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Abstract: The mechanical performance of concrete is strongly influenced by the geometry and
properties of its components (namely aggregate, mortar, and Interfacial Transitional Zone (ITZ))
from the mesoscale viewpoint, and analyzing the material at that level should be a powerful tool
for understanding macroscopic behavior. In this paper, a simple and highly efficient method is
proposed for constructing realistic mesostructures of concrete. A shrinking process based on 3D
Voronoi tessellation was employed to generate aggregates with random polyhedron and grading
size, and reversely, an extending procedure was applied for ITZ generation. 3D mesoscale numerical
simulation was conducted under a quasi-static load using an implicit solver which demonstrated the
good robustness and feasibility of the presented model. The simulated results resembled favorably
the corresponding experiments both in stress–strain curves and failure modes. Damage evolution
analysis showed that the ITZ phase has profound influence on the damage behavior of concrete as
damage initially develops from here and propagates to mortar. In addition, it was found that tensile
damage is the principal factor of mortar failure while compressive damage is the principal factor of
ITZ failure under compression.

Keywords: mesoscale model of concrete; Voronoi tessellation; damage plasticity model; Interfacial
Transitional Zone (ITZ) phase

1. Introduction

The composite behavior of concrete is very complex due to the fact that its overall properties
are controlled by the characteristics of different components. Up to now, many details such as strain
softening, micro-crack propagation, and failure mechanisms are still far from being fully understood.
As a highly nonhomogeneous artificial composite material, concrete generally consists of two raw
materials, namely, coarse aggregates and mortar matrix with dissolved fine aggregates, and the
derivative component, namely, the Interfacial Transition Zone (ITZ) between coarse aggregates and the
mortar matrix. A mesoscale model permits a direct description of the material heterogeneity, therefore,
analyzing the material at mesoscale level should be a powerful tool for understanding and predicting
the observed macroscopic behavior.

A mesoscale model of concrete can be established in different numerical ways. One approach
is to simulate the shape, size, and distribution of the coarse aggregates directly in the 2D and 3D
domains. A number of studies on the 2D method of mesoscale modeling can be found in previous
reports [1–11]. Though more realistic aggregate shapes such as the random polygon have been achieved
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in 2D domain, 2D mesoscale models are not accurate to some extent and have an inherent limitation in
representing realistic stress and strain conditions [12,13]. Then the numerical 3D model was developed.
Bargmann et al. [14] reported a lot of techniques of art Representative Volume Element (RVE) generation
for heterogeneous materials, which is comprehensive and valuable for establishing a mesoscale concrete
model. Random dispersion of spherical regions was used by Segurado et al. [15] to investigate the effect
of particle clustering on the mechanical properties of composites. Eckardt et al. [16] and Yu et al. [17]
presented a new algorithm for the mesoscale model with random distribution of heterogeneous particles.
Nevertheless, the spherical or ellipsoidal particles do not agree well with the real particle shape in
the actual materials. Then polyhedral particles [9,18] were used to establish the mesoscale model of
concrete. Wang et al. [19] developed “taking-and-placing” method to generate 3D mesoscale structures
with randomly distributed polyhedral aggregates. Interaction and overlap checking algorithms for
distributed aggregates and voids were also proposed. Zhang et al. [20] proposed the random walking
algorithm for establishing physically feasible structures of concrete in the three-dimensional domain.
This approach is able to simulate the movements of aggregates by both translational and rotational
actions. Consequently, higher degrees of aggregate content can be well achieved. Yet, judgment
between aggregates for avoiding interactive overlap needs a complex algorithm in programming
and the time to be spent is much longer especially for a higher volume content of particles. Voronoi
tessellations, and their variants, provide a more simple method able to reproduce the non-regularity
polyhedron [21,22]. In early 1992, Stankowski [23] first considered subdividing the Voronoi polygons
as aggregates in 2D space. Aggregate is generated by shrinking the size of polygons in a random
manner and at the same time controlling the aggregate area fraction. Caballero et al. [24] generated
a particle array using Voronoi tessellation. To obtain discrete aggregate, the geometry polyhedrals
were shrunk and the spaces between aggregates were meshed with finite elements representing mortar
phase. Galindo-Torres et al. [25] introduced a new way to model particles using Voronoi-spheroid
polyhedral tessellation. Then, a natural and consistent method was developed to simulate bonding
between granular particles. It can be found that Voronoi techniques have been widely accepted for the
generation of aggregates. However, there are some inherent defects for traditional Voronoi models,
for example, the grading of aggregates is hard to achieve and the distance between cells cannot be
controlled easily. The other approach is to reconstruct particles based on scanning technology [26].
Man and Mier [27] obtained the concrete structure containing varying amounts of aggregates from
CT-scans to analyze the size effect. Liu et al. [28] reconstructed a microstructural model of asphalt
mixture based on X-ray CT scans and the relationship between aggregate angularity and mechanical
responses of asphalt mixture was investigated. The main limitation of the technique is that it is very
time-consuming and expensive to obtain meaningful analyses by a series procedure such as preparing,
fabricating, cutting, and scanning.

