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Abstract: In addition to the most common applications of macroporous film: Supplying a large
surface area, PC-FTO (macroporous fluorine-doped tin oxide with photonic crystal structure) can be
employed as a template to control the morphologies of WO3 for exposing a more active facet, and
enhance the overall photo-electron conversion efficiency for the embedded photoactive materials
under changing illumination incidence through refracting and scattering. The optical features of
PC-FTO film was demonstrated by DRUVS (diffuse reflectance UV-vis spectra). Plate-like WO3 were
directly synthesized inside the PC-FTO film as a control group photoanode, Ag2S quantum dots were
subsequently decorated on WO3 to tune the light absorption range. The impact of photonic crystal
film on the photoactivity of Ag2S/WO3 was demonstrated by using the photoelectrochemical current
density as a function of the incidence of the simulated light source.
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1. Introduction

Photocatalysis for applications on a photon-electricity or photon-chemical bond have been paid
much attention due to the energy crisis and environmental pollution [1]. Photoelectrochemical devices
were therefore developed to perform solar energy conversion including photocurrent generation [2],
pollutant degradation [3], and H2 or CO evolution [4,5]. In consideration of the photocatalysis
mechanism, improving the performance of a solar energy conversion device is based on several
critical factors, such as the enhancement of light harvesting, efficient utilization of photons, rapid
charge carrier separation and transportation. To this end, many efforts including elemental doping [6],
dye sensitization [7], adding co-catalysts [8], making composites [9], plasma enhancement [10] and
nanostructuring the photoactive materials [11,12] have been made, leading to improved solar energy
conversion efficiency being achieved. Though, in addition to the above attempts, a more convenient
strategy is correlating the nature of the sun and materials. To be more specific, the sun can be considered
as a light source of changing angle relative to a certain location of the Earth, due to the changing solar
elevation angle. Thus, the solar energy conversion devices receive photons of varied incidence and
density, typically, the photon density (mW cm−2) reaches its zenith at noon (ca. 90◦ solar elevation
angle). In this case, the photonic crystals (PCs) could take advantage of this nature of the sun for
more effective utilization of solar energy, due to its capability for manipulating the photon migration
depending on their incidence.

PCs are long-range ordered arrays materials and possess periodic modulation of refractive index
(RI) within an optical wavelength. The formation of photonic stop band (PSB) of a certain PCs structural
material is attributed to the differences between the RI of the PCs material and the RI of its external
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media (including gas, liquid or solid), and the periodicity. The concept of photonic effect within the
PSB range in PCs was first proposed by John [13] and Yablonovitch [14], independently. After that, the
photonic properties of PCs were further explored by theoretical calculations [15–17]. That is, within
a particular wavelength range that satisfies Bragg-Snell’s law [18], the PSB inhibits the propagation
of photons from a certain direction, reduces the group speed of photons (slow photons) and induces
multiple scattering [19]. The position of PSB in wavelength is commonly tunable, as is demonstrated
by Bragg-Snell’s law, it is reliant on the periodic order, the RI of PCs material and external media, filling
factors and incidence of illumination. Whereas for a given PCs based solar energy conversion device
in certain environment, filling factor, periodic order and RI should be considered as constants, and
thus the incidence of illumination would be the only tunable parameter for the manipulation of PSB
positions. In addition, different from tuning the RI, the filling factor or periodic order, the changing
of incidence would not affect the other properties of PCs (including geometric surface area, electric
conductivity and interfaces between PCs and embedded photoactive materials), which makes it very
convenient to study the PSB impact on photoactivity of embedded photoactive materials.

