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Abstract: Nonlinear ultrasonic testing has been accepted as a promising manner for evaluating
material integrity in an early stage. Stress fatigue is the main threats to train safety, railways
examinations for stress fatigue are more significant and necessary. A series of ultrasonic nonlinear
wave experiments are conducted for rail specimens extracted from railhead with different degree of
fatigue produced by three-point bent loading condition. The nonlinear parameter is the indicator
of nonlinear waves for expressing the degree the fatigue. The experimental results show that the
sensitivity of a third harmonic longitudinal wave is higher than second harmonic longitudinal wave
testing. As the same time, collinear wave mixing shows strong relative with fatigue damages than a
second longitudinal wave nondestructive testing (NDT) method and provides more reliable results
than third harmonic longitudinal waves nonlinear testing method.
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1. Introduction

Rails are an important element in railway systems. Maintenance of railway systems today is more
important and necessary as traffic volume increases. Various types of defects occur in rails, of which
manufacturing defects, improper operation, and rolling contact fatigue are key components of the rail
defect development process [1]. Railways are mass transit systems that will cause many casualties and
massive economic losses. These accidents can arise from various deficiencies in the railway system,
and in particular rail defects are a significant threat to the safe operation of rail transport. Most of
the rail condition evaluation uses a method of measuring the position change such as external shape
measurement or distortion using a laser. However, this method can measure only the surface shape
and can’t evaluate the internal defect and the state. Ultrasonic wave velocity and wave attenuation are
the most basic material state evaluation methods. However, such a linear ultrasound parameter is
insufficient to evaluate microscopic damage. Nonlinear techniques are useful for diagnosing defects at
the initial stage and for micro-defects based on signal changes in the frequency domain [2]. Nonlinear
ultrasonic test methods mainly use harmonic or quasi-harmonic components [3]. There is an ultrasonic
mixing technique in which ultrasonic waves having different center frequencies are mixed to generate
a new center frequency ultrasonic wave. Ultrasonic mixing techniques include bulk mixing [2–9]
and guided wave mixing [10–14]. Ultrasonic nonlinearities measured through frequency spectrum
analysis of received signals include system and material nonlinearities. Experimental systems such as
wave generators, amplifiers, transducers and couplants in the experiments will result in strong system
nonlinearities [2]. Therefore, reducing system non-linearity is necessary to obtain reliable results. The
noncontact ultrasonic method is proposed by several researchers to reduce the uncertainty of the
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contact condition of a transducer [15,16]. Croxford et al. [9] noted that the wave mixing method is
advantageous in reducing the nonlinearity of the system.

An initial theory study to utilize this ultrasonic mixing technique for material condition monitoring
is described in Jones et al. [17] and Taylor et al. [18], and numerical simulations have been performed
on experimental studies and ultrasonic mixing in various research areas [2–11,19–21]. The main threat
of stress fatigue and rail safety is a kind of microstructural defect caused by internal stresses, and the
degree of fatigue defects can be represented by ultrasonic nonlinear parameters. The relationship
between nonlinearity and fatigue lifetime and fatigue life is expressed in [12,13,22]. There are several
studies that have applied various nonlinear techniques to monitor the state of mechanical materials.
To compare and analyze the characteristics of each technique, many earlier researchers conduct a
nonlinear study using higher harmonic, sub-harmonic ultrasonic nonlinearity and ultrasonic mixing
technique. Also, it is necessary to study on early stage damage detection technique to diagnose the
fatigue condition of railway rail.

In this study, resonance conditions of high-order harmonic generation and collinear wave mixing
are expressed. Experimental studies performed based on a general nonlinear ultrasound method,
such as second and third harmonic longitudinal wave tests and collinear wave mixing on the fatigue
rail specimen treated with a 3-point cyclic bending load. The main idea of this research paper is
comparison between second and third harmonic nonlinear parameter measurement and collinear
mixing nonlinear parameter measurement. Even though there are much research was conducted
on an ultrasonic nonlinear parameter, it is rarely can find the comparison of each method on the
same specimen. Therefore, the experimental comparison results from the fatigued rail specimen are
presented in this paper.

