpm, 25 °C. The solutions were withdrawn 
at several time intervals, filtered for dye concentration measurement. The absorbance was measured 
at two wavelengths of 617 and 665 nm by a Lambda 35 UV-Vis spectrophotometer. The following 
equations were used to determine the dye concentrations [25,26]. 
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Figure 1. Molecular structures of (a) malachite green and (b) methylene blue.

Table 1. General properties of cationic MG and MB dyes.

Name of the Commercial Dye Malachite Green, MG Methylene Blue, MB

Colour Index Name Basic Green 4 Basic Blue 9
λ max (nm) 617 665

Molecular Weight (g/mol) 364.92 319.85
Charge (+) (+)

Chemical Formula C23H25ClN2 C16H18ClN3S

2.2. Preparation of Thiourea-Modified Poly(acrylonitrile-co-acrylic acid)(TMPAA)

Poly(acrylonitrile-co-acrylic acid) was synthesized and modified according to previous work [21].
The feed ratio of monomers AN:AA was 97:3 (vol/vol). The reaction medium, 200 mL deionized
water was initially purged with N2 gas for 30 min at 40 ◦C. Then, AN and AA were introduced into
the reaction medium followed by KPS and SBS (as initiator). The solution was stirred mechanically
at 200 rpm, and the reaction was allowed for 120 min. The produced copolymer (poly(AN-co-AA))
was soaked in methanol, filtered, and washed successively with methanol and deionized water. The
copolymer was oven dried at 45 ◦C until a constant mass white powder.

For surface functionalization, 6.0 g of thiourea and ethanol/deionized water (1:2% volume) were
mixed and stirred continuously at 200 rpm for 0.5 h at 70 ◦C. Then, 5.0 g of poly(AN-co-AA) was added
to the solution for 5 h at 100 ◦C. Then, the resulting solids, thiourea-modified poly(AN-co-AA) (TMPAA),
rinsed liberally in ethanol/deionized water solution, filtered, and dried at 50 ◦C to constant mass.

2.3. Binary Adsorption Studies

Adsorptive tests of MG and MB cationic dyes on TMPAA in binary systems were performed in a
batch mode. 100 mL solutions of dyes (50 mL of MG and 50 mL of MB) were prepared with one dye at
a fixed concentration and the other at varying concentrations. One set of tests were performed at fixed
MB concentration of 20 mg/L and second set at 100 mg/L of MB, while various MG concentrations at
20–100 mg/L. Under constant stirring speed of 100 rpm, the solutions were controlled at 25 ◦C, and
100 rpm agitation speed. The other set of experiments was carried out at constant MG concentrations
(20 and 100 mg/L) while MB was varied from 20 to 100 mg/L. TMPAA at 0.5 g was mixed with the dye
solutions and kept at 100 rpm, 25 ◦C. The solutions were withdrawn at several time intervals, filtered
for dye concentration measurement. The absorbance was measured at two wavelengths of 617 and
665 nm by a Lambda 35 UV-Vis spectrophotometer. The following equations were used to determine
the dye concentrations [25,26].

CMG =
(KMB2A1) − (KMB1A2)

(KMG1KMB2) − (KMG2KMB1)
(1)

CMB =
(KMG1A2) − (KMG2A1)

(KMG1KMB2) − (KMG2KMB1)
(2)
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Where KMG1 and KMB1 represent the calibration constants for dyes MG and MB at λ1,max while
KMG2 and KMB2 represent the calibration constants for dyes MG and MB at λ2,max. A1 and A2 are the
absorbance at wavelength λ1,max and λ2,max, respectively.

The calculation of the extent of dye uptake, R(%), and adsorbent sorption capacity at equilibrium
(qe) condition can be expressed as:

%R =
Co −Ce

Co
× 100 (3)

qe = V
Co −Ce

mads
(4)

Co (mg/L) and Ce (mg/L) are the concentrations of the cationic dye at initial and equilibrium
respectively; qe (mg/g) is the amount of dye adsorbed, V (L) is the volume of the dye solution and mads
(g) the weight of the TMPAA adsorbent used. All the experimental tests were performed thrice and the
average value recorded.

