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Abstract: The domain wall (DW) dynamics of amorphous and nanocrystalline Co-based glass-coated
microwires are explored under the influence of stress annealing. Different annealing profiles
have enabled remarkable changes in coercivity and magnetostriction values of Co-based amorphous
microwires with initially negative magnitude, allowing induced magnetic bistability in stress-annealed
samples and, consequently, high DW velocity has been observed. Similarly, Co-based nanocrystalline
microwires with positive magnetostriction and spontaneous bistability have featured high DW
velocity. Different values of tensile stresses applied during annealing have resulted in a redistribution
of magnetoelastic anisotropy showing a decreasing trend in both DW velocities and coercivity of
nanocrystalline samples. Observed results are discussed in terms of the stress dependence on
magnetostriction and microstructural relaxation.
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1. Introduction

Domain wall (DW) propagation has become a topic in the spate of a number of emerging
applications including a wide range of magnetic logics and nano-sized data storage devices [1–4].
The dynamic behavior of magnetic DWs determines the operational speed of such devices, and thereby
knowledge of such dynamics and their dependence on external stimuli (e.g., magnetic field, current,
tensile stress, frequency) is crucial on both device and materials levels [3–5]. To this end, amorphous
and nanocrystalline soft magnetic glass-coated microwires have attracted great attention as a result of
their outstanding magnetic properties (with low coercivities down to 4 A/m) and production techniques
allowing considerable diameter reductions in comparison with other rapidly quenched materials [6–8].

Glass-coated microwires are composite materials made of a metallic nucleus (amorphous alloy)
covered by a glass-coating layer [7,9,10]. The variety of dimensions at the micro-scale, as well as
different chemical compositions, are easily obtainable by the modified Taylor–Ulitovsky fabrication
method based on rapid solidification phenomena [10]. The interaction of local magnetic moments with
stresses arising from fast drawing, as well as different thermal expansion coefficients of the metallic
nucleus and glass shell during a microwire’s production, defines the magnetoelastic anisotropy. Hence,
the magnetoelastic anisotropy is regulated by

Kme ≈ 3/2 λs σinternal (1)
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where λs is the saturation magnetostriction coefficient, and σinternal is the internal stresses induced
during the fabrication process.

The sign and magnitude of the magnetostriction coefficient determines either the domain
structure or hysteresis loop character of glass-coated microwires. In addition, in low magnetostrictive
compositions, the stress dependence of magnetostriction either applied or internal can be relevant [11,12].
The dependence of the magnetostriction on stress is expressed as

λs (σ) = λs (0) − Bσ (2)

where λs(σ) is the magnetostriction constant under stress; λs(0) is the zero-stress magnetostriction
constant; B is a positive coefficient of order 10−10 MPa, and σ is applied or internal stresses. This
change of the magnetostriction can be associated with both applied, σapplied, and/or internal, σinternal,
stresses (σtotal = σapplied + σinternal). In accordance, for the low-magnetostrictive compositions (with λs

(0) ≈ 10−7) and internal stresses of the order of 1000 MPa, the second term of Equation (2) is almost of
the same order as the first one. Correspondingly, the magnetostriction is a key factor to tune magnetic
properties of glass-coated microwires.

The characteristic feature of amorphous glass-coated microwires with positive magnetostriction is
the spontaneous magnetic bistability associated with a single-step axial magnetization reversal and
fast DW propagation [6,13]. Negative and nearly zero magnetostrictive microwires, on the other hand,
display an unhysteretic hysteresis loop and attractive high frequency magneto-transport properties
(also known as the giant magnetoimpedance effect) [8,14,15].

Conventional annealing is a typical approach to improve the magnetic properties of magnetic
materials (e.g., permalloy, Si steels, etc.) [16], and in particular of rapidly quenched soft magnetic
alloys [17]. Accordingly, a few attempts to tailor magnetic properties of glass-coated microwires
by conventional annealing (without stress) have been reported [18,19]. Surprisingly, considerable
magnetic hardening has been observed upon annealing of Co-based microwires with a vanishing
magnetostriction coefficient [18]. However, we recently observed that stress annealing can be an even
more effective method for tuning the magnetic properties of glass-coated microwires [20]. In particular,
we recently observed that stress annealing allows the induction of a transverse magnetic anisotropy
that can be more effective for tuning the magnetic properties of glass-coated microwires. Therefore,
the effect of annealing in the presence of applied stresses (stress annealing) is quite relevant and
important to investigate.

