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Abstract: Plasma-enhanced atomic layer deposition (PEALD) is a widely used, powerful layer-by-layer
coating technology. Here, we present an atomistic simulation scheme for PEALD processes, combining
the Monte Carlo deposition algorithm and structure relaxation using molecular dynamics. In contrast
to previous implementations, our approach employs a real, atomistic model of the precursor. This
allows us to account for steric hindrance and overlap restrictions at the surface corresponding to the
real precursor deposition step. In addition, our scheme takes various process parameters into account,
employing predefined probabilities for precursor products at each Monte Carlo deposition step. The
new simulation protocol was applied to investigate PEALD synthesis of SiO2 thin films using the
bis-diethylaminosilane precursor. It revealed that increasing the probability for precursor binding to
one surface oxygen atom favors amorphous layer growth, a large number of –OH impurities, and the
formation of voids. In contrast, a higher probability for precursor binding to two surface oxygen
atoms leads to dense SiO2 film growth and a reduction of –OH impurities. Increasing the probability
for the formation of doubly bonded precursor sites is therefore the key factor for the formation of
dense SiO2 PEALD thin films with reduced amounts of voids and –OH impurities.

Keywords: plasma-enhanced atomic layer deposition; Monte Carlo simulation; molecular dynamics
simulations; density functional theory; ReaxFF reactive force field

1. Introduction

Atomic layer deposition (ALD) is a coating technology based on self-terminating reactions of
gaseous precursor molecules with surface functional groups of the substrate. As shown in Figure 1,
a precursor vapor (usually an organometallic compound) is introduced in the chemical reactor. It reacts
with the functional groups at the surface of the substrate, until the surface is saturated (first half-cycle).
Excess precursor and reaction byproducts are purged by inert gases. Next, a second precursor is pulsed
in the reactor, such as an oxidizing agent like H2O, ozone, O2, or O2 plasma, which reacts with the
remaining ligands of the precursor material (second half-cycle). The reactor is purged again. The
ALD process is continued by repeating the above pulsing and purging steps, which constitute the
ALD cycle, until the desired film thickness is reached. These reactions depend only on the abundancy
and variety of the surface functional groups for a specific precursor, and not on the shape of the
substrate. Hence, the ALD technology leads to extremely conformal coatings on highly curved [1–5] or
nanostructured substrates. Additionally, the composition of the thin films can be controlled with atomic
precision by alternating the organometallic compound for binary or more complex mixtures [1,5].
Plasma-enhanced ALD (PEALD), which utilizes oxygen plasma, is applied in order to increase the
reactivity of the oxidizing agent [6]. This enables, for example, room temperature deposition of SiO2

thin films, which is possible only at 200 ◦C in typical thermal processes using O3 [7]. However, recently
developed highly reactive precursors allow for thermal ALD processes at temperatures approaching
room temperature [8,9]. The O radical species present in the plasma allow for additional tailoring of
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material properties [10,11]. For example, in the case of TiO2 coatings, PEALD films are denser and
have a higher refractive index [12].

Atomistic simulations of PEALD processes are of particular interest for the fundamental
understanding of the growth processes, mechanisms of material densification and crystallization, void
formation, intermixing, and mechanical properties of the coatings at an atomic level [13]. However, such
simulations are very challenging due to the usually significant number of competing chemical reactions
and the thickness-dependent structure relaxation of the growing surface [13–15]. For mechanistic
questions, such as reaction paths, reaction energies and barriers electronic structure approaches are the
methods of choice [13]. In particular, the advent of modern density functional theory (DFT) based on
accurate gradient-corrected and hybrid functionals allowed for the identification and understanding of
elementary chemical reactions of a number of ALD processes [13]. For example, the understanding
of SiO2 ALD mechanisms has proceeded through a number of computational studies employing
DFT [16]. The reactivities have been investigated for a number of aminosilane precursors [17–23],
which display low activation energies for reactions with surface hydroxyl groups. Despite the progress
in the applications and development of electronic structure methods, their computational cost is still too
high to reliably simulate the overall ALD growth [13,15]. This task can only be achieved by employing
more approximate methods capable of extending the spatiotemporal scale accessible for simulations.
The two such approaches applied for studies of ALD growth dynamics are the atomistic kinetic Monte
Carlo (KMC) model and molecular dynamics (MD) [24].