2.4. Calculation of Adsorption Isotherms

The single adsorption isotherms were calculated using the Langmuir and Freundlich models.
The Langmuir isotherm and Freundlich isotherm equations can be expressed linearly and respectively
as [27–29]:

Ce

qe
=

1
KL qmax

+
Ce

qmax
(5)

ln (qe) = ln (KF) +
1
n

ln (Ce) (6)

qmax (mg/g) is the Langmuir maximum adsorption capacity. KL and KF represent respectively Langmuir
and Freundlich constants, and the heterogeneity factor is denoted by n.

The single component isotherm equations are extended and/or modified to investigate the
interactions between the adsorption capacity of a component and the concentration of other components
present in wastewater. The extended Langmuir model (also known as non-modified competitive
Langmuir isotherm) for binary systems can be written as [30]

qe,1 =
qmax,1 KL,1 Ce,1

1 + KL,1 Ce.1 + KL,2 Ce,2
(7)

qe,2 =
qmax,2 KL,2 Ce,2

1 + KL,1 Ce.1 + KL,2 Ce,2
(8)

The parameters qmax,1, KL,1, and KL,2 were evaluated for a series of experimental values of qe,1 and
Ce,1 by minimizing the error in non-linear regression analysis or applying solver function of non-linear
regression in Microsoft Excel [31].

The extended Freundlich model is applied to multilayer heterogeneous adsorption systems when
the interaction is occurring among the adsorbed components [31,32]. The extended Freundlich equation
for a binary system is expressed as

qe,1 =
KF,1 C

( 1
n1

) + x1

e,1

Cx1
e,1 + y1 Cz1

e,2

(9)

qe,2 =
KF,2 C

( 1
n2

) + x2

e,2

Cx2
e,2 + y2 Cz2

e,1

(10)

qe,1 and qe,2 are the equilibrium adsorption capacity for solute 1 and 2 (mg/g), respectively. Ce,1 and
Ce,2 represent the equilibrium concentration of component 1 and 2 (mg/L), respectively. The values of
adsorption intensities n1, n2 and Freundlich constant KF,1 and KF,2 are obtained from the experimental
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data of individual Freundlich models. The values of constants x1, y1, z1 and x2, y2, z2 were obtained by
minimizing error in non-linear regression analysis for a series of experimental values of qe,1 versus Ce,1

and qe,2 versus Ce,2 respectively [30,33].

2.5. Competition and Interaction Mechanism

Three distinct forms of interactions are feasible between the adsorbate molecules in a
multicomponent adsorption system. Interaction effects are described based on the ratio of adsorption
capacity of an adsorbent (Qm) in a multicomponent solution to the sorption capacity of contaminant
(Qi) in a single component solution. The possible interactions among the adsorbate molecules are:

(a) Antagonistic interaction: This occurred when the adsorption capacity of an adsorbent reduces in a
solution containing other components (Qm/Qi < 1).

(b) Synergistic interaction: The adsorption capacity of an adsorbent increases when it is in association
with other components (Qm/Qi > 1).

(c) Non-interaction: The adsorption capacity is independent of the absence or presence of other
components in a solution (Qm/Qi = 1) [34,35].

Several principles and methods are employed to explain the interaction between the species in a
binary adsorption system. These terms further describe how a component inhibits the adsorption of
other components in the multi-component solution.

P-Factor: The P-factor model is a correlative technique developed by McKay and Al Duri (1987)
and used to compare the monocomponent isotherm data with the binary isotherm data. The P-factor
(P f i) elucidates how the adsorption of a component is inhibited by other components in a binary
mixture. It is given as:

P f i =
Qi,s

Qi,b
(11)

Qi,s and Qi,b represent the sorbent capacity for the component i in the single component solution
and the binary system. P f i value defined the nature of the interaction (inhibition, enhancement, or
non-interference) between the two components. The value of P f i = 1 signifies unhindered interaction,
P f i > 1 demonstrates that the adsorption of component i is inhibited in the presence of other solutes,
while adsorption of component i enhanced at P f i < 1 [36–38].

Inhibitory Effect: In a multicomponent adsorption system, entrapment of an adsorbate may be
influenced by another and is delineated by inhibitory effect (∆IE) given as

∆IE =
Qi,s − Qi,b

Qi,s
(12)

The greater value of ∆IE indicates the suppression level of adsorption of one solute in the presence
of another [37,39,40].