Studies of DW dynamics in glass-coated microwires have been a subject of intensive research [21–24].
Achieving high DW velocities in these materials has relied on geometrical constraints (i.e., different
values of internal stresses) and special magnetic structures formed in either positive, negative,
or vanishing magnetostrictive compositions. In particular, around vanishing but still negative
magnetostriction, fast DW velocities have been reported in amorphous Co-based microwires by
means of controlling the annealing treatment conditions (i.e., changing the annealing temperature, time,
and applied stresses) [18,25]. In these previous studies, the features of induced magnetic bistability
have been discussed in consideration of the effect of annealing on the magnetostriction values and
formation of axial domain structures in the inner cores of microwires.

In this research, we report upon the influence of stress annealing on the magnetic properties and
DW dynamics of Co-based amorphous and nanocrystalline glass-coated microwires with induced and
spontaneous magnetic bistability, respectively. We evaluate the effect of different stress values on the
magnetic properties and DW dynamics.

2. Materials and Methods

Amorphous Co69.2Fe4.1B11.8Si13.8C1.1 (total diameter D ≈ 30.2 µm; metallic nucleus diameter
d ≈ 25.6 µm) and nanocrystalline Co38.5Fe38.5B18Mo4Cu1 (total diameter D ≈ 16.6 µm; metallic
nucleus diameter d ≈ 10 µm) glass-coated microwires have been prepared by means of a modified
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Taylor–Ulitovsky technique described elsewhere [9,10]. Scanning electron microscopy (SEM, TESCAN
model VEGA, UPJS, Kosice, Slovakia) was used to examine the wires’ topologies (Figure 1a).
The diameters of the metallic nucleus and the glass shell were determined using an optical microscope
(Axio Scope A1, Carl Zeiss, Jena, Germany), as shown in Figure 1b,c.
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Figure 1. SEM image of a Co38.5Fe38.5B18Mo4Cu1 microwire (a) and optical microscope images in
the transmitted light mode showing sample diameters for the (b) Co69.2Fe4.1B11.8Si13.8C1.1 and (c)
Co38.5Fe38.5B18Mo4Cu1 microwires. The yellow arrows are for guidance.

Structure and phase compositions of as-prepared microwires were characterized by a BRUKER
(D8 Advance, Karlsruhe, Germany) X-ray diffractometer with Cu-Kα (λ = 0.15406 nm) radiation.
The samples were attached to the diffractometer, at which each scan was made over a two-theta angular
range of 30–90 degrees with a step size of 0.05◦ and a step time of 30 seconds for each step.

We performed DW measurements with a set-up system consisting of three pickup coils based
on the classic Sixtus–Tonks experiments [26]. Stress-annealed microwire samples (10 cm long)
were placed coaxially inside of pickup coils. A magnetic field was generated by a solenoid upon
applying rectangular-shaped voltage. As described previously [22,23,27], the DW propagation induces
electromotive force (EMF) in the coil that is picked up at an oscilloscope upon passing the propagating
wall. The DW velocity was estimated as

υ = l/∆t (3)

where l is the distance between pick-up coils and ∆t is the time difference between the maximum in the
induced EMF. In reported DW velocities, we excluded the non-linearity at high values of magnetic
fields from the discussion and aimed only at the DW characteristics in the viscous regime.

Hysteresis loops of as-prepared and stress-annealed samples were measured by the flux metric
methods used in [8]. We represented the hysteresis loops as normalized magnetization, M/Ms, versus
the applied magnetic field, H, where Ms is the magnetic moment of the sample at the maximum
magnetic field amplitude Ho.

The stress-annealing process was carried out in a conventional furnace where a mechanical load
was attached into one end of the microwire and axially placed via the furnace nozzle. Values of the
applied stresses were calculated based on Young moduli of the metallic nuclei and the glass shell,
as well as the microwire cross-sectional area, described in [25].

Magnetostriction coefficients were measured by the small-angle magnetization rotation (SMAR)
methods described elsewhere [12,28]. Briefly, the magnetostriction coefficient was evaluated according
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to dependence of the axial magnetic field on an applied stress at the fixed value of the induction voltage
V(2f), according to the expression

λs = − (µoMs/3)(∆H/∆σapp)V(2f) = constant (4)

where µoMs is the saturation magnetization, and σapp is the applied tensile stress.