KMC is a stochastic method intended to simulate the time evolution of processes that occur with
priori known transition rates among states. The main advantage of the KMC method is its ability
to model a broad range of time scales [24]. However, it relies on an accurate knowledge of rate
constants for all elementary reaction steps. Such information is difficult to obtain by employing DFT
due to the deficiencies of existing exchange–correlation functionals and requires more accurate and
computationally much more demanding electronic structure methods. Another disadvantage of the
KMC approach is its inability to simulate the morphology of the growing ALD film, i.e., crystalline
vs. amorphous growth. Atomistic KMC simulations using DFT-derived reaction mechanisms and
activation energies have been used, e.g., to investigate ALD growth of HfO2 [14,25].

In MD simulations, the time evolution of interacting atoms is described directly by solutions of
the corresponding equations of motion [24]. Therefore, the MD method, in combination with carefully
parameterized potential functions or reactive force fields, is able to describe relaxation phenomena
and defects in ALD-generated films. However, the temporal scale of MD simulations (ps to ns) is
very small compared to the duration of ALD pulses. This problem has been addressed by Hu et al. in
MD simulations of Al2O3 ALD by separating the large time scale of surface reactions (ns to s) from
the small time scale of structural relaxation (ps) [15]. Their deposition algorithm assumes that ALD
reactions occur only on the active –OH groups on the growing surface and that the products of the
metal precursor pulses can be fully hydroxylated, i.e., –Al(CH3)2 is fully converted to –Al(OH)2. The
direct (large time scale) simulations of surface reactions are replaced by a deposition algorithm. This
starts with a hydroxylated surface and randomly picks one of the available surface –OH groups for
the deposition of the ALD product (–Al(OH)2). Approximate steric and overlap restrictions with
neighboring atoms are checked and, if satisfied, an H atom in the selected –OH group is replaced by
–Al(OH)2. After each deposition step, the structure is relaxed using MD simulation. Unlike KMC,
this MD-based approach enables us to study the thickness-dependent evolution of the microscopic
structures of ALD layers. In addition, the influences of operating parameters, such as precursor
type, temperature, external fields, initial surface structure (crystalline vs. amorphous), number and
distribution of –OH, etc. on the ALD process can be investigated at the atomic level.

Due to a high computational cost, MD simulations of large systems are rarely performed using
electronic structure methods. Instead, more approximate approaches, such as interatomic potential
functions or force fields, are used. However, the applicability of many interatomic potentials is
restricted to one element oxidation state and a small number of polymorphs [26]. A relatively new and



Materials 2019, 12, 2605 3 of 11

promising trend in the development of simulation methods for nanomaterials is the use of so-called
reactive force fields, such as the ReaxFF approach of van Duin and co-workers [27]. This has been
applied to a wide range of materials including amorphous and crystalline SiO2 [28,29] and Al2O3 [30],
yielding very good agreement with experimental data. Although parameterization of ReaxFF is
relatively complex, it is very powerful since it allows for an accurate description of the chemistry of
nanostructures with a computational cost far below that of quantum mechanical methods. In our
recent study, we demonstrated that the structure of amorphous SiO2 could be accurately described at
the ReaxFF level by employing relatively small semi-amorphous periodic models [31]. A simulation
cell containing only 64 SiO2 units yielded a structure that properly reproduced experimental structural
parameters, mechanical properties, and IR spectra of bulk silica, using subsequent refinement at the
DFT level.

In this article, we present an atomistic simulation scheme for a PEALD process that combines the
Monte Carlo (MC) deposition algorithm and structure relaxation using MD. Our scheme is based on
the one proposed by Hu et al. [15]. However, in contrast to their implementation that directly deposits
hydroxylated products of the second ALD half-cycle, we use a real, atomistic model of the precursor
deposited in the first half-cycle. In addition, for the MC deposition step, our approach introduces site
occupation probabilities for precursor reaction products. The performance of our simulation scheme
is demonstrated for PEALD synthesis of SiO2 thin films, using a bis-diethylaminosilane (BDEAS)
precursor with the structural formula H2Si(NEt2)2, Et = C2H5. We show that the resulting structure of
the SiO2 coating strongly depends on the occupation probabilities for precursor products. Densification
of the SiO2 film and reduction of –OH impurities are observed for increasing occupation probability of
doubly coordinated surface sites.
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Figure 1. Schematic representation of a surface using plasma-enhanced atomic layer deposition
(PEALD).