Selectivity Ratio: The affinity of an adsorbent towards a particular component in a binary system is
indicated by selectivity ratio (S(i/ j)). Based on the morphology, surface structure, and pore distribution
of an adsorbent, selectivity ratio investigates the adsorbent preference towards one solute in the
presence of another [40–42]. The selectivity ratio is defined as

S(i/ j) =
Qi,b

Q j,b
=

Qi,s

Q j,s
(13)

Where Qi,b and Qi,s represent the adsorption capacity of the component i in the binary and single
component solution. The value of S(i/ j) being less than one implies that the adsorbent has more affinity
towards component j than the component i [37].
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2.6. Calculation of Adsorption Kinetics

In order to comprehend the nature and process of adsorption, pseudo-first-order and
pseudo-second-order kinetic models were employed. The integral linear form of the Lagergren
pseudo-first-order and Ho pseudo-second-order models can be expressed as: [43,44]

ln (qe − qt) = ln (qe) − k1 t (14)

t
qt

=
1

k2 q2
e
+

1
qe

t (15)

qe(mg/g), qt(mg/g) are respectively represent adsorption capacity at equilibrium and at time t. k1 (min.-1),
and k2(g/mg min.) are the rate constants for pseudo first-order and pseudo-second-order, respectively.

3. Results and Discussions

3.1. Characterization of TMPAA

Detail of the physical and chemical properties of TMPAA has been reported previously [21].
Presence of functional groups, OH and NH2 (3345 cm−1), -C-H (2935 cm-1), -C=O (1728 cm−1), and -C=S
(729 cm−1), was revealed by FTIR spectrum. TMPAA was spherical with rough surface area as observed
by SEM image. The adsorption isotherm of N2/77 K of the modified polymer corresponds to type
IV and displayed the existence of narrow hysteresis loop. Mesoporous features of the TMPAA were
confirmed by its BET surface area and pore size of 26.31 m2/g and 47.93 nm, respectively. The surface
charge measurement was negative in both acidic and alkaline media.

3.2. Effect of Initial Dye Concentration and pH

Figure 2 shows the influence of different initial MG dye concentrations on the extent (%) of
removal of MG by TMPAA while keeping the concentration of MB at 20 mg/L (Figure 2a) and 100 mg/L
(Figure 2b), respectively. Simultaneously, the effect of the solution pH was investigated by adjusting
the adsorption systems to pH 3, 5, and 9, respectively. The MG uptake was increased from 73.36%
to 88.92% (pH 3), 74.98% to 90.74% (pH 5) and 79.86% to 91.66% as the initial MG concentration was
increased from 20 mg/L to 100 mg/L in the presence of 20 mg/L MB dye. At higher MB concentration
(100 mg/L), the MG uptake was raised from 75.69% to 86.49% (pH 3), while 80.43%–89.99% removal
increment was observed at pH 9.

As seen in Figure 2, the extent of MG dye uptake in a binary cationic dye solution improved
with increasing concentration. It is due to enhancement in driving potency (induced by concentration
gradient) required to subdue the resistance related to mass transfer between adsorbate and TMPAA
adsorbent. Zhou and co-worker (2019) also report similar result trend for adsorption of rhodamine B
(RhB), neutral red (NR), and MB cationic dyes onto sulfonated poly(arylene ether nitrile) (SPEN) based
adsorbents [45]. Moreover, Figure 1 depicts that the extent of MB uptake was almost constant although
the initial MG concentrations were increased from 20 mg/L.

Figure 3 shows the impact of different initial MB dye concentrations on the extent (%) MB uptake
by TMPAA while keeping the concentration of MG at 20 mg/L (Figure 3a) and 100 mg/L (Figure 3b),
respectively. The pH of the binary mixture was adjusted to 3, 5, and 9 to study the effect of pH on the
extent of dye uptake by TMPAA adsorbent. The percentage MB removal (Figure 3a) was increased
from 82.39% to 90.74% (pH 3), 84.78% to 91.10% (pH 5) and 85.52% to 93.99% (pH 9) as the initial MB
concentration were raised from 20 mg/L to 100 mg/L in the presence of 20 mg/L MG dye. At higher
MG concentration (100 mg/L, Figure 3b), the MB uptake was raised from 81.62% to 90.92% (pH 3),
82.04% to 92.23% (pH 5) while 83.41% to 93.65% uptake increment was recorded at pH 9.
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Figure 2. Effect of initial MG dye concentrations on the extent (%) of dye uptake by TMPAA at different
pH in the presence of (a) 20 mg/L, and (b) 100 mg/L of MB (dose: 0.5 g/100 mL; agitation speed: 100 rpm;
time: 2 hr.; temperature: 25 ◦C).
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Figure 3. Effect of initial MB dye concentrations on the extent (%) of dye uptake by TMPAA at different
pH in the presence of (a) 20 mg/L and (b) 100 mg/L of MG (dose: 0.5 g/100 mL; agitation speed: 100 rpm;
time: 2 hr.; temperature: 25 ◦C).