2. Nonlinear Wave Theory

2.1. High-Order Harmonic Nonlinear Waves

The physical effects of nonlinear ultrasonic technique are the interaction between the incident wave
and material leads to wave distortion (see Figure 1) and generation of the corresponding higher-order
harmonic waves (see Figure 2).
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Assume that a one-dimensional model, single frequency longitudinal wave propagates without
attenuation, for a small deformation, wave equation can be express by Equation (1) [23]:

∂σ
∂x

= ρ
∂2u
∂t2 (1)

where ρ is material density, σ is stress term and u is displacement vector along the x direction. The
constitutive equation of nonlinear medium can be described with elastic modulus E in Equation (2) [23]:

σ = E f (ε) (2)

Power series expansion f (ε) is applied to Equation (3):

σ = E f (ε) = E(ε+
1
2
β1ε

2 +
1
3
β2ε

3 + · · ·+
1
n
βnε

n) ≈ E(ε+
1
2
β1ε

2 +
1
3
β2ε

3) (3)

where βn (n = 1, 2, 3, · · ·) is a factor indicating the order of nonlinear parameter of the material.
Subsequently, substituting Equation (3) into Equation (1), one can be regrouped as Equation (4):

C2 ∂
2u
∂t2 =

∂ f (ε)
∂x

=
∂(ε+ 1

2β1ε2 + 1
3β2ε3)

∂x
=
∂2u
∂x2 [1 + β1

∂u
∂x

+ β2(
∂u
∂x

)
2
] (4)

In order to solve this problem, a perturbation method is applied. The displacement u is assumed
as Equation (5):

u(x, y) = u0(x, t) + xu1(x, t) + x2u2(x, t) + · · ·+ xnun(x, t) (5)

By equating the terms with the same order, the following Equation (6) can be derived:

u(x, t) = A1cos(kx−ωt) −
β1

8
k2A2

1xcos2(kx−ωt) +
β2

24
k3A3

1x[cos3(kx−ωt) + 3cos(kx−ωt)] (6)

where ω is angular frequency, and k is wavenumber. So the amplitude of the second harmonic
propagation in the material, A2, relative with cos2(kx−ωt) the term, is β1k2A2

1x/8. Similarly,
third harmonic propagation in the material, A3, relative with cos3(kx−ωt) the term, is β2k3A3

1x/24.
Regrouping those two relations, nonlinear parameters can be expressed by amplitude ratio directly in
Equation (7):

β1 =
8

k2x
A2

A2
1

, β2 =
24
k3x

A3

A3
1

(7)

Obviously, β1 and β2 are in proportion to A2/A2
1 and A3/A3

1, respectively.

2.2. Collinear Wave Mixing

The method is based on the fact that a resonant wave might be generated by two incident waves
if resonant conditions are satisfied. The acoustic nonlinear parameter βT is the amplitude ratio of
primary incident waves and receiving the resonant wave introduced from [5]. The dominant wave
mixing technique is that experimental nonlinearity contains less system nonlinearity than conventional
higher-harmonic longitudinal ultrasonic testing. Because the received wave obtained from the wave
mixing zone of the internal material directly and the subtracting frequency term can eliminate system
nonlinearity produced by two incident harmonic waves through measurement system. Hence, the
total system nonlinearity is reduced and reliable experimental results are provided [8,9]. The mixed
resonant shear wave V(2) could be generated by a pair of primary longitudinal wave U(1) and shear
wave V(1) excited in the opposite direction. Here, the resonant shear wave propagation direction is
contrary to primary incident shear wave, which called as two-way wave mixing [4,5] see Figure 3.
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The two-way wave mixing with subtracting frequency term is conducted in Equation (8):

L(ωL) + T(ωT)→ T(ωL −ωT) (8)