3. Results and Discussion

Figure 2 shows XRD patterns of as-prepared Co69.2Fe4.1B11.8Si13.8C1.1 and Co38.5Fe38.5B18Mo4Cu1

glass-coated microwires. As can be clearly seen, the Co69.2Fe4.1B11.8Si13.8C1.1 microwires presented
an amorphous structure confirmed by a diffuse halo, without observation of any crystalline peaks.
In contrast, notable crystalline peaks corresponding with α-FeCo phase (33 nm average grain size) were
shown for Co38.5Fe38.5B18Mo4Cu1 microwires. It is worth underlining that, in some cases, decreasing
the quenching speed during the fabrication process resulted in formation of nanocrystallites embedded
within an amorphous matrix. Analysis of the crystalline peak features and average grain size calculation
have been reported earlier by us for different Fe- and Co-based of nanocrystalline microwires [29].
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Figure 2. XRD patterns of as-prepared Co69.2Fe4.1B11.8Si13.8C1.1 and Co38.5Fe38.5B18Mo4Cu1 glass-coated 

microwires. 
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Figure 2. XRD patterns of as-prepared Co69.2Fe4.1B11.8Si13.8C1.1 and Co38.5Fe38.5B18Mo4Cu1 glass-
coated microwires.

As-prepared amorphous Co69.2Fe4.1B11.8Si13.8C1.1 microwires presented an almost unhysteretic
shape with low coercivity, Hc≈ 4A/m (Figure 3), as previously reported for Co-based glass-coated
microwires with low and negative λs (λs ≈ −10−7). Slightly irregular hysteresis loop shapes can
be related either to the interface layer between the metallic nucleus and glass coating [30], or to a
contribution of the small inner axially magnetized domain that usually presents higher coercivity.

For Co69.2Fe4.1B11.8Si13.8C1.1 amorphous samples, we performed a series of stress-annealing steps
varying the annealing time from 5 to 30 min at a fixed annealing temperature (300 ◦C) and 80 MPa
applied stress. The evaluation of coercivity as well as magnetostriction with annealing time are plotted
in Figure 4a. As can be appreciated, stress annealing resulted in an increase of coercivity (Hc increased
from 4 A/m in as-prepared samples to 33 A/m in stress-annealed samples at tann 30 min). In most cases,
conventional annealing methods result in decreasing coercivity due to internal stress relaxation induced
by the fabrication process. However, in the case of Co-based microwires, considerable magnetic
hardening upon annealing has been recently observed [18]. In the present case, observed Hc values
were considerably lower than those reported in [18]. Such magnetic hardening can be explained by
considering the effect of annealing on the magnetostriction coefficient.
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Figure 4. Evaluation of the coercivity and magnetostriction coefficient of stress-annealed
Co69.2Fe4.1B11.8Si13.8C1.1 microwires versus annealing time at a fixed annealing temperature of 300 ◦C
with an 80-MPa applied stress (a), and hysteresis loops of stress-annealed samples for 20 and 30 min (b).

Consequently, we evaluated the λs values upon stress annealing. The magnetostriction shifted
from highly negative to nearly zero in as-prepared versus stress-annealed Co69.2Fe4.1B11.8Si13.8C1.1
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microwire samples at tann = 30 min, respectively. In the present case of stress annealing (i.e., conventional
annealing simultaneously under tensile stress) the situation was rather complex.

As such, two different induced anisotropies were present: one arising from the mechanical
load (transversal), and the other from annealing (stress relaxation and hence magnetostriction
modification), leading to a redistribution of the internal stresses and/or local microstructures of
the sample. In addition, if the initial magnetostriction coefficient is low and negative, we must consider
two opposite consequences on the internal stresses. The first contribution is an increase of the total
magnetoelastic energy. The second must be related to stress dependence (either applied or internal
stresses: σtotal = σapplied + σinternal) on the magnetostriction coefficient, described in Equation (2),
which is quite relevant in the case of a low magnetostriction constant, λs,0.

We analyzed DW dynamics in consideration of the observed rectangular character of hysteresis
loops and induced magnetic bistability of stress-annealed Co69.2Fe4.1B11.8Si13.8C1.1 microwire (presented
in Figure 4b). Due to a rectangular hysteresis loop, the remagnetization of this sample ran through
the DW propagation within an inner single-domain core [18,25]. As can be clearly seen in Figure 5,
the DW velocity dependencies on applied magnetic fields presented typical DW linear growth velocity
with the magnetic field.
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Figure 5. Domain wall velocity and calculated mobility for stress-annealed Co69.2Fe4.1B11.8Si13.8C1.1

microwires performed at a fixed annealing temperature of Tann = 300 ◦C under 80 MPa for tann = 20
and 30 min.