In these studies, the researchers mainly focus on coarse aggregate phase generation, however, the
establishment of the ITZ phase, which is also an important component in mesoscale models, has not
really been mentioned above.

It is well known that the ITZ plays an important role in the macro properties of concrete. In this
zone, the cement particles are unable to bind intimately with the relatively large particles of the
aggregate; consequently, the ITZ has much higher porosity than that of the hardened cement phase
farthest from the aggregate particles [29]. As a result, the ITZ phase is considered the weakest link
in concrete and its influence on the overall behavior of concrete still needs further research. Many
researchers [19,24,30–32] have proposed zero thickness cohesive interfaces between aggregate and
mortar as the replacement of ITZ via an in-house program. Because of its simple formation, the cohesive
zone model has wide applications in the fracture of concrete, especially in crack propagation and the
quasi-brittle process. In realistic concrete, the ITZ phase can be observed and plays an important
role in the macro properties of concrete though the scale of ITZ is much less than the aggregate size.
On the one hand, solid elements applied in ITZ can better reflect the practical ITZ shape than a zero
thickness cohesive zone. On the other hand, damage evolution in the ITZ phase can be clearly observed
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under both compressive and tensile stress, which could well illustrate the mechanism of concrete
failure [33,34]. It is inevitable to generate more realistic three-dimensional meshes for the ITZ to get
better numerical results [35,36]. Meshing the ITZ in tetrahedron would generate large elements [37] as
the ITZ size is much smaller than coarse aggregates. This would be super time-consuming and cannot
be accepted in meso-level models of concrete. Bernard et al. [38] mapped the 3D mesoscale model
into finite element and the thickness of the ITZ was the minimum voxel length. The mapping element
does have a lot of advantages such as more robustness and being less time-consuming, but the true
shape of concrete is still not reflected. Li [35] proposed an aggregate-expansion method to mesh the
ITZ in brick elements with a limited number of elements and performed it on a 3D concrete specimen
from CT images. Although the ITZ phase could be meshed in the acceptable way, the computational
adaptability for different material models should be further improved.

Finite element (FE) computation is another problem for mesoscale modeling due to the complex
mixture of three different materials. For quasi-static loading conditions, dynamic transient analysis was
employed in most papers [18,19,33,36]. It determines a solution to the dynamic equilibrium equation
by kinematic state from the previous increment; as a result, inertia and spurious oscillation in the
simulation could lead to uncontrollable deviations, especially in damage analysis.

In this study, a simple and less time-consuming method was developed to generate the three-phase
mesoscale model of concrete based on a 3D Voronoi tessellation. A shrinking process was proposed
for generating independent aggregates with random shape and grading size. An “EDGEdeletion”
program was conducted to resolve some problems in geometrical feature. The opposite approach called
extending process was presented to generate the ITZ in a certain thickness. The geometrical model
can be effectively incorporated within the simulated process using implicit solver. The mesoscale
model was verified against standard experimental observations under quasi-static compression and
tension. Furthermore, the model was then applied to investigate the initiation and evolution of damage
especially for the ITZ phase.

2. Generation of Mesostructured Model

2.1. Geometry of Coarse Aggregate

The convex polyhedral geometry is generated based on the Voronoi technique. A specific region,
whose space is larger than the required specimen size, is divided into seamlessly connected cells with
Voronoi tessellation as N seeds (nuclei) placed in advance randomly within the region. Si denotes
the seed, and its corresponding Voronoi cell Vi consists of every point P (P ∈ D) in the region whose
distance to Si is less than or equal to its distance to any other seed [39]:

Vi =
{
P ∈ D

∣∣∣ d(P, Si) ≤ d
(
P, S j

)
, i , j

}
(1)

where d is the Euclidean distance, which can be expressed as

d(P, S) =

√
(Px − Sx)

2 +
(
Py − Sy

)2
+ (Pz − Sz)

2 (2)

In order to avoid sharp corners, it is necessary to control the minimum distance between any two
of the nuclei according to the following principle:

δmin = (1−K)δ0 (3)

where δ0 is the average distance between two nuclei calculated as δ0 =
√

6
2

(
V
√

2N

) 1
3
, and K is the irregular

degree of convex polyhedron, for example, K = 1 indicates that the shape of cell is completely random,
while K = 0 indicates that the cell is a regular polyhedron. In this study, K = 0.2 is adopted [40].
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As an initial modeling of aggregates, the 3D Voronoi diagram is established using MATLAB (The
MathWorks Inc, St, Natick, MA, USA) and plotted in Figure 1. Each of the cells meets the convexity of
a 3D polyhedron and can be considered as an aggregate. In order to separate these connected cells
into independent aggregates and leave space for the mortar phase, the shrinking process is used on
the random polyhedron. For each cell, the vector