2. Method and Implementation

2.1. PEALD Simulation Procedure

Figure 2 shows the implemented protocol for simulation of the first PEALD deposition half-cycle.
In contrast to the original scheme of Hu et al. [15], it used the MC method to simulate the full precursor
deposition process. In the first step of each precursor deposition half-cycle, the surface –OH groups
were enumerated. Then, during each MC step, a free surface –OH group was randomly selected.
The surface was scanned for neighboring free –OH groups and, depending on their number and
precursor type, a MC move was performed that creates one of possible precursor products. This part



Materials 2019, 12, 2605 4 of 11

is also different than in the original scheme of Hu et al. [15], where direct deposition of the product
of the second half-cycle (i.e., –Al(OH)2) was performed. Steric hindrance and overlap restrictions
at the surface corresponding to the real precursor deposition step were accounted for only in an
approximate way, by defining an exclusion zone around each successfully deposited –Al(OH)2 group.
In contrast, our approach employs a real, atomistic model of the precursor. After each attachment step,
the structure was relaxed, either by local structure optimization or by short simulated annealing using
molecular dynamics (MD). The energy of the chemisorption was calculated and used to calculate the
acceptance criterion employing the usual Metropolis–Hastings rule [32]. The procedure was repeated
until all enumerated surface –OH groups were either reacted or excluded from MC moves due to
steric hindrance and overlap with chemisorbed precursor molecules. Alternatively, a predefined
concentration of surface –OH groups can be left unreacted. The final precursor monolayer structure
was relaxed and equilibrated using MD. The second ALD half-cycle was modeled by simply replacing
all organic surface groups with –OH groups, followed by relaxation and equilibration using MD. This
corresponds to full conversion of the products of the precursor pulse to surface hydroxyl species. Such
an approach is particularly well suited for simulating ALD growth of systems with primary reactions
that have relatively low activation energies [14]. It has been shown that, unlike thermal ALD, PEALD
can be efficiently performed even at room temperature [6,7], justifying the assumption of low activation
energies. It has also been shown by calculations that oxygen plasma can quantitatively oxidize organic
surface precursor species [17].

The selection of created chemisorbed precursor products depends on predefined occupation
probabilities which remain constant during the simulated thin film growth. For example, considering a
precursor yielding two possible chemisorbed precursor products P1 or P2 requires the corresponding
occupation probabilities

{
pP1, pP2 ∈ [0, 1]

}
, with

pP1 + pP2 = 1 (1)

This approach can be easily generalized to a set of N products {P1, P2, . . . , PN} with occupation
probabilities

{
pP1, pP2, . . . , pPN ∈ [0, 1]

}
fulfilling the condition

pP1 + pP2 + . . .+ pPN = 1 (2)
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2.2. Implementation

The implementation of our PEALD simulation protocol used the Python programming language.
It was designed in a modular way employing the Atomic Simulation Environment (ASE) [33], which
was used for storing and manipulating structure models as well as for the reading and writing
of all necessary input and output files. Structure relaxation and simulated annealing steps were
accomplished employing the General Utility Lattice Program (GULP) [34]. The Python library ASE
provided a built-in GULP interface which enabled single-energy calculations, structure optimizations,
and MD simulations.

3. Test Application—PEALD of SiO2

As a test, the PEALD simulation protocol was applied to investigate the synthesis of SiO2 thin
films using a bis-diethylaminosilane (BDEAS) precursor with the structural formula H2Si(NEt2)2,
Et = C2H5. BDEAS belongs to the class of aminosilanes widely used in ALD, and it has been successfully
applied for improving surface characteristics in PEALD of SiO2 [10,35]. It has been shown in [17]
that Si precursors with amino ligands can dramatically lower the activation energies for reactions of
aminosilane with surface hydroxyl groups, making BDEAS-based PEALD a very good case for testing
our simulation protocol.

3.1. Computational Details

3.1.1. Model Systems

Hydroxylated SiO2 substrate and deposited precursor products are modeled using two types
of cluster models of two neighboring –OH groups and a two-dimensional (2D) periodic surface.
Figure 3a,b shows both cluster models. The smaller, flexible cluster model has the composition Si2O7H6,
while the bigger and more rigid cage cluster model has the composition Si8O14H8. The 2D periodic
substrate model shown in Figure 3c is a hydroxylated α-quartz (0001) surface containing 216 atoms,
with the unit cell composition Si48O120H48 and lattice parameters a = 14.778 Å, b = 17.077 Å, γ = 90.081◦.
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Figure 3. (a,b) Two cluster models of two neighboring –OH groups on a hydroxylated SiO2 surface. The
shaded lower part indicates the “surface” part of the clusters. (c) 2D periodic model of a hydroxylated
α-quartz (0001) surface.