The response of a DW to a magnetic field in a viscous medium is described by the classical
equation of motion [31]. This leads to the following expression for the steady-state wall velocity:

υ = S (H − H0) (5)

where H is the axial magnetic field, H0 is the critical propagation field below which DW propagation
is not possible, and S is the DW mobility regulated by S ≈ δ ≈ (A/Kme)1/2, where A is the exchange
stiffness constant and Kme (Equation (1)) is the magnetic anisotropy constant. Consequently, both DW
velocity and mobility are strongly dependent on magnetoelastic anisotropy. Reasonably high DW
velocities and DW mobilities are both shown in Figure 5. In parallel to the hysteresis loops presented
in Figure 4b, stress-annealed samples for tann = 30 min showed either higher DW velocity or mobility
than those annealed for tann = 20 min. In particular, DW mobility increased from 22.80 m2/A.s for
samples stress annealed for 20 min, to 26.68 m2/A.s after 30 min annealing. Higher DW mobility
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should be ascribed to lower magnetoelastic anisotropy, deduced from the low coercivity, as well as the
near-zero magnetostriction, which is shown in Figure 4.

On the other hand, as-prepared Co38.5Fe38.5B18Mo4Cu1 nanocrystalline microwires presented
higher values of coercivity and rectangular hysteresis loops with spontaneous magnetic bistability,
as shown in Figure 6a. Stress annealing resulted in a considerable decrease of coercivity; the coercivity
decreased from 760 A/m in as-prepared samples to 610 A/m in stress-annealed samples at 300 ◦C for 1 h
under 556.8 MPa applied stress. The dependence of coercivity on different values of applied stresses
during annealing is presented in Figure 6b. As can be appreciated, a decreasing trend of coercivity after
stress annealing is observed. This is due to the compressive and back stresses induced by the mechanical
loads during annealing as well as the glass shell (i.e., upon removing the mechanical loads, compressive
or back stresses evolved) as reported previously for Fe-based amorphous microwires [32]. A similar
tendency of the DW velocity dependence on magnetic fields of stress-annealed Co38.5Fe38.5B18Mo4Cu1

microwires was also observed, as shown in Figure 7.
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As shown, DW velocities decreased upon stress annealing. It is well known that in nanocrystalline
alloys, the internal stresses are heterogeneously distributed into two phases (i.e., an amorphous
phase and a nanocrystalline phase). As reported previously [33,34], the easy magnetization axis
in nanocrystalline alloys can be either parallel or perpendicular to the direction of stresses applied
during annealing, depending on the sign of the magnetostriction and chemical alloy compositions.
Accordingly, Equation (2) can be reproduced as

Kme ≈ 3/2
(
Vcr λ

Cr
s σcr + (1− Vcr) λ

am
s σam

)
(6)

where Vcr is crystalline volume fraction, and σcr and σam denote the stresses located in the volume
fraction of nanocrystallites and the amorphous phase, respectively.

In the case of Fe-based nanocrystalline microwires (for example Finemet alloys), negative
magnetostriction of nanocrystallites (α-FeSi) compensate for the positive magnetostriction of the
parent amorphous phase yielding to vanishing magnetostriction values and overall low magnetoelastic
anisotropy. The application of tensile stresses during annealing of Finemet alloys develops inclined
hysteresis loops with an easy magnetization axis that is perpendicular to the direction of the tensile
stress [34]. In contrast, α-FeCo nanocrystallites have been observed with positive magnetostriction
in Co38.5Fe38.5B18Mo4Cu1 nanocrystalline microwires, and for that reason overall magnetostriction
has remained positive, with rectangular hysteresis loops. The character of such hysteresis loops
preserves rectangular with spontaneous magnetic bistability even after annealing (cf. Figure 6 in [35]).
Consequently, it can be deduced that the easy magnetization axis is parallel to the direction of
stresses. As such, the overall magnetoelastic anisotropy is reasonably higher (according to Equation
(6)), resulting finally in the lower DW dynamics observed in Figure 7. The DW mobility decreased
from 0.97 m2/A.s in as-prepared Co38.5Fe38.5B18Mo4Cu1 nanocrystalline samples to 0.71 m2/A.s in
stress-annealed samples at 556.8 MPa.

4. Conclusions

In summary, we have evaluated different stress-annealing conditions to study the magnetization
process and DW dynamics of Co-based amorphous and nanocrystalline glass-coated microwires.
Stress annealing of amorphous Co69.2Fe4.1B11.8Si13.8C1.1 microwires resulted in increasing coercivity
with induced magnetic bistability and considerable changes in magnetostriction. The latter was
elevated from highly negative to vanishing values. Fast DW velocities and mobilities appeared
with unusual features in stress-annealed amorphous microwires. The opposite tendency of DW
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dynamics was observed in the case of nanocrystalline Co38.5Fe38.5B18Mo4Cu1 microwires with highly
positive magnetostriction. Induced magnetoelastic anisotropy upon increasing applied stresses during
annealing resulted in decreasing the coercivity and hence lowering DW dynamics.
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