→
v from vertex pi to its corresponding seed Si can be

given as
→
v =


xSi − xpi

ySi − ypi

zSi − zpi

 and shortened by the shrinking factor q (0 < q < 1). The updated vertex p′i

is obtained by
p′i = pi + q

→
v (4)
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Figure 2 plots the shrinking scheme of a single cell. It should be mentioned that the shrinking
factor should be the same within one aggregate, otherwise, the convexity of the polyhedron will be
destroyed. Moreover, a different shrinking factor can be taken for various aggregates to meet the
requirements of grading. The Fuller curve, developed by Fuller and Thompson, is most commonly
used to describe the optimum size distribution of aggregates, and can be expressed as

P(d) = 100
(

d
dmax

)n

(5)

where P(d) is the accumulated percentage that pass the sieve with aperture diameter d, dmax is the
maximum size of aggregates, and n is an exponent in the range of 0.45–0.7. Generally, n is taken as 0.5.Materials 2019, 12, x FOR PEER REVIEW 5 of 28 
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The volume of aggregates within each grading segment [di, di+1] can be described as

Vagg[di, di+1] =
P(di+1) − P(di)

P(dmax) − P(dmin)
× Pagg ×V (6)

where dmax and dmin are the maximum and minimum sizes of aggregates, respectively; Pagg is the
volume fraction of aggregates, and V is the volume of the entire sample.

Based on the volume of each Voronoi polyhedron, the number of each grading segment can be
calculated and then the shrinking scale can also be obtained. The shrinking factor q for a different
segment [di, di+1] is random and can be expressed as

q[di, di+1] = 1−
di+1

dmax
+ω

di+1 − di

dmax
(7)

where ω is the uniform random variable between 0 and 1.
The updated vertexes of each cell are connected, complying with the Delaunay rule, and aggregates

with random shape and grading size are generated. A result of this process is shown in Figure 3.
A graded result of this process is shown in Table 1. The graded aggregates are set as 12.7 mm, 9.5 mm,
4.75 mm, and 2.36 mm according with the classical grading distribution in concrete by Hirsch [41].
Figure 4 marks some details of a single aggregate selected in Figure 3. The convex hull has some near
points and small areas with extremely long or short edges, which has a great influence on further
processes such as forming the ITZ and meshing. Moreover, a highly irregular ratio would generate an
enormous amount of elements, even poor quality elements, in the finite element method and it is the
main cause of computing interruption. To deal with this problem, a program called “EDGEdeletion”
inserts the main routine developed by MATLAB. The procedure for modifying the geometry feature is
described in detail below:

(1) Extract the x/y/z coordinates of all the surface nodes.
(2) Find the points according to the mutual distance that is less than a certain value. It may be that

the point in this feature is more than two points like P1, P2 and P3....
(3) Replace the coordinates including x, y, and z to the same point found in Step 2 above like

P1 = P2, P1 = P3 . . . , then delete the points with only one point reserved, for example, reserving the
point P1 and removing the points P2 and P3.

(4) Regenerate the new closed hulls and check whether the distance between points is more than
the certain value; if not, recycle the procedure from Step 1 until the answer is yes. Figure 5 depicts the
aggregates with grading size after conducting the “EDGEdeletion “program. The scale bar gives a
measuring standard for particles after the procedure of shrinkage and EDGE deletion, and aggregates
with different sizes can be vividly plotted in the figure.

Table 1. Size distribution in Figure 3 [41].

Sieve Size (mm) Total Percentage Retained (%) Total Percentage Passing (%)

12.7 0 100
9.5 23 77

4.75 74 26
2.36 100 0
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2.2. Generation of ITZ

The geometry of the ITZ is generated by an extending process, which is an opposite way to the
form of aggregate. As an updated aggregate vertex p′i is computed according to Equation (4), the new
extending factor η (0 < η < 1) is defined and the ITZ vertex p′′i is obtained by

p′′i = p′i − η
→
v (8)

Figure 6 shows the schematic diagram for forming the ITZ. The extending method could be another
less time consuming way to generate the ITZ phase, which is different from the aggregate-expansion
method [35] and the equivalent solid approach [36]. In traditional methods, time consumption is large
because the detection criterion is necessary to judge the overlap for aggregates one by one. This process
generates a certain thickness of ITZ at the same time without intersection judgment. Zhang et al. [42]
gives a comparison of different algorithms and the result shows that the present method has an obvious
advantage in saving time. Also, different thickness of ITZ can be generated when the extending factor
η is changed (Figure 7). The green lines are the out contour of the solid aggregate, and the blue lines
are the out contour of the solid ITZ phase.
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3. 3D Mesoscale Finite Element Discretization