And, the primary excited longitudinal and shear waves are defined by Equations (9) and (10):

U(1) = Asin(kLx−ωLt) (9)

V(1) = Bsin(kTx +ωTt) (10)

Nonlinear wave equations are used for the description of waves propagating in nonlinear media,
Goldberg expressed the nonlinear wave Equations (11)–(13) as below:

utt −C2
Luxx = (3C2

L + C111/ρ)uxuxx + (C2
L + C166/ρ)(vxvxx + wxwxx) (11)

vtt −C2
Tvxx = (C2

L + C166/ρ)(uxvxx + vxuxx) (12)

wtt −C2
Twxx = (C2

L + C166/ρ)(uxwxx + wxuxx) (13)

The nonlinearity parameter is defined as βT = − (C2
L + C166/ρ). Substituting primary longitudinal

and shear waves equations into the governing Equations (11)–(13), one can be derived in Equation (14):

v(2)tt −C2
Tv(2)aa = 1

2 βTABkLkT(kL − kT) sin [(kL − kT)x− (ωL +ωT)t]
+ 1

2βTABkLkT(kL + kT) sin [(kL + kT)x− (ωL −ωT)t]
(14)

Assume that the receiving resonant shear wave is Equation (15),

V(2) = Csin((kL + kT)x− (ωL −ωT)t) (15)

where C is the amplitude of the mixed wave demonstrated by Equation (16):

C =
1
2
βTAB

ωT(CTωL + CLωT)

(CL + CT)(CTωL + 2CLωT −CLωL)
(16)

Obviously, amplitude C in Equation (16) is in proportion to the primary waves’ frequencies. For
the resonant condition, meaning that the denominator equals zero and the mixed wave amplitude
approaches to infinity. Therefore, the frequency relation of the excited waves can be described as
follows Equation (17):

ωT

ωL
=

CL −CT

2CL
(17)

3. Experimental Setup

KR 60 rails are widely used in Korean transport systems. The material properties are listed in
Table 1 [24]. The specimen used in this study is a rectangular bar of 350 × 30 × 60 mm3 in rail head.
Three-point bending fatigue tests were performed on the specimens. The load was 12 ton and the
fatigue cycle was 2.5 Hz. In order to measure the fatigue life of the specimen, the fatigue cycle was
measured by using two control specimens up to failure was about 51,700 cycles on average. Based on
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the fatigue life curve as depicted in Figure 4, fatigue test specimens of 60% and 80% were prepared
based on the life span of undamaged test specimens and fatigued specimen.

Table 1. Chemical composition and material properties of KR 60.

Chemical Composition (%) Mechanical Properties

Carbon Silicon Manganese Phosphorus Sulfur Tensile strength
(MPa)

Elongation
(%)

Hardness
(HBW)

0.63 ~ 0.75 0.15 ~ 0.3 0.7 ~ 1.10 <0.03 <0.025 >880 >10 260 ~ 300
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High-order harmonic longitudinal wave and wave mixing tests are applied to seven detection
points defined at the same distance in the central region (see Figure 5). Use the high-power tone
burst system to generate narrowband signals at seven detection points. The transducer is mounted on
the specimen with couplants and consistent pressure to ensure constant contact conditions. Signal
processing uses the Fast Fourier Transform (FFT) to obtain the spectrogram.
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3.1. High-Order Harmonic Longitudinal Wave Nonlinear Testing

The experimental setup for measuring higher order harmonic nonlinearities is shown in Figure 6.
Two longitudinal wave transducers are located in a face to face each other throughout the specimen.
One transducer works as transmission and the other is working as a receiver. The letter L denote
longitudinal wave transducer in the Figure 6. High-voltage tone burst system calls such as the RPR-4000
(Ritec Inc., Warwick, RI, USA) have been working to generate 20 cycles with the PZT sensor (Olympus
NDT NE Inc., Quebec City, QC, Canada) signal at 5 MHz. The frequency bandwidth can be easily
limited by the window tone burst signal generated by the measurement system.
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To detect the corresponding higher-order harmonic frequency components primarily, the
bandwidth of the receiving transducer should cover the frequency range. In the spectrum of the signal,
it can be found that second harmonic wave at the quadratic frequency at 10 MHz and third harmonic
wave at the triple frequency at 15 MHz. The sensor conditions are listed in Table 2.