3.1.2. Methods

All DFT calculations employed our implementation of Kohn–Sham DFT for molecular and periodic
systems [36–40] within the TURBOMOLE program package [41,42]. The Perdew–Burke–Ernzerhof
(PBE) exchange–correlation functional [43], triple zeta valence plus polarization (def2-TZVP) [44] basis
sets, and Grimme dispersion correction (DFT-D3) [45,46] were used. MD and MC simulations employed
the ReaxFF reactive force field [27] using GULP-provided combined force field parameters [27,47,48].

3.2. Surface Reactions and Plasma Pulse Model

Figure 4 shows the possible elementary surface reactions for PEALD synthesis of SiO2 thin films
using a BDEAS precursor. The first half-cycle starts with the deposition of BDEAS on the hydroxylated
SiO2 surface and its reaction with –OH groups. There are two possible reactions (1 and 2a in Figure 4)
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that yield the organic precursor bonded to one or two surface oxygen atoms, denoted as P1 and P2,
respectively. Reaction 2b converts P1 to P2. After the plasma pulse, P1 and P2 lead to a surface Si atom
with three or two –OH groups, denoted as S1 and S2, respectively. Alternatively, S1 can be converted
to site S2 by reaction 3, which releases H2O. We have concentrated on reactions 1, 2a, 2b, and 3, since
calculations indicate that oxidation of the organic precursor by oxygen radical species does not alter
bonds between the precursor Si atom and the surface [17].
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bis-diethylaminosilane (BDEAS) precursor. P1 and P2 are products of the precursor deposition.
S1 and S2 are products of the plasma pulse.

3.3. Reaction Energies

As the first step, we investigated the energetics of the elementary reactions using DFT and the
cluster models of two neighboring OH groups on a hydroxylated SiO2 surface, shown in Figure 3a,b.
The aim of the cluster studies was to obtain insights into the intrinsic energetics of the reactions without
the spatial and steric constraints present at silica surfaces. All three reactions (1, 2a, and 2b) of the
precursor with the cluster model in Figure 3a are exothermic, with reaction energies ∆Er of −58.3,
−64.3, −6.0 kJ/mol, respectively. Reaction 3, converting S1 to S2, is slightly endothermic, with an
∆Er of 37.5 kJ/mol. For the bigger cluster model in Figure 3b, the calculated reaction energies ∆Er of
reactions 1, 2a, 2b, and 3 are –67.0, –30.5, +36.5, and +63.0 kJ/mol, respectively. In the next step, we
investigated the energetics of the same reactions on a hydroxylated α-quartz (0001) surface (Figure 3c).
The calculated reaction energies ∆Er were −63.0, −18.4, +44.6, and +60.9 kJ/mol for reactions 1, 2a,
2b, and 3, respectively. The value for exothermic reaction 1, involving only one surface OH group
and yielding site P1, is very similar for all three models shown in Figure 3. Reaction energies for
reaction 2a increase with increasing rigidity of the structure, while remaining exothermic. In contrast,
reaction 2b is slightly exothermic for the small, flexible cluster model, but becomes endothermic for the
structurally rigid models of the bigger cluster and surface. Reaction 3 is endothermic for all models,
but reaction energies increase with increasing rigidity of the structure. Thus, reactions 1 and 2a are
always energetically favorable. In contrast, reactions 2b and 3, transforming P1 to P2 and S1 to S2,
respectively, are energetically unfavorable in a rigid atomic environment. This can be attributed to
constraints of the surface on the one hand, since bringing two surface oxygen atoms close enough to
create sites P2 and S2 is connected with energy penalty. On the other hand, this demonstrates the high
stability of the Si–O bonds, especially in the case of S1.
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3.4. PEALD Simulations

The cluster and periodic calculations demonstrate that the actual amount of precursor deposition
products P1 and P2 as well as the plasma products S1 and S2 formed at each PEALD cycle will be
influenced by the actual surface structure and the availability of neighboring –OH groups. In addition,
temperature, pressure, and concentration of precursor species, and plasma energy are expected to
play an important role. Accurate simulations including all these parameters would be a very complex
task. As described earlier, our scheme takes the process parameters into account in a simplified way,
employing predefined occupation probabilities at each deposition MC step. The probabilities for the
creation of P1 (precursor bonded to one surface O atom) and P2 (precursor bonded to two surface
O atoms) are pP1 and pP2 = 1 − pP1, respectively. The value pP2 = 1 means that each Monte Carlo
step attempts to create P2, and P1 is created only if P2 cannot be formed due to missing neighboring
surface –OH groups or steric constraints. In contrast, pP2 = 0 means that no P2 is directly created
during MC moves. As shown in Figure 5, these probabilities have significant impacts on the structures
of PEALD layers. The simulated structures of SiO2 deposited for probabilities pP2 = 0 (pP1 = 1),
pP2 = 0.5 (pP1 = 0.5), and pP2 = 1 (pP1 = 0) clearly demonstrate the densification of the growing SiO2