The characteristic size of the ITZ is quite small compared with the coarse aggregate used in the
laboratory. It is unacceptable to mesh the ITZ using tetrahedral elements because millions of elements
would be generated and the computational efficiency of the model will drop dramatically. The wedge
element with integration 15-nodes was adopted to decrease the numbers of ITZ elements and ensure
the computing accuracy, while the tetrahedral elements were adapted to aggregates and mortar phase.
Figure 8 plots the meshing elements of a three-phase concrete model, respectively.
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A common challenge to most existing mesostructure models of concrete is low aggregate packing
density. In order to improve the aggregate volume ratio, the free falling of randomly distributed
particles in finite element method is applied [43]. The “free falling” procedure is conducted after
mesh generation. The falling process is carried out by using FE code LS-dyna. Free fall acceleration is
applied to the particles. Every single grain is regarded as a single part (Figure 9) and then falls together.
Figure 10 shows the simulated result after this process with a particle volume fraction of 40%, while
the corresponding value is 10%. Additionally, the falling process in this study contains meshed ITZ
rather than only aggregate phase.Materials 2019, 12, x FOR PEER REVIEW 9 of 28 
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Figure 11. Different relative position of adjacent grains: (a) a corner on the surface (b) a corner on
another corner.

Figure 12 gives different volume ratios of graded aggregates after the falling process. The different
volume ratios of aggregate can be accomplished by changing the times of the “free falling” procedure.
Higher volume ratios will be achieved after a repeated falling process. The diagrams illustrate that the
falling procedure not only increases the aggregate content, but also perfects the distribution of grain
phase. The “perfect” means that the distribution of aggregate becomes more random and compact.
The space between each grain is similar, not too big or too small, which is closer to realistic concrete.
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In this work, the specimen is considered as a 25 mm side length cube with 37.38% volume fraction
of aggregates. The grain size distribution is designed as in Table 2. Due to the limit of the whole
specimen size, two grades are considered in this model. The smallest size of the grain is about 2.1 mm,
and the largest size is about 6.3 mm, respectively. Figure 13 gives the finite element model of concrete
with three phases including mortar (color of blue element), aggregate (color of green element) and
ITZ (color of red element) where the thickness of the ITZ is set as 0.1 mm. Quadratic tetrahedron
elements are used in the aggregate and mortar phase for ensuring the computational accuracy while
quadratic wedge elements are used in the ITZ. The loading on the specimens has been applied via
prescribed displacement to the rigid plate, where vertical displacements are prescribed to all nodes
on the top rigid plate and six degrees of freedom are fixed on the bottom plate (Figure 14). The “D”
represents the applied prescribed displacement to the rigid plate. No extra constraints have been
loaded in the concrete model. In reported papers, limiting in mesh quality or magnitude, most analyses
performed dynamic algorithms to solve the quasi-static problem instead of an implicit algorithm which
is a better solver without the influence of iterating and loading kinematics. In this study, an implicit
algorithm is employed to uniaxial compression and tension conditions using the nonlinear FE code
ABAQUS/standard.

Table 2. Size distribution of aggregates.

Sieve Size (mm) Total Percentage Retained (%) Total Percentage Passing (%)

9.5 0 100
4.75 61.53 38.47
2.36 94.84 5.16
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quasi-static simulation.

4. 3D Mesoscale Simulations

4.1. Concrete Damaged Plasticity Model

The behavior of concrete is complex due to an array of morphological features as well as
deformation and failure mechanisms inherent in the concrete microstructure. In recent years, many
coupled plasticity–damage models have been proposed to describe the mechanical behavior of
concrete [44–46]. The model included in the ABAQUS package (Dassault Systèmes Simulia Corp.,
Providence, RI, USA) called concrete damaged plasticity (CDP) has been widely used for the description
of static and dynamic mechanical behaviors of concrete-like materials. The model assumes that the
uniaxial compressive and tensile responses of concrete are characterized by damaged plasticity. The
typical stress–stain curve is shown in Figure 15 and the stress–strain relationships under compression
and tension are

σc = (1− dc)E0(ε− ε̃
pl
c ) (9)

σt = (1− dt)E0(ε− ε̃
pl
t ) (10)

where the subscripts c and t refer respectively to compression and tension; E0 is the initial elastic
modulus, ε̃pl

c and ε̃pl
t are the equivalent plastic strain; dt and dc are damage variables used to characterize

degradation of the elastic modulus in the strain softening phase of the stress–strain response, and are
assumed to be functions of equivalent plastic strain.

dc = dc(ε̃
pl
c ), dt = dt(ε̃

pl
t ), 0 ≤ dc, dt ≤ 1 (11)

A “pristine” stress tensor, denoted by σ̆, is introduced, and refers to virtual stresses corresponding
to the undamaged material state. Compressive and tensile uniaxial pristine stresses are then utilized to
define the yield and failure surfaces.