Table 2. Experimental conditions for higher harmonic measurement technique.

Transducer Sensor Type Wave Type Frequency

Transmitter Longitudinal wave Primary wave 5 MHz

Receiver
Longitudinal wave Second harmonic wave 10 MHz

Longitudinal wave Third harmonic wave 15 MHz

3.2. Wave Mixing Nonlinear Testing

Once satisfying the resonant condition, the excited frequency relation can be derived by substituting
wave speeds terms into Equation (17). Where, theoretical longitudinal and transverse waves’ speeds
are CL = 5856.4 m/s and CT = 3130.4 m/s , respectively, calculated from [25,26]. One can be expressed
by Equation (18):

ωT

ωL
=

CL −CT

2CL
=

5856.4− 3130.4
2× 5856.4

≈ 0.233 (18)

One can be simplified as Equation (19),

U(1)(ωL) −V(1)(0.233ωT) = V(1)(0.767ωL) (19)

The schematic of wave mixing experimental setup is shown in Figure 7. Two transducer are
located in a face to face each other throughout the specimen. Longitudinal wave transducer works
as transmitter and shear wave transducer is working as a transmitter and receiver. The letter L and
S denote longitudinal and shear wave transducer in Figure 7, respectively. Two tone burst devices
RPR-4000 are connected to each other and synchronized for transmitting and receiving waves. The
oscilloscope is used for showing and validating the received signals. In order to fully collect data, a
sampling rate of 125 MHz was chosen.

A 2.5 MHz excited transverse wave and a 10 MHz excited longitudinal wave were meet in the
internal specimen to produce a mixed ultrasonic wave at 7.5 MHz. Sensors information are listed in
Table 3.

Table 3. Experimental conditions for wave mixing technique.

Transducer Sensor Type Wave Type Frequency

Transmitter
Longitudinal wave Primary wave 10 MHz

Shear wave Primary wave 2.5 MHz

Receiver Shear wave Mixed wave 7.5 MHz
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It should be noticed that due to the difference in wave speed, the mixing line is close to the bottom
shear transducer. The mixing time T is 6.676 µs, which can be calculated directly by the equation
(CT + CL)T = L, where, L is the height of the specimen equal to 60 mm. Obviously, the distance
between mixing lines and the shear transducer is about 20 mm as depicted in in Figure 7. Certainly, it
is feasible for defining a mixing line in the random position with time delay.

4. Experimental Results

4.1. High-Order Harmonic Longitudinal Wave Nonlinear Testing

The signal of higher-order harmonic longitudinal waves can be received by receiving transducers
and stored by RPR-4000 equipment. After signal processing, the corresponding spectrum can
be easy obtained. The second and third nonlinear value can be described by amplitude ratio of
second harmonic and third harmonic wave amplitude to primary wave amplitude, respectively.
Relative second and third harmonic nonlinear parameter for application is defined by β1 ∝ A2/A2

1 and
β2 ∝ A3/A3

1, respectively. The normalized nonlinear parameter value at each detecting point is shown in
Figures 8 and 9 for second and third order harmonic longitudinal wave, respectively.
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The higher harmonic nonlinear parameters are compared as seen in Table 4. The ratio of nonlinear
parameters is listed at each of the measured points. At the fatigue status, the nonlinear parameters
at third harmonics are generally bigger than second harmonics. Interestingly, at the measured point
of L1 and R1, the ratio of second and third harmonic nonlinear parameters become greater at 80%
of fatigue status than 60%. Therefore, it can be assumed that as fatigue cycles are increased, third
harmonic nonlinearity becomes sensitive than second harmonics

Table 4. Comparison on second and third harmonic nonlinear parameter.