Remarkably, the extent of MG and MB dye removal in the binary system increased with increasing
solution pH (Figures 2 and 3). This result is attributed to ionization of cationic dyes and TMPAA
surface charge deprotonation [46]. The presence of thioamide groups on the polymeric adsorbent
surface fully deprotonated in alkaline medium and negative charges was prompted in the polymer
linkage. This negatively charged surface facilitates high sorption of positively charged cationic dyes
from liquid phase due to an enhanced electrostatic pull. The low extent of dye uptake was observed
in acidic condition due to protonation and increased the hydrophobicity of TMPAA microsphere.
There was presence of additional positive charge at low pH, which reduced the uptake of cationic MG
and MB dyes due to repulsive force coupled with TMPAA preferential adsorption of excess H+ ion
compared to dye due to the smaller size. Similar adsorptive behaviour was reported by [47], indicating
that adsorption of cationic dyes by poly(N-isopropylmethacrylamide-acrylic acid) microgels increased
as the solution pH increases.
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Generally, TMPAA adsorbents exhibit slightly higher adsorption preference towards MB dye
compared to MG dye in a binary system (Figure 4), probably due to their triangular (MG) and linear
(MB) molecular structures. The adsorption capacity of TMPAA towards both dyes increased as the
initial concentration increases. This is due to higher driving force propelled by a concentration gradient
that overcomes mass transfer resistance between the adsorbent surface and dye solution.Materials 2019, 12, 2903 9 of 21 
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Figure 4. Effect of equal initial MG and MB dyes concentration on the extent of removal in a binary
system (dose: 0.5 g/100 mL; agitation speed: 100 rpm; time: 2 hr.; temperature: 25 ◦C).

3.3. Effect of TMPAA Dose

The mass of adsorbent is a key parameter with a vital role in the adsorption process. To determine
the optimum dosage of TMPAA, the polymeric adsorbent dose was varied from 0.3 g to 1.2 g/100 mL
of binary MG and MB mixture, continuously stirred for 1 hr at room temperature. Figure 5a,b shows
the extent of MG and MB in a binary system. The extent of dye uptake in both cases was first increased
rapidly up to 0.5 g TMPAA dose, then became almost constant. This sudden increment was due to
an increase in adsorptive surface area as well as the availability of more binding sites for MG and
MB dyes adsorption [47]. The percentage of MG and MB uptake increased as initial concentration
increases (Figure 5). Further increment in the concentration of TMPAA particles portrayed little or
non-significant increase in the cationic dye entrapment. This phenomenon may be associated with
the availability of less dye adsorbate to be adsorbed compared to excess available active binding sites
of TMPAA.
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Figure 5. Effect of TMPAA dosage on the extent of dye uptake in a binary system (a) MG and (b) MB
dyes (MG conc.= MB conc.; agitation speed: 100 rpm; time: 2 hr.; temperature: 25 ◦C).
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3.4. Effect of Contact Time

Determination of optimum contact or agitation time was performed at the varied initial
concentration (20–100 mg/L) in a binary system. The results of optimum contact time for MG
and MB uptake using TMPAA are presented in Figures 6 and 7, respectively. The influence of residence
time (0–120 min) on the extent of cationic dye uptake by TMPAA was investigated at pH 9, 0.5 g
TMPAA dose and at 25 ◦C.