TCOs (transparent conductive oxides) including ITO (indium-doped tin oxide), ATO
(antimony-doped tin oxide) and FTO (fluorine-doped tin oxide) have been intensively applied
in functional windows, solar cells and displays [2,20]. For a solar energy conversion device, TCOs are
an ideal material for the synthesis of PCs due to their transparency in visible range and good electrical
conductivity. For instance, in previous studies, powder or film PCs have been employed to supply
enlarged surface areas available to support the embedded photoactive materials including g-C3N4 [21],
CdS [22], TiO2 [23], and halide perovskite photocatalyst [24]. Although the studies of the photonic
effect of PSB towards photoactivity of embedded photoactive material are limited. Of direct relevance
to this work, CdS embedded WO3 PCs powders were fabricated [25], the manipulation of PSB was
obtained through varying the periodic order (pore size) of WO3 PCs powder. Enhancement of the
hydrogen evolution rate is achieved in case of absorption range of CdS overlapping with the PSB of
WO3 PCs. However, the varied periodic order of WO3 PCs would not only change the PSB but also
suggest a different surface area and reaction sites for the embedded photoactive materials, which make
it less convenient to study the photonic effect on photocatalysis. In our recent report [26], g-C3N4 as
the photoactive material was embedded in an FTO PCs film, overlapped the PSB of FTO PCs film
and absorption range of g-C3N4 was achieved by tuning the position of the PSB through controlling
incidences. An alternative approach to fit the PSB and absorption range of photoactive materials is
tuning the absorption of photoactive materials by adding dyes.

Inorganic semiconductors such as CdS, CdSe, PbS, MnTe, and Ag2S, or organic dyes have been
exploited as sensitizers for light-absorption enhancement in dye-sensitized solar cells (DSSCs) or
quantum dot-sensitized solar cells (QDSCs) [3,9]. Among them, Ag2S is a convenient candidate
compound for applications in photoanodes. The energy band gap of Ag2S is ca. 1.1 eV [27],
corresponding to a broad absorption range of visible light and near-IR regions. In addition, Ag2S
reveals a promising absorption coefficient of ca. 104 cm−1 [28]. In the previous study, Ag2S quantum
dots were prepared on TiO2 of various architectures (including nanotubes and nanorods) [29] for the
formation of DSSCs, and also being synthesized on ZnO and SnO2 for the preparation of QDSCs [30,31].
The adding of Ag2S exhibited impressive light absorbability for the electrodes and thus led to improved
photoactivity. However, in addition to these wide bandgap semiconductors (TiO2, ZnO and SnO2),
WO3 exhibits a narrower band gap which can be photoactivated by visible light, and the band structure
allows an efficient photoelectron injection when composited with Ag2S [32].

In this work, WO3 was exploited as the photoactive materials, plate-like WO3 were directly
synthesized in FTO PCs film via a solvothermal method. Ag2S was then loaded on WO3 via SILAR
(successive ion layer adsorption and reaction) method. As control groups, WO3 and Ag2S sensitized
WO3 were also prepared on p-FTO (planar FTO glass). DRUVS (diffuse reflectance UV-vis spectra)
and PEC (photoelectrochemistry) were correlated to analyze the photonic effect on the photocatalytic
performance of Ag2S sensitized WO3.
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2. Materials and Methods

H2SO4 (≥95%), H2O2 (30 vol.%), FTO glass slide (11 Ω sq−1), monodispersed polystyrene (2.5 wt.%
aqueous suspension, 450 nm in diameter), SnCl4·5H2O (99.99%), NH4F (99.99%), Na2S·9H2O (99.5%),
AgNO3 (99.8%), WCl6 (99.95%) and methanol were purchased from Sigma-Aldrich (Saint Louis, MO,
USA) and used as received.

2.1. Synthesis of PC-FTO Films

The PC-FTO film was prepared through a modified well-established soft-template method [33].
A planar FTO glass was stood vertically in a glass sample vial (10 mL volume) containing 5 mL of
PS aqueous suspension at 60 ◦C for 16 h to obtain the PS film template. The FTO precursor solution
was prepared from SnCl4·5H2O (1.4 g, 4 mmol) sonicated in ethanol (20 mL) until dissolved, next, the
saturated NH4F solution (0.24 g, 2 mmol) was added, and the resulting mixture was further sonicated
until optically clear and colorless. The PS film was pre-soaked in ethanol for 30 min before being stood
vertically and submerged in FTO precursor solution for another 30 min under a vacuum (0.1 Pa). The
wet slide was then removed from the glass vial and transferred to a furnace oven for calcination at
450 ◦C for 2 h with a heat ramp rate of 1 ◦C min−1 in the air to burn off the PS spheres.