Test Specimen

Measured
Point

L3 L2 L1 M R1 R2 R3
Fatigue
Status

Ultrasonic Nonlinear
Parameter

60%

Second harmonic
parameter 0.95628 0.910762 1.26546 1.504283 1.29456 0.922689 1.009529

third harmonic
parameter 1.09837 1.01397 1.63064 2.0374 1.64136 1.08693 0.94794

Ratio
(3rd/2nd) 1.148586 1.11332 1.288575 1.354399 1.26789 1.178003 0.938992

80%

Second harmonic
parameter 0.95707 0.929836 1.88444 2.31871 1.8838 0.955423 0.918632

third harmonic
parameter 0.86211 0.94393 3.06951 3.81586 3.01615 0.9726 0.95062

Ratio
(3rd/2nd) 0.900781 1.015158 1.628871 1.645682 1.601099 1.017978 1.034821

4.2. Collinear Wave Mixing Nonlinear Testing

Butterworth filter is applied for signal processing. Finally, the spectrum of collinear wave mixing
can be obtained. In order to measure the material nonlinearity of the rail specimens, the amplitude of
the new generated shear wave V(2) was normalized to the product of the two incident amplitudes U(1)

and V(1) measured in volts [9]. Figure 10 shows the normalized nonlinear parameter values of the
detecting points [27].
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5. Conclusions

A feasibility study is carried out for higher harmonic longitudinal tests and collinear mixed wave
nonlinear tests to demonstrate fatigue rail specimens. Three different stress fatigue test specimens
are extracted from the rail head and subjected to three point cyclic bending loading. The theoretical
analysis focuses on the phenomenon of wave distortion and the generation of new harmonics when
waves propagate in a nonlinear medium. Experiments are performed on fatigue test specimens based
on high order longitudinal test and wave mixing test methods. The value of the nonlinear parameter at
the detection point is used to indicate the status of fatigue. Nonlinear trends are clear by normalizing
the value of a nonlinear parameter normalized to an undamaged specimen. In general, the nonlinearity
is proportional to stress fatigue.

The nonlinear parameter values of the third harmonic and second harmonic in the central region
are about 3 ~ 4 times and 1.5 ~ 2.5 times higher than the undamaged sample, respectively. In other
words, the third harmonic longitudinal nonlinear test is more sensitive than the second harmonic
longitudinal nonlinear test. It should be noted that higher order harmonics represent low energy
transfer reflected by the experimental operation and the value of the wave amplitude which is heavily
influenced by the experimental system. Therefore, the accuracy of the third harmonic nonlinearity
can’t be guaranteed. Although second harmonic nonlinear parameter measurement is popular and
widely used for micro defect inspection, third harmonic nonlinear parameter measurement provide an
alternative wave for stress fatigue measurement. In this research we conduct a feasibility study on 3rd
harmonic nonlinear parameter measurement for fatigue on a rails.

The nonlinearity of the wave mixing method for these fatigue test specimens is much clearer and
more remarkable than the second harmonic longitudinal test method, and the value of the nonlinear
parameter at the center portion is lower than that described later. The advantage of third harmonic
nonlinear parameter measurement and wave mixing nonlinear method is clearly can see in the results
by comparing L2 and R2 values in Figures 8–10. It is obvious that the maximum nonlinear value
appears in the maximum deformed location, central location of the specimen. However, the measured
location is getting further from the central location, only wave mixing technique can clearly differentiate
the status of fatigue through the specimen. Obviously, wave mixing is more accurate by eliminating
nonlinearities in the system.

This study validates the probabilities of nonlinear techniques for fatigue failures and provides
quantitative comparisons between three common nonlinear techniques. High-order harmonics and
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wave mixing wave is sensitive to microstructural defects, so you can draw conclusions, but the results
of wave mixing are more reliable.
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