σ̆ =

[
σ̆c

σ̆t

]
(12)

σ̆c =
σc

1− dc
= E0(εc − ε̃

pl
c ) (13)

σ̆t =
σt

1− dt
= E0(εt − ε̃

pl
t ) (14)
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For actual implementation in ABAQUS, artificial plastic strain, i.e., inelastic strain ε̃in
c for

compression (Figure 15a) and a cracking strain ε̃ck
t for tension (Figure 15b) are used to replace

the actual plastic strain. They are defined as

ε̃in
c = εc − σc/E0, ε̃ck

t = εt − σt/E0 (15)

The relationship between stress σc and the inelastic strain ε̃in
c , together with the evolution of

the damage variable dc with ε̃in
c , is used to define the uniaxial compressive response. Similarly, the

relationships between σt and ε̃ck
t , and between dt and ε̃ck

t , are employed to describe uniaxial tensile
behavior. The actual plastic strains can be calculated from the artificial strains and damage variables, i.e.,

ε̃
pl
c = ε̃in

c −
dc

1− dc
·
σc

E0
; ε̃pl

t = ε̃in
t −

dt

1− dt
·
σt

E0
(16)

When the specimen is unloaded from any point on the strain softening branch of the stress–strain
curves, the elastic stiffness of the material declines.

For three-dimensional multiaxial conditions, the stress–strain relationships are govern by:

σ = (1− d)Del
0 : (ε− εpl) = Del : (ε− εpl) (17)

where Del
0 is the initial (undamaged) elastic stiffness of the material; Del

0 = (1− d)Del
0 is the degraded

elastic stiffness.
The mortar and ITZ parts are simulated using the CDP model. For normal concrete, the coarse

aggregates are usually of much higher strength than the mortar parts. It is acceptable to use a linear
elastic model for aggregates under quasi-static loading, but this may not reasonable for high dynamic
loading such as impact and blast.Materials 2019, 12, x FOR PEER REVIEW 13 of 28 
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4.2. Statistics and Size Distribution Effect for Mesostructures

In this section, the specimen is considered as a 25 mm length cube with 30% volume fraction of
aggregates. The particle size is designed as Table 3. Three mesoscale cases are plotted in Figure 16.
The models have the same grain numbers and size segment but the spatial distributions are random.
Figure 17 plots the simulated axial stress–strain curves under uniaxial compression. The curves are very
similar in terms of curve tendency and peak stress, which illustrates that randomly spatial distributions
have few influences on macroscopic strength.
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Table 3. Grain size of aggregates in Section 3.

Grain Diameter (mm) Case 1 Case 2 Case 3

Dmax 6.150 mm 5.627 mm 5.869 mm
Dmin 2.334 mm 2.416 mm 2.519 mm

N1 (<2) 0 0 0
N2 (2,3.5) 260 261 265
N3 (3.5,5) 59 65 62
N4 (5,6.5) 26 15 25

N 345 341 352
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4.3. Verification under Quasi-static Compression and Tension

The uniaxial compression tests had been performed by Van Vliet [47]. The test specimens were
normal strength concrete, accordingly, the 3D mesoscale model is simulated in normal strength range.
The concrete mix proportions in experiment are shown in Table 4 [47]. The grain size distribution is not
absolutely identical with the experiment used as the realistic concrete includes small size gravel and
sand which is really difficult to build in a numerical model and it is generally considered as mortar
phase [10,20]. Nonetheless, if we consider the grades of 2.0–8.0 mm range, the proportions are similar
to the simulation.
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Table 4. Concrete mix proportions.

Compositions Concrete 1 Concrete 2

Portland Cement 330 kg/m3 340 kg/m3

Water 165 kg/m3 170 kg/m3

Gravel/Sand 1879 kg/m3 1828 kg/m3

0.0–0.25 mm 0.08 0.08
0.25–0.5 mm 0.12 0.1
0.5–1.0 mm 0.12 0.13
1.0–2.0 mm 0.1 0.16
2.0–4.0 mm 0.14 0.23
4.0–8.0 mm 0.2 0.3
8.0–16.0 mm 0.24 -

The basic mechanical parameters of the mesoscale concrete model used in current simulations
are listed in Table 5. For this grade of concrete, the standard strength of mortar is around 35 MPa
with Young’s modulus around 25 GPa [6,22]. As a composite material, concrete is a mixture of cement
paste, aggregate with various sizes and the ITZ. Studies by other researchers showed that the ITZ has a
layered structure, and it has a lower density than the bulk matrix and is more penetrable by fluids and
gases [48]. Also, the ITZ appears to be the weakest region of the composite material when exposed to
external loads [49]. However, it is difficult to determine the local mechanical properties in the ITZ due
to the complex structure of the ITZ region and the constraints of existing measuring techniques [50].
A constant factor can be used to describe the ratio of material strength between the ITZ and mortar.
Different ratio values have been employed by various researchers. The ratios employed by different
works vary from 0.5 to 0.9 [33,36]. For such a thin layer of equivalent ITZ, it has been found that the
strength around 70% of the mortar is appropriate [51], which is acceptable for a general range.