2.2. In-Situ Synthesis of WO3 Platelets in PC-FTO Films

The WO3 precursor solution was prepared using WCl6 (1.0 g, 6 mmol) sonicated in methanol for
ca. 15 min (40 mL) until dissolved. A PC-FTO substrate was put in an autoclave (25 mL volume) filled
with 15 mL WO3 precursor solution. Subsequently, the autoclave was transferred to a furnace oven
at 100 ◦C for 6 h. The sample was then transferred from the autoclave to a furnace oven for a heat
treatment at 475 ◦C for 2 h with a heat ramp rate of 1 ◦C min−1 in the air.

2.3. Sensitizing of WO3 with Ag2S Quantum Dots via SILAR Method

The Ag2S precursor was prepared from AgNO3 (50 mM) and Na2S (50 mM) aqueous solutions.
Typically, a WO3@PC-FTO film was soaked in AgNO3 solution for 30 s before being dried by nitrogen
stream. The film was then soaked in Na2S solution for another 30 s. Subsequently, the film was
rinsed with DI water and dried with nitrogen stream. This process was repeated several times to get
Ag2S/WO3@mac-FTO photoanodes sensitized with the varied amounts of Ag2S dots.

2.4. Characterization

Samples were stuck to an aluminium stage by sticky carbon tape, and then the SEM images were
achieved by a Hitachi S-4800 field emission scanning electron microscope (Tokyo, Japan). For the
preparation of TEM samples, films were scraped off from the FTO substrates and carefully ground.
The samples were then transferred to methanol for 15 min sonication. One drop of the suspension
was added to 3 mm porous carbon-coated copper grids and allowed to dry under air. JEOL 2011
transmission electron microscopes (Tokyo, Japan) were exploited to collect the TEM images with
200 kV accelerating voltage. An attached kit of an EDAX Phoenix X-ray spectrometer (Mahwah, NJ,
USA) incorporated to the TEM was employed to perform energy dispersive analysis of X-rays (EDX)
mapping. An Ocean Optics HR2000+ high-resolution spectrometer (Edinburgh, UK) was incorporated
with a DH-2000-BAL lamp with a light wavelength of 200 nm to 1100 nm (deuterium/helium). An
R400-7-UV-Vis transmission probe (Ocean Optics, Edinburgh, UK) was used to record the diffuse
reflectance UV-vis spectra using deuterium/helium lamb (200 nm–1100 nm). Spectra were collected
using Spectra Suite software (Version 2.7) of 10 s integration time, 30 boxcar smoothing width, and
10 scans to average. Wide angle PXRD patterns were obtained by a Lynx eye incorporated detector
Bruker-AXS D8 Advance instrument (Billerica, MA, USA), with Cu Kα (1.54Å) radiation, the slit on the
source was 1 mm and the detector slit was 2.5 mm. PXRD data were scanned from 10◦ to 70◦ 2θ, with
0.02◦ step size and a scan speed of 0.1 s per step.
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PEC measurements were carried out using a standard 3 electrode setup. The Ag/AgCl (3 M KCl
internal solution) was exploited as the reference electrode and a platinum sheet (10 × 10 mm2) was used
as the counter electrode. The samples were used as a working electrode, the connection was achieved
using copper tape on the top of the electrode and the bottom 10 mm of the electrode was immersed
into the electrolyte solution. The PEC cell contained a quartz window allowing the illumination of
simulated solar light. A 150 W Xe lamp with the (irradiance of ca. 100 mW cm−2) was exploited as the
simulated light source. NaOH (1 M) with pH at 13.6 was prepared as the aqueous electrolyte solution
using the Millipore system (≥18 MΩ cm−3, Burlington, MA, USA) filter water. All potentials can be
referenced to the reversible hydrogen electrode (RHE) using the following equation: Eref(Ag/AgCl) =