Initially, the removal percentage of MG was rapid in the first 30 min and then attained equilibrium
after 60 min of agitation time. Equilibrium in the adsorption process achieved after 1 h due to saturation
of active binding sites. A similar phenomenon was observed in the case of MB uptake in the presence
of MG dye. Increase in MG and MB concentration resulted in a rise in the quantity of dyes entrapped.
This is attributed to the fact that adsorption was directly proportional to more concentration gradient
at the initial stage, where migration and convection led to greater mass transfer from the bulk solution
to TMPAA surface and its reactive binding sites. This result trend is in agreement with the findings
of Mishra et al. (2017); Alqadami et al. (2018); Asfaram et al. (2017) and Idan et al., (2017) who also
worked on adsorption of dyes [48–51].
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Figure 6. Effect of contact time on the adsorption of MG dyes in the presence of MB (temperature:
25 ◦C; agitation speed: 100 rpm; dosage: 0.5 g/100 mL; Conc. MG equal Conc. MB).
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Figure 7. Effect of contact time on the adsorption of MB dyes in the presence of MG (temperature:
25 ◦C; agitation speed: 100 rpm; dosage: 0.5 g/100 mL; Conc. MG equal Conc. MB).
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The extent of dye uptake as a function of time for the two cationic dye was compared and
illustrated in Figure 8 in a binary system. TMPAA demonstrates higher preference towards adsorption
of MB than MG. Then both dyes attained equilibrium almost at the same residence time.
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Figure 8. Effect of contact time on the adsorption of MG and MB dyes in a binary system (temperature:
25 ◦C; agitation speed: 100 rpm; dosage: 0.5 g/100 mL, Conc. MG equal Conc. MB: 100 mg/L).

3.5. Adsorption Isotherms for Single and Binary Systems

Adsorption isotherm is fundamental to the design of adsorption systems; it demonstrates the
relationship between a specific adsorbate and an adsorbent. The Langmuir and Freundlich isotherms
parameters were calculated for a single adsorption system and presented in Table 2. Equilibrium data
for a single adsorption study was well described by the Freundlich model.

Table 2. Adsorption isotherms constants for adsorption of MG and MB dye in single system.

Dye Langmuir Freundlich

MG
qmax (mg/g) 429.18 KF (L/mg) 9.341
KL (mg/g) 0.0188 n 1.179

R2 0.8137 R2 0.9990

MB
qmax (mg/g) 308.64 KF (L/mg) 0.028
KL (mg/g) 0.0476 n 1.283

R2 0.8927 R2 0.9994

Table 3 presents the equilibrium adsorption Langmuir model parameters for MG and MB dyes
uptake by TMPAA in binary adsorption scheme. As expected, the maximum adsorption capacities,
qmax of TMPAA for MG and MB dyes entrapment in binary solutions, were respectively found to be
150.97 mg/g and 124.61 mg/g. While 429.18 mg/g and 308.64 mg/g were the maximum adsorption
capacities of TMPAA for MG and MB dyes, respectively in a single solution (Table 2). The results
exhibit that the adsorption capacity of the modified polymer for cationic dyes declined in the binary
system related to a single solution. This is attributed to the fact that in the binary system, partial or
total competitions between adsorbate ions for the binding sites on TMPAA surface occur and act as the
entrapment-governing aspect. Besides, adsorption affinity of the modified polymer surface is mutually
hindered by lateral interaction and rivalry between MG/MB components for the occupancy of sorption
site [31,52]. A similar observation was reported Kurniawan et al. (2012) for the uptake of basic dyes
in a binary system by rarasaponin-bentonite [53]. Ziane and coworkers (2018) report reduction in
adsorption capacities of modified dolomite (D900), for the removal of Reactive Black 5 (RB5) and Congo
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Red (CR) from wastewater containing a mixture of two dyes. According to their report, the single
and binary maximum sorption capacities were 51.81 mg/g and 44.57 mg/g (RB5), and 261.36 mg/g and
153.04 mg/g (CR), respectively [54]. Also, the batch adsorption experiment performed by Maleki and
team showed that the maximum adsorption capacity of amine-functionalized multi-walled carbon
nanotubes for the uptake of Acid Blue 45 (AB45) and Acid Black 1 (AB1) dyes in binary system were
625 mg/g and 666 mg/g respectively, while the maximum adsorption capacity in single solution was
666 mg/g and 714 mg/g [15].

Table 3. Langmuir isotherm constants at 25 ◦C for the adsorption of MG and MB dyes on TMPAA in
the binary system.

Dye in a Binary System Langmuir Constants

qmax(mg/g) KL(L/mg) R2

MG 150.97 0.0021 0.8357
MB 124.61 0.0017 0.9309

Isotherm studies of binary cationic MG and MB dyes adsorption were further analyzed using
extended Langmuir equation (ELE) and extended Freundlich equation (EFE), respectively.