Table 5. Material parameters of three-phase materials.

Material Young’s Modulus
(GPa) Poisson’s Ratio Compressive

Strength (MPa)
Tensile Strength

(MPa)

Mortar 25 0.2 35 3.5
ITZ 18 0.2 20 3.0

Aggregate 43 0.23 - -

In the current model, 20 MPa compressive strength and 18 GPa Young’s modulus are employed
for the ITZ elements. The properties of aggregates could significantly depend on the types in nature,
and the Young’s modulus of aggregates is around 40–60 GPa for crushed stones [52]. Moreover, the
eccentricity and the K coefficient in CDP model are set to 0.1 and 2/3, respectively. The ratio of biaxial
and uniaxial compressive strength is 1.16. The viscosity coefficient is 1.0e−5 [53]. The density parameter
is not required in the implicit solver.

The mesh convergence study had been performed before the uniaxial load analysis. In the test,
three different average element lengths Le (i.e., 1 mm, 0.8 mm and 0.6 mm) were used, as shown in
Figure 18. The numbers for Meshes I and II and III are 134249, 201690, and 295364 solid elements,
respectively. The frictional constraint between specimen and loading plate was set as 0.1.
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Figure 18. Three different mesh configurations with different mesh density: (a) Mesh I (Le = 1 mm),
(b) Mesh II (Le = 0.8 mm), (c) Mesh III (Le = 0.6 mm).

The simulated stress–strain curves for different element length are shown in Figure 19. Three
positions named KP1, KP2, and KP3 have been marked in Figure 18a to evaluate the computational
error. The stress analysis—including Mises Stress, Max Principal Stress, Mid Principal Stress, and Min
Principal Stress—have been listed in Tables 6–8. The relative error is calculated by

R =
|Si − Save|

Save
(18)

where Si(i = I, II, III) represents the Mises Stress of different mesh sizes, Save is the average of Si.
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Mid. Principal (Abs) 1.0868 0.4568 0.4494
Min. Principal (Abs) 0.9092 0.4009 0.1168

Mises Stress 25.6561 25.7206 26.0197
Relative Error 0.55% 0.30% 0.86%

Table 7. Stress statistics and relative error for different meshes on KP2.

Stress Component Mesh I (MPa) Mesh II (MPa) Mesh III (MPa)

Max. Principal (Abs) 31.615 32.561 32.074
Mid. Principal (Abs) 0.512 2.353 1.491
Min. Principal (Abs) 0.013 0.628 0.909

Mises Stress 31.868 31.821 32.441
Relative Error 0.55% 0.69% 1.24%
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Table 8. Stress statistics and relative error for different meshes on KP3.

Stress Component Mesh I (MPa) Mesh II (MPa) Mesh III (MPa)

Max. Principal (Abs) 29.275 29.774 28.559
Mid. Principal (Abs) 0.578 0.495 0.185
Min. Principal (Abs) 0.247 0.435 0.141

Mises Stress 29.450 29.758 28.583
Relative Error 0.83% 0.21% 0.62%

It can be observed that the relative error is less than 2%. As a result, the mesh dependence is
negligible for the selected element sizes. Fine mesh would lead to large-scale nonlinear equation
systems and the computational costs often become prohibitively expensive. Thus, a 1 mm element
length is selected in the following analysis, where the mortar has 72114 elements and the aggregate has
36727 elements. The numbers for the ITZ phase have 25408 elements. As a reference regarding the
computational cost, a mesh in 1 mm took about 6 h for compression and 10 h for tension with 18 Intel
Xeon CPUs, respectively.

Figure 20 plots the simulated axial stress–strain curve versus experiment curve. Three loading
directions of the x-, y- and z- axes are taken into consideration to improve the representative of

numerical model. The effective stress is measured as FRC(m)
A , where FRC(m) is the reaction force of rigid

plate at the time m, A is the area of specimen surface. Respectively, effective strain is calculated as
S(m)

h , where S(m) is the displacement of rigid plate at the time m and h is the length of specimen side.
As can be seen, the result from the mesoscale model shows good agreement with the experimental
data in terms of peak strain and softening phase. Though the peak stress is slightly lower than the
corresponding test data, the relative difference between two values is 7%, which is in an acceptable
range for FE validation. Remarkably, the numerical results over-predict experimental data for strains
greater than 0.006. The main reason is the damaged elements are not deleted in the loading process.
In lab experiments, partial concrete splits from the test specimen. The split concrete cannot sustain any
loads, which eventually results in the failure of concrete. And the stress decreases to zero. In the FE
analysis, the stiffness of damaged elements decreases but cannot be zero because of the computational
convergence. It means that the load capacity of finite elements is over predicted compared with the
realistic concrete.
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It is generally known that the compressive behavior of concrete test can be strongly influenced
by the frictional constraint between the specimen and the loading platen [47]. The classical isotropic
Coulomb friction model is applied in the simulation of varying frictional constraint. The model
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assumes that no relative motion occurs if the equivalent frictional stress τeq =
√
τ2