0.0210 V vs. NHE at 25 ◦C.

E(vs. RHE) = E(vs. Ag/AgCl) + Eref(Ag/AgCl) + 0.0591V× pH

3. Result and Discussion

3.1. Geometrical Properties

The geometrical properties of the as-prepared PC-FTO films are initially characterized by scanning
electron microscope (SEM), Figure 1a exhibits an inverse opal structural (face-centered cubic, FCC) film
with the pore size of ca. 330 ± 30 nm and a smooth FTO skeleton. This PC-FTO film was fabricated
on FTO glass via a well-established soft template method [34]. Figure 1b presents the edge of the
as-prepared PC-FTO film, which was approximately nine layers corresponding to ca. 2 µm in thickness,
indicating a large surface area available for the embedded materials, in comparison to that of planar
analogs. The long-range ordered FCC array and the periodic RI (between FTO skeleton and air pore)
suggests intensive photonic effects as expected by Bragg-Snell’s law. The hexagonal arrangement of
the air pore corresponds to the (111) plane of an FCC structure, which is the predominant plane for the
formation of a PSB from a PCs film. After the coating of WO3, homogeneous plate-like materials could
be observed on the skeleton of PC-FTO (Figure 1c and Figure S1), without blocking the pores. The
WO3@PC-FTO exhibits a relatively rougher surface in comparison to the bare PC-FTO (Figure 1a).
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Figure 1. (a) SEM image of macroporous fluorine-doped tin oxide with photonic crystal structure
(PC-FTO) viewed perpendicularly; (b) SEM image of the edge of PC-FTO film; (c) SEM image of
WO3@PC-FTO; (d) SEM image of Ag2S/WO3@PC-FTO, scale bar = 500 nm.
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It should be noted that the amount of the embedded photoactive materials in a PC film should
be carefully controlled because the excessive coating will reduce the periodicity of PCs, on the other
hand, the insufficient coating may lead to weak photoresponse. Furthermore, the geometrical shape
of the WO3 in a PC-FTO film can also be compared to that which is synthesized on a planar FTO
substrate using the same method (Figure 2). Within PC-FTO films, the feature size of the materials can
be restrained to a certain scale by the nanostructural substrate due to the complex geometrical surface,
similar feature size control effects can also be found in Fe2O3 embedded SiO2 [35] or SnO2 [12] in
previous reports. Figure 1d and Figure S2 reveal the WO3@PC-FTO film after the decoration of Ag2S,
the Ag2S decorated samples led to rougher surface due to the relatively small crystal size of Ag2S.
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3.2. Optical Properties

Since this work was focused on the impact of photonic crystal film on the photocatalytic
performance of Ag2S/WO3, the photonic effects and the optical properties of Ag2S/WO3 were
characterized by diffuse reflectance UV-vis spectra (DRUVS) and UV-vis absorption spectra, respectively.
The PSB position (expressed as the reflectance maximum) of PC-FTO film was recorded at the different
incidence of illumination with respect to the surface normal (Figure 3a) through DRUVS. For comparison,
the PSB position for (hkl) plane of a PC-FTO was also estimated by mathematic calculation from a
combination of Bragg’s and Snell’s laws as the following expresses:

λ =
2dhkl

m

[
ϕn2 + (1−ϕ)n2

0 − sin2θ
] 1

2

dhkl =
D
√

2

[h2 + k2 + l2]
1
2

where ϕ is the filling factor of PC-FTO film (assumed to be 0.26 for FCC structure), n and n0 are the
RI of FTO (ca. 1.61) and the external media, respectively. D is the periodic order of PC-FTO film
(ca. 340 nm). Since the calculation of a PSB position using Bragg-Snell’s law is based on an ideal FCC
structural model, thus a comparison between the calculated and experimental incident dependence
of PSB can be exploited to evaluate the optical quality of the as-prepared PC-FTO film. As shown
in Table S1, the experimental PSB is in good agreement with the Bragg diffraction from (111) sets of
planes, in an incidence range from 15◦ to 45◦. The PC-FTO exhibits varied PSB positions (from 585 nm
to 635 nm) in the DRUVS (Figure 3b) according to the incidence of illumination. The PSB shift can
also be confirmed by eye when holding the PC-FTO film at a certain angle relative to the lamp, the
colors (attributed to the diffuse reflectance of PCs) varied from red to violet as shown in Figure 3c,
indicating a wide tunable range of PSB positions. It should be noted that the DRUVS can hardly collect
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the reflected photons when there is a wide angle between sample and probe, but the photographs in
Figure 3c could be evidence for the wide tunable range of the PSB.Materials 2019, 12, x FOR PEER REVIEW 4 of 11 
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Figure 3. (a) Schematic diagram of the varied incidence illumination on a PC-FTO based electrode.
(b) diffuse reflectance UV-vis spectra (DRUVS) (solid line) of photonic stop band (PSB) positions under
different incidence and UV-vis absorption spectra (dash line) of WO3 and Ag2S/WO3. (c) digital
photographs of one PC-FTO film under different incidences.

3.3. Qualitative Analysis

Figure 4a and Figure S4 reveal the high-resolution transmission electron microscopy (HR-TEM)
images of the as-prepared Ag2S/WO3 on PC-FTO, the embedded WO3 platelets were attached by Ag2S
(few nanometer in size), in which the lattice fringes corresponded to the (200) plane of Ag2S (JCPDS
04-0774) and the (002) crystal plane of WO3 (JCPDS 43-1034), respectively. The elemental mapping
of Ag2S/WO3@PC-FTO was achieved by energy dispersive X-ray spectroscopy (EDX), from which
the skeleton of PC-FTO, WO3 platelets and Ag2S dots are clearly presented in Figure 4b and Figure
S3. The elemental ratio of the as-prepared Ag2S/WO3@PC-FTO sample was presented in Table S2.
The powder X-ray diffraction (PXRD) was also employed for the characterization of an as-prepared
Ag2S/WO3@PC-FTO, from which the diffraction patterns were consistent with the HR-TEM results.
The loading amounts of Ag2S via SILAR led to no obvious difference in the PXRD patterns of samples
but the slightly increased diffraction patterns from Ag2S (Figure 5).
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Ag2S, * = WO3, # = SnO2 and • = Ag2S.

3.4. Photocatalytic Properties

Photoelectrochemistry (PEC) was exploited to evaluate the photoactivity of Ag2S/WO3@PC-FTO
photoanode, as a function of incidence. The setup of a PEC cell was built up with a standard three
electrode system in 1 M NaOH aqueous electrolyte, in which the sample, Pt wire, and Ag/AgCl were
employed as a working electrode, counter electrode and reference electrode, respectively. The incidence
of illumination was obtained by rotating the working electrode to a certain degree relative to the Xe
lamp (as shown in the schematic diagram in Figure 3a). Since the rotating of electrode will lead to a
reduction of received photon density (mW cm−2) by electrode, the photo density received by electrode
at a certain angle was obtained by rotating a detector (shell removed) of photometer at the same angle,
thus a correction (photocurrent divided by photon density received by photometer at certain angle) was
conducted to evaluate the photocurrent generation under constant irradiance (1 sun, 100 mW cm−2).

Ag2S/WO3@PC-FTO electrodes of different SILAR cycles performed varied photocatalytic activities
when the surface normal was illuminated, in which the 3 SILAR cycles performed the maximum
photocurrent density of ca. 1.54 mA cm−2 at 0 V vs. Ag/AgCl (Figure S5) and good stability (Figure S7)
in a linear sweep voltammogram (LSV), and thus this electrode was selected for the study of incidence.