3.5.1. Extended Freundlich Equation (EFE) for Binary Cationic Dye System

Figures 9 and 10 illustrated the assessment of experimental adsorption data with theoretical values
generated from the extended Langmuir equations for binary cationic dye solution. The sum of squares
error, SSE, estimated between the experimental adsorption capacity and extended Langmuir isotherm
prediction for MG and MB in binary solution are 618 and 736, respectively (Table 4). The application
of the extended Langmuir equations in the extrapolation of adsorption capacity of TMPAA for MG
and MB dyes results in good agreement with the experimental adsorbent capacity especially at higher
initial dye concentrations. However, the fundamental assumptions upon which the Langmuir model is
based gave no lateral interaction between adsorbed moieties and equal independent rivalry between
adsorbate components. This outcome is supported by the research findings of Yang and team (2016)
for competitive adsorption of heavy metal ions using modified green tea waste [55].

Materials 2019, 12, 2903 12 of 21 

 

(RB5) and Congo Red (CR) from wastewater containing a mixture of two dyes. According to their 
report, the single and binary maximum sorption capacities were 51.81 mg/g and 44.57 mg/g (RB5), 
and 261.36 mg/g and 153.04 mg/g (CR), respectively [54]. Also, the batch adsorption experiment 
performed by Maleki and team showed that the maximum adsorption capacity of amine-
functionalized multi-walled carbon nanotubes for the uptake of Acid Blue 45 (AB45) and Acid Black 
1 (AB1) dyes in binary system were 625 mg/g and 666 mg/g respectively, while the maximum 
adsorption capacity in single solution was 666 mg/g and 714 mg/g [15]. 

Table 3. Langmuir isotherm constants at 25 °C for the adsorption of MG and MB dyes on TMPAA in 
the binary system. 

Dye in a Binary System 
Langmuir Constants 

maxq   

(mg/g) 
LK   

(L/mg) 
2R  

MG 150.97 0.0021 0.8357 
MB 124.61 0.0017 0.9309 

Isotherm studies of binary cationic MG and MB dyes adsorption were further analyzed using 
extended Langmuir equation (ELE) and extended Freundlich equation (EFE), respectively. 

3.5.1. Extended Freundlich Equation (EFE) for Binary Cationic Dye System 

Figures 9 and 10 illustrated the assessment of experimental adsorption data with theoretical 
values generated from the extended Langmuir equations for binary cationic dye solution. The sum 
of squares error, SSE , estimated between the experimental adsorption capacity and extended 
Langmuir isotherm prediction for MG and MB in binary solution are 618 and 736, respectively (Table 
4). The application of the extended Langmuir equations in the extrapolation of adsorption capacity 
of TMPAA for MG and MB dyes results in good agreement with the experimental adsorbent capacity 
especially at higher initial dye concentrations. However, the fundamental assumptions upon which 
the Langmuir model is based gave no lateral interaction between adsorbed moieties and equal 
independent rivalry between adsorbate components. This outcome is supported by the research 
findings of Yang and team (2016) for competitive adsorption of heavy metal ions using modified 
green tea waste [55]. 

 

Figure 9. Extended Langmuir model for MG in binary system with MB (temperature: 25 °C; agitation 
speed: 100 rpm; dosage: 0.5 g/100 mL, Conc. MG = Conc. MB: (20–200 mg/L)). 

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

q e
 (m

g/
g)

Ce (mg/L)

 Experimental (MG)
 Extended Langmuir

Figure 9. Extended Langmuir model for MG in binary system with MB (temperature: 25 ◦C; agitation
speed: 100 rpm; dosage: 0.5 g/100 mL, Conc. MG = Conc. MB: (20–200 mg/L)).
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Figure 10. Extended Langmuir model for MB in binary system with MG (temperature: 25 ◦C; agitation
speed: 100 rpm; dosage: 0.5 g/100 mL, Conc. MG = Conc. MB: (20–200 mg/L)).

Table 4. Parameters of the extended Langmuir model for the binary adsorption of MG and MB by
the TMPAA.