layer with increasing pP2. For pP2 = 0, each precursor molecule is allowed to react with only one surface
–OH group, yielding P1. The plasma pulse converts P1 to S1, with three hydroxyl groups connected to
the deposited silicon atom. This increases the number of hydroxyl groups compared to the initial state,
thus favoring the creation of voids, –OH impurities, and amorphous growth of deposited films. In
contrast, for pP2 = 1, after the first ALD half-cycle, the maximum possible number of P2 precursor sites
is created. The plasma pulse converts P2 to S2, with two hydroxyl groups connected to the deposited
silicon atom. In this case, the number of hydroxyl groups remains unchanged after the deposition
step compared to the initial surface state, and, in combination with compact Si–O–Si bridges, it results
in a dense film growth. Figure 6 shows the average growth per cycle (GPC) and mass densities of
deposited SiO2 thin films obtained by 30 simulations of seven PEALD cycles for each of pP2 = 0.0, 0.25,
0.5, 1.0. Virtually identical results were obtained for MD simulations at temperatures ranging from 300
to 1000 K at a time scale of up to 10 ps. GPC and mass densities were basically converged after seven
simulated PEALD cycles. Decreasing GPC and increasing density were observed for increasing pP2,
confirming the observed densification of thin films shown in Figure 5. The very low values for GPC
and density in the case of pP2 = 0 are mainly due to the strong steric effects when only creation of singly
coordinated P1 and S1 is allowed and creation of P2 and S2 is completely excluded. This confirms
again the key role of doubly coordinated surface sites for the densification of SiO2 PEALD thin films.
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The actual reaction conditions were accounted for only in an approximate way in our occupation
probability model. For instance, possible precursor desorption due to the substrate heating was not
directly simulated. Possible influences from precursor temperature and concentration were not directly
simulated, since our MC scheme deposits one precursor molecule after the other, disregarding the
actual reaction path. However, we expect that our model can describe plasma energy effects, since the
presence of plasma ions in the second half-cycle may affect reactions 2b and 3 (Figure 4), and therefore
the occupation probabilities of doubly coordinated products P2 and S2.

Our simulation scheme has been tested for BDEAS as a bis-aminosilane precursor containing two
amino ligands. For mono-aminosilane precursors, we expect simulated structures resembling the case
of pP1 = 1 in Figure 5, but with denser films and less steric hindrance effects, since in this case there are
no remaining precursor amino ligands after the first deposition half-cycle. Aminosilane precursors
with three or four amino ligands can lead, in principle, to even higher surface densification, since they
can increase the number of compact Si–O–Si bridges. However, the higher number of amino ligands
favors steric hindrance effects, and triply and quadruply occupied surface sites strongly reduce the
availability of surface –OH groups, thus inhibiting the overall film growth. In summary, the size and
number of precursor amino ligands are expected to be determining factors for the steric effects and
availability of –OH groups in our MC simulation scheme.

4. Conclusions

In this study, we presented an atomistic simulation scheme for PEALD that combines the Monte
Carlo deposition algorithm and structure relaxation using molecular dynamics. In contrast to previous
implementations, our approach employed a real, atomistic model of the precursor. This allowed
us to account for steric hindrance and overlap restrictions at the surface corresponding to the real
precursor deposition step. In addition, our scheme took various process parameters into account in a
simplified way, employing predefined occupation probabilities for precursor products at each Monte
Carlo deposition step. The new simulation protocol was applied to investigate the PEALD synthesis of
SiO2 thin films using a bis-diethylaminosilane precursor. Initial analysis of the precursor products
with hydroxylated SiO2 surfaces employing DFT calculations demonstrated a strong dependence of
reaction energies on the surface structure, in particular for the precursor bonded to two surface oxygen
atoms. PEALD simulations employing our new method revealed that precursor binding to one surface
oxygen atom favors amorphous layer growth, a large number of –OH impurities, and the formation of
voids. In contrast, precursor binding to two surface oxygen atoms leads to dense SiO2 film growth and
reduction of –OH impurities. Increasing the probability for the formation of doubly bonded precursor
sites is therefore the key factor for the formation of dense SiO2 PEALD thin films with reduced amounts
of voids and –OH impurities.
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