For comparison, the Ag2S/WO3@planar-FTO photoanode and WO3@PC-FTO photoanode were
also prepared using the same method. Due to the absence of PCs substrate, the current density
generated by Ag2S/WO3@planar-FTO is ca. 32% (0.52 mA cm−2 vs. 1.54 mA cm−2) in comparison to
Ag2S/WO3@PC-FTO at surface normal illumination, this is due to the lack of surface area available for
the photoactive materials. The current density of Ag2S/WO3@planar-FTO was reduced 61.5% along
with the incidence from 0◦ to 75◦ (Figure 6a), while the current density per sun shows no obvious
variation, suggesting that the electrode could generate stable current density relative to 1 sun. In
terms of the WO3@PC-FTO electrode, the current density reduced 47.6% from 0◦ to 75◦ illumination
(Figure 6b). Interestingly, an obvious enhanced current density per sun was obtained at 75◦ and 60◦

illumination, where the edge of the PSB (60◦) and PSB (75◦) overlapped with the absorption range of
WO3. Though for the Ag2S/WO3@PC-FTO electrode (Figure 6c), due the narrow band gap of Ag2S
(1.1 eV, Scheme 1) [36] in visible, the PSB of PC-FTO can always overlap with the absorption range of
Ag2S/WO3, and thus reducing the enhancement of current density per sun when rotating the electrode,
but it still performed a slower reduction (54.5%) of current density with respect to that on planar-FTO.
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In theory, the PCs could suppress the recombination of charge carriers in PSB or its edge [37], and this
was proved in some previous experimental reports, for instance, a 40% longer lifetime of PL decay
was observed when the emission frequency of Tb3+ is close to the PSB in a PC-SiO2 system [38]. With
respect for a photocatalysis system, the external media is typically aqueous (RI ≥ 1.33), and thus the RI
differences between PCs materials and external media is smaller than PCs in the air (RI ≈ 1.00), which
may reduce the photonic effects from PSB (Figure S6). For example, the g-C3N4 exhibited no excited
state lifetime change when its absorption range overlaps with the PSB [8]. In our case, although the
absorption of Ag2S/WO3 always overlapped with the PSB, we also saw no obvious PL decay lifetime
enhancement. Even though, the scattering and refracting will still improve the utilization of light, when
the incidence of light changes. The observed slower reduction of current density and the improved
current density per sun at certain incidence suggests the realistic value of PCs.
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Scheme 1. Mechanism of Ag2S decorated WO3 under illumination.

4. Conclusions

Ag2S/WO3 and WO3 were synthesized in a PC-FTO film to demonstrate the incidence of light as a
function of photocurrent density. In addition to the enhanced surface area, the embedded photoactive
materials in PC-FTO perform enhanced PEC at certain incidences in comparison to that on planar
analogs. Due to the multiple scattering and refracting nature of PCs, photons could be collected
more effectively at certain incidence ranges (in comparison to planar analogs), resulting in enhanced
photocurrent generation when integrating the product from all incidences. In consideration of the
nature of sun (a changing angle light source), the results suggest that the PCs based substrate would
support more efficient utilization of solar energy for the embedded photoactive materials.
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Figure S1: SEM image of a bare WO3@mac-FTO photoanode; Figure S2: SEM images of mac-FTO film coated
with only Ag2S quantum dots; Figure S3: EDX elemental mapping of Ag2S/WO3@mac-FTO with 3 SILAR cycles;
Figure S4: TEM of Ag2S/WO3@PC-FTO in different magnification; Figure S5: (a) UV-vis absorption and (b) LSV
of Ag2S/WO3@PC-FTO with different SILAR cycles; Figure S6: PSB spectra of PC-FTO in NaOH electrolyte;
Figure S7: Stability test of Ag2S/WO3@PC-FTO electrode under illumination from surface normal for 5 min;
Table S1: Calculated and experimental PSB of PC-FTO film from (111) plane; Table S2: Elemental ratios of
Ag2S/WO3@PC-FTO with 3 SILAR cycles.
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