1 + τ2
2 is less than the

critical stress, τcrit, which is proportional to the contact pressure, p, in the form

τcrit = µp (19)

where µ is the friction coefficient that can be defined as a function of the contact pressure.
In the current 3D mesoscale model, it is possible to simulate the varying frictional constraint by

changing frictional coefficient µ at the loading face through a surface-to-surface contact approach.
For example, Guo et al. [55] studied the effect of friction between the specimen and the rigid plates.
As the reference mentioned, friction coefficients from 0.1 to 0.7 is realistic in experiments, which is
the range we selected in this paper. Three stress-strain curves for different µ mean 0, 0.1, 0.3, and
0.6 are plotted in Figure 21. The stress–strain curve when µ = 0 shows that peak stress is obviously
lower than frictional constraint. The major failure regions focus on the top surface which contacts
with the rigid plate directly. It can be seen that frictional constraint has a strong influence on peak
stress value and the softening phase. When the frictional coefficient increases from 0.1 to 0.3, the peak
stress increases to 126%. From 0.3 to 0.6, the value of maximum stress has a little increase, but the
tendency after peak stress has obvious change. Figure 22 shows the damage patterns of different µ
values. In CDP models, the tensile damage factor dt represents the degree of stiffness degradation
from 0—which means no degradation, to 1—that cannot support loading completely. In other words,
the output dt from the model could be equivalent to a cracking pattern in real tests when the value
of dt is close or equal to 1. For a low frictional constraint (Figure 22a) condition, the specimen is
obviously separated into a series of columns due to primary cracks almost parallel to the applied
load. With µ increasing, oblique cracks rise and cracks develop in the triangular zones near the top
and bottom surfaces, leading to the well-known “hour glass” failure mode (Figure 22b,c). Figures 23
and 24 compare the damage evolutions with different frictional coefficients. When the µ is closer to 0,
no additional lateral constrains are applied in the interaction surfaces. The lateral tensile stress, which
is considered to be easier to cause the damage to concrete than compressive stress, would arise and
grow to the damage threshold. The connected cracks are formed from top surface to bottom surface.
With the increasing of the coefficient µ, the tangential constrains are applied on the top and bottom
surfaces. Damage begins in the middle of the model. The tangential constrain limits the development
of lateral tensile stress. Therefore, the damage elements cannot directly propagate parallel to the
loading direction and develop to oblique cracks.
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Figure 24. Damage evolution patterns when µ = 0.6.

The comparisons of failure modes between the experiment and the simulation are plotted in
Figure 25. Under the low friction condition, the vertical cracks in the experimental picture are most
visible and dominate the picture of the crack pattern. The inclined cracks have opened less than the
vertical cracks and are less visible. The numerical specimen is effectively separated into a series of
columns by the formation of the major cracks almost parallel to the applied load, and the cracks appear
to follow the weakest path along the ITZ. Under the high friction condition, confining stresses are
built up in the experiment and prevent crack formation. Cracking starts from the more uniaxially
stressed sides of the test specimen and results in the well-known “hour glass” failure mode. Significant
confinement develops in the cone-shaped zones in the numerical results. The damage patterns appear
to follow closely the weakest links formed by the ITZ around the aggregates. The crack patterns agree
well with experimental observations both in low and high friction conditions, which demonstrates that
the 3D mesoscale FE model is again acceptable under compressive loading.
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Figure 25. Comparison of failure patterns between experimental observations (left in each pair of
graphs [56]) and numerical results (outer surface view and internal view): (a) Low friction condition,
(b) high friction condition.

The data of the tension experiment came from reference [57]. According to the reference paper,
the 101 × 202 mm cylindrical tensile specimen with notches at mid-height was considered in the
experiment. The top and bottom surfaces were fixed in stiff-frame by an epoxy adhesive layer. In the
tensile simulation, in the present paper, a tie constraint is applied between the specimen surface and the
rigid plate in order to fit the experimental boundary condition. The material parameters in the tension
analysis are listed in Table 5, No lateral constraint is considered in the simulation of tension. Figure 26
depicts the comparison of test and simulation curves, and the corresponding crack mode is given in
Figure 27. It can be observed that the present results agree very well with the experimental data. The
crack lines are clearly perpendicular to the loading direction which is a well-known phenomenon in
tension failure mode. Furthermore, the failure bands can be observed clearly through the specimen and
along with the distribution change of aggregates in the section patterns. Several damage lines develop
along weakest path (the ITZ phase). From the viewpoint of the internal section, the cross-cutting crack
is located at the middle of specimen.
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4.4. Analysis of ITZ Damage Evolution