Dye in a Binary System Model Constants

K1 K2 SSE

MG −0.0629 0.0891 618.12
MB −0.1281 0.1734 735.52

3.5.2. Extended Freundlich Equation (EFE) for Binary Cationic Dye System

In a binary cationic dye (MG and MB) mixture, the individual adsorption capacity (qe,MG, qe,MB)
is estimated according to the following extended Freundlich models (derived from Equations (11)
and (12)):

qe,MG =
9.341 (Ce,MG)

( 1
1.179 ) + x1

Cx1
e,MG + y1 Cz1

e,MB

(16)

qe,MB =
0.028 (Ce,MB)

( 1
1.283 ) + x2

Cx2
e,MB + y2 Cz2

e,MG

(17)

Figures 11 and 12 show the comparison of the experimental sorption capacity with the predicted
values by extended Freundlich model for binary dye system. The isotherm was found suitable for the
description of MG and MB adsorption, simultaneously. This phenomenon agreed with the findings of
Remenarova et al. (2009) for the binary biosorption of malachite green (MG), auramine O (BY2), and
thioflavine T (BY1) by moss rhytidiadelphus squarrosus [56]. The model parameters obtained and the sum
of squares errors are tabulated in Table 5. The SSE values, 696 (MG), 681 (MB) are found comparable
relatively to the one presented in the extended Langmuir isotherm (618 for MG; 735 for MB). However,
both extended Langmuir and extended Freundlich failed to account for the type of interactions that
existed between the cationic MG and MB molecules.
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Figure 11. Extended Freundlich model for MG in binary system with MB (temperature: 25 ◦C; agitation
speed: 100 rpm; dosage: 0.5 g/100 mL, Conc. MG = Conc. MB: (20–200 mg/L)).
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Figure 12. Extended Freundlich model for MB in binary system with MG (temperature: 25 ◦C; agitation
speed: 100 rpm; dosage: 0.5 g/100 mL, Conc. MG = Conc. MB: (20–200 mg/L)).

Table 5. Parameters of the extended Freundlich model for the binary adsorption of MG and MB by
the TMPAA.

The Dye in the Binary System Model Constants

xi yi zi SSE

MG
MB

−3.412 −0.095 −3.095 695.90
−0.1281 0.1734 735.52 680.66

Table 6 displays the competition constants and the interactive effects of MG and MB in the binary
system. The calculated P factor (P f i) for both cationic dyes was greater than one, indicating that the
adsorption of component i (MG/MB) is inhibited by the presence of another component (MB/MG) [37].
Besides, the higher value of the inhibitory effect (∆IE) demonstrates that the entrapment of MG is
suppressed in the presence of MB dye. This is corroborated by the estimated selectivity ratio, S(MG/MB)
value that is greater than unity. The results confirmed that the TMPAA polymeric adsorbent has more
affinity towards MG than MB [57]. Similar antagonistic analogous trends could be noticed also in the
binary dyes solution of remazol brilliant blue (RBB) and disperse orange (DO) [58], methylene blue
(MB) and methyl orange (MO) [59], and methyl orange (MO) and phenol [41].
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Table 6. Competition constants and interaction effects of MG and MB by the TMPAA in a binary solution.

The Dye in a
Binary System

Competition Constants

Pfi ∆IE S(i/j) Interactive Effect

MG 2.843 0.648 1.2115 Antagonistic
MB 2.477 0.596 0.8254 Antagonistic

3.6. Adsorption Kinetics

In order to determine the order and kinetics of the binary adsorption process, pseudo-first order
(PFO) and pseudo-second-order (PSO) models were tested. The kinetic data were fitted into the PFO
(Figure 13) and PSO (Figure 14) for the adsorption of MG and MB dye by TMPAA in a binary system.
The kinetic factors and correlation coefficient gotten are presented in Table 7.
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Figure 13. PFO model for (a) MG and (b) MB adsorption in binary system with MB (temperature:
25 ◦C; speed: 100 rpm; dose: 0.5 g/100 mL; Conc. MG = Conc. MB).
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Figure 14. PSO model for (a) MG and (b) MB adsorption in binary system with MB (temperature:
25 ◦C; speed: 100 rpm; dose: 0.5 g/100 mL; Conc. MG = Conc. MB).
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The PFO equation did not rank as favorable based on the correlation coefficient R2 values
(0.7035–0.9471). The MG and MB dye equilibrium concentration on the TMPAA, qe(cal) did not correlate
to the experimental values qe(exp), this further discrediting its suitability. Conversely, the PSO kinetic
model adjudged well fitted the adsorption data with higher R2 values (0.999–1). In addition, the
calculated values of qe(cal) showed good agreement with the corresponding experimental values qe(exp)
for the range of initial concentrations investigated. This confirmed the suitability of the PSO model
for the description of the adsorption process. Thus, the sorption process involves transferring and or
sharing of electron between anionic TMPAA adsorbent and cationic dyes. Therefore, chemisorption was
found to be the rate-limiting step, controlling the adsorption of MG and MB molecules onto TMPAA.