The finite element model used in this section is the same as mentioned in Figure 20. In order to
investigate the damage initiation and evolution of a 3D mesoscale model under uniaxial loading, eight
key points standing for different time moments during loading history are marked in the stress–strain
curves both in compressive and tension condition (Figure 28). The stress–strain curves are divided
three phases as elastic phase (a0–a), hardening phase (a–c), and softening phase (c–g). Figure 29 shows
the initiation evolution (a–g) of the compressive damage factor dc for mortar and ITZ parts. The factor
dc represents stiffness degradation from 0—with no degradation, to 1—with complete failure subjected
to compressive stress. From the pictures, initial damage appears in the ITZ part firstly, and then the
damage in the ITZ grows and expands to more areas. With the damage area reaching a certain range in
ITZ elements, the damage bands tend to propagate towards nearby mortar parts to form a connected
damage network with complicated crack bridging and branching. The process illustrates that the
evolution of compressive damage starts at ITZ parts, which is considered as a weaker phase in concrete,
and develops into mortar phase. The similar process is shown in Figure 30 for tensile damage factor dt.
However, the damage range is really different in both the mortar and ITZ phases. The compressive
and tensile damage region of the ITZ phase is plotted in Figure 31. From the specific ITZ elements
around a single aggregate, compressive damage mainly distributes on the top and bottom region,
while tensile damage focuses on the medium region. That means the stress state is clearly different
around single aggregates under compression. The element where the computational factor dc or dt
is greater than 0.9 is defined as an damaged element. A damaged fraction is defined as a ratio of
damaged element and whole element within one material. The percentage curves of the mortar and
ITZ phases under compressive condition are shown in Figure 32. Damage firstly starts in the ITZ phase
and develops, while mortar phase has no damaged element until the ITZ fraction increases to a high
value (almost 65% from Figure 32a). Moreover, the damaged fraction in ITZ elements is over two
times that of mortar elements, which means that compressive damage mainly takes place in ITZ parts.
Compared with Figure 32a, the tensile damage fraction in the mortar phase quickly increased especially
on the softening range (f–g) and is higher than in the ITZ phase. In other words, tensile damage is the
main cause of mortar failure. On the contrary, compressive damage is the main cause of ITZ failure
from the mesoscale viewpoint. Combined with the stress–strain curve, the damaged element in the
ITZ part has a quick increase around macro maximum stress. On the contrary, damaged elements
in the mortar are generated until the softening phase. Figure 33 plots the initiation and evolution of
the tensile damage factor dt under an uniaxial tensile load. Initial damage starts from ITZ parts and
develops to the mortar. Different from compression, the propagation range clearly concentrates on
bends which is perpendicular to the loading direction. The damage diagram of whole ITZ element is
plotted in Figure 34. Tensile damage focuses on the top and bottom areas around single aggregates;
while in compressive condition, compressive damage occurs here. The volume percentage of tensile
damaged element is shown in Figure 35. The damaged elements have a great increment in the initial
softening phase. About half of ITZ elements are damaged due to the weakness of ITZ properties. The
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result demonstrates that tensile damage is the primary cause of ITZ failure. As quite localized cracks
could lead to concrete failure, the damaged element in mortar is much less than in the ITZ under
tensile loading.
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5. Conclusions

A comprehensive procedure has been presented to establish a 3D mesoscale model for concrete.
Based on Voronoi tessellation, a shrinking process is developed to separate cells into independent
aggregates with a grading distribution. The in-house program called EDGE deletion is added to
remove small edges, which would improve the robustness on FE meshing. The ITZ parts with different
thickness can be conducted by the extending method as various factor η. Because the shrinking and
extending algorithm avoids check of interaction and overlap, it is less time consuming than traditional
ways in aggregates and ITZ generation.

Then the geometrical model transforms well into an FE model with higher volume content of
aggregates and superior quality of mesh. As a consequence, the numerical simulation of concrete
can be established using an implicit algorithm under an uniaxial load. The simulated results
resemble favorably the corresponding experiment both in stress–strain curves and failure modes.
For compressive simulation, different frictional constraints have great influence on the compressive
progress and failure modes.

Damage evolution is investigated from the perspective of a mesoscale level under an uniaxial
condition. For a compressive condition, damage initiates mostly in the ITZ and then connects to a
mortar phase. Both tensile and compressive damage are well developed in different regions. For tensile
conditions, tensile damage is the primary type and focuses on a localized area which is perpendicular
to tensile direction. The damaged fraction is defined to generally evaluate the failure level based on
element volume statistics. The results show that the mechanism of uniaxial compression and tension is
very different. Tensile damage is the principal factor of mortar failure and compressive damage is the
principal factor of ITZ failure under compression. On the contrary, both ITZ and mortar phase failure
is dominated by tensile damage under tensile load.
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