Table 7. Kinetic parameters and correlation coefficient for PFO and PSO kinetic models for adsorption
MG and MB by TMPAA in the binary system.

The Dye in
a Binary
System

Initial Dye
Concentration

Co (mg/L)

qe(exp)
(mg/g)

PFO
Kinetic Model

PSO
Kinetic Model

qe(cal)
(mg/g)

k1
(min−1)

R2 qe(cal)
(mg/g)

k2
(g/mg·min) R2

MG

20 1.60 0.60 0.072 0.9471 1.63 0.268 0.9993
40 3.47 1.67 0.093 0.9128 3.56 0.108 0.9989
60 5.35 0.95 0.050 0.9209 5.39 0.181 0.9993
80 7.25 1.21 0.058 0.8092 7.34 0.107 0.9996
100 9.10 1.10 0.048 0.8843 9.16 0.139 0.9999

MB

20 1.71 0.44 0.074 0.9048 1.73 0.433 0.9997
40 3.55 0.55 0.063 0.8221 3.58 0.285 0.9999
60 5.44 0.62 0.066 0.7082 5.48 0.214 0.9999
80 7.42 0.75 0.065 0.8101 7.46 0.225 1
100 9.37 0.88 0.054 0.7035 9.42 0.169 1

3.7. FTIR and SEM Analyses

Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) are
potent tools for delineating adsorption mechanism. FTIR spectra were recorded for the TMPAA
adsorbent before and after dye uptake in the 4000–500 cm−1 (Figure 15). Some absorption peaks of
the polymeric adsorbent are found slightly shifted in the spectrum of the MG and MB dye loaded
adsorbent. The peak at 3345 cm−1 (-NH2/-OH), 1728 cm−1 (-C=O), and 729 cm−1 (-C=S) in unloaded
adsorbent are shifted to 3319 cm−1, 1736 cm−1, and 733 cm−1 on the TMPAA after coadsorption of
MG and MB cationic dyes. These characteristic surface-functional groups are essential to the sorption
capacity of the adsorbent. Thus, strong interactions exist between adsorbate and adsorbent [54,60],
probably consisting of inner-sphere surface complexation. This is due to electrostatic attraction between
TMPAA-MG/MB. A similar phenomenon was reported by [61] on the adsorption of chromotrope dye
onto activated carbon and [62] for the uptake of emerging pharmaceutical contaminants.

Insightful information concerning the morphological features of the TMPAA is provided by SEM
analysis. SEM image of the unloaded adsorbent (Figure 16a) shows the rough and non-uniform
surface of the TMPAA. Post cationic dyes adsorption, a significant change is seen in the structure of
the adsorbent (Figure 16b). Its voids appear to be occupied and covered with shinning and bulky
molecules of the MG and MB dye. Lata et al. (2008), Hameed et al. (2017) and Sekulic group (2019)
reported similar findings [61–63].
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Figure 15. FTIR spectra of synthesized TMPAA (red) and TMPAA loaded with MG and MB dyes (blue).
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4. Conclusions

The competitive adsorption of cationic MG and MB dye under equimolar conditions on TMPAA
adsorbent was investigated. The comparison delineates an antagonistic interaction between the MG
and MB molecules, which mutually hindered the adsorption of both dyes on the TMPAA. The polymeric
adsorbent shows higher affinity towards MG entrapment than MB in the binary system, viz. 150 mg/g
against 124 mg/g at equilibrium. Extended Langmuir and extended Freundlich equations give a good
estimation of the binary equilibrium data. Pseudo-second-order model fits suitably the coadsorption
kinetics, which indicates chemisorption between the dye ions and TMPAA sorbent. According to
this study, TMPAA could prove to be an attractive functional adsorbent when discrimination in the
separation of cationic dyes from liquid phase is essential. This work could also offer theoretical
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