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Abstract: To enhance the quality and mechanical performance of a carbon fiber–reinforced polymer
(CFRP) workpiece, this paper prepares a polyacrylonitrile (PAN)-based carbon fiber–reinforced
thermosetting polymer (CFRTP) laminated board through compression molding, and carries out
orthogonal tests and single-factor tests to disclose the effects of different process parameters (i.e.,
compression temperature, compression pressure, pressure-holding time, and cooling rate) on the
mechanical performance of the CFRTP workpieces. Moreover, the process parameters of compression
molding were optimized based on the test results. The research results show that: The process
parameters of compression molding can be ranked as compression temperature, pressure-holding time,
compression pressure, cooling rate, and mold-opening temperature, in descending order of the impact
on the mechanical property of the CFRTP; the optimal process parameters for compression molding
include a compression temperature of 150 ◦C, a pressure-holding time of 20 min, a compression
pressure of 50 T, a cooling rate of 3.5 ◦C/min, and a mold-opening temperature of 80 ◦C. Under this
parameter combination, the tensile strength, bending strength, and the interlaminar shear strength
(ILSS) of the samples were, respectively, 785.28, 680.36, and 66.15 MPa.

Keywords: PAN-based CFRTP; compression molding; test; optimization of process parameters

1. Introduction

The carbon fiber–reinforced polymer (CFRP) is widely known for its excellence in specific
strength, specific modulus, fatigue resistance, corrosion resistance, forming process, damage safety,
and functional designability [1–3]. Since the turn of the century, the CFTP has been extensively
applied in aerospace engineering, wind turbine blades, sports equipment, and auto parts, becoming
the dominant material of lightweight products. More than 90% of the CFRP market is occupied by
carbon fiber–reinforced thermosetting polymer (CFRTP), which has enjoyed rapid development thanks
to its simple fabrication, fast processing, and high cost performance [4,5].

The CFRTP can be molded through compression molding, autoclaving, winding, or
pultrusion [6–8]. Compression molding stands out for its low cost, high efficiency, low internal
stress, small buckling deformation, good mechanical stability, and excellent product repeatability [9].
Unsurprisingly, this molding method boasts a strong competitive advantage in industrial mass
production of parts and components, and the advantage grows with the production volume. However,
the process parameters of compression molding (e.g., preheating temperature, molding temperature,
molding pressure, pressure holding time, cooling rate, exhaust pressure, exhaust times, and blank
holder force) directly affect the flow of the matrix material and the impregnation effect of the reinforcing
fibers [10–13]. This effect, coupled with the interaction between process parameters, exerts an impact
on the quality and mechanical performance of the workpiece. To optimize the mechanical performance
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of the workpiece, it is critical to analyze the interaction between various factors and determine the best
process parameters of compression molding [14–16].

In order to optimize the process parameters of compression molding of CFRTP, a lot of research
and exploration have done around the establishment of mathematical models, finite element analysis,
and experimental verification [17–24]. In the field of experimental verification especially, fruitful results
have been achieved. By designing the orthogonal test, the sample space is reduced effectively and the
test cost is reduced. The mapping relationship between molding process parameters and molding
quality was obtained by single-factor tests, which laid a foundation for the study of the mechanism of
compression molding. In this paper, the continuous carbon fiber (CCF300)–reinforced polyacrylonitrile
(PAN) resin composite was taken as the object, and five process parameters were selected to characterize
the compression molding, namely compression temperature, compression pressure, pressure holding
time, cooling rate, and mold-opening temperature. Orthogonal tests and single-factor tests were
designed to analyze the tensile strength, bending strength, and interlaminar shear strength (ILSS) of
workpieces made through compression molding. In light of the test results, the author discussed
how each process parameter affects the mechanical performance of the CCF300-reinforced PAN resin
composite laminated board, and then optimized the process parameters of compression molding.
The research findings shed new light on process optimization, quality control, and molding mechanism
of the CFRTP.

2. Materials and Methods

2.1. Raw Materials

The CFRTP is the prepreg supplied from Shanghai TRONXT New Material Technology Co., Ltd.
(Shanghai, China), with the carbon fiber as long fiber of Toray T300 and PAN-based carbon fiber as the
matrix. The characteristic parameters of the prepreg are listed in Table 1.

Table 1. The characteristic parameters of the prepreg.

Index Value

Form 12 K; 2 × 2 Twill
Width (mm) 1,000 ± 10

Fabric surface density (g/m2) 400 ± 10
Prepreg surface density (g/m2) 727 ± 28

Resin content (%) 40 ± 2
Prepreg thickness (mm) 0.44 ± 0.02

The prepreg is shown in Figure 1.
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2.2. Test Equipment

2.2.1. Equipment for Compression Molding

The compression molding was conducted on a 2000 kN intelligent mechanical servo universal
testing machine, custom-made by Tianjin Tianduan Press Co., Ltd (Tianjin, China). The machine
(nominal force: 2000 kN; slider stroke: 600 mm; bed dimension: 1800 mm × 1300 mm) can simulate the
molding process curves of many machine tools, such as crank press and hydraulic press, and collect
real-time process parameters in equipment movement. In addition, the machine is supported by a
handling robot system, a rapid cooling and heating machine, a conveying system, and a forming mold.
The forming mold is a custom-made carbon fiber flat forming mold with a forming size of 500 mm ×
500 mm. The equipment for compression molding is shown in Figure 2.
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2.2.2. Equipment for Sample Cutting

The samples were cut by a four-axis cantilever waterjet cutting machine (Shenyang HEAD Science
& Technology Co., Ltd., Shenyang, China). Under the control of the computer, the machine (effective
stroke: 1500 mm × 2000 mm × 150 mm) can cut the workpiece into any form and also trim the
formed composite parts to the required size, without being greatly affected by the material texture.
The equipment for sample cutting is shown in Figure 3.
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Figure 3. Equipment for sample cutting.

2.2.3. Equipment for Testing

The tests were carried out on an universal material testing machine (MTS Systems Corp,
Minneapolis, America). The machine (maximum test force: 50 N~10 kN; effective space of tension:
700 mm; effective test width: 300 mm) is mainly used for testing and analysis of tensile, compressive
and bending properties of nonmetallic materials. With three closed-loop control modes (i.e., stress,
strain, and displacement), the machine helps to determine such parameters as the maximum force,
tensile strength, bending strength, compressive strength, and elongation at break. The equipment for
testing is shown in Figure 4.
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2.3. Sample Preparation

To prepare the samples, the carbon fiber prepreg was laid down and covered with a piece of
release cloth on the surface to prevent adhesion after heating. Next, the prepreg was relocated to a
drying oven for heating. The temperature was maintained at the pre-set value. Finally, the prepreg
was taken out and quickly transferred to the mold for compression molding. The entire process was
implemented on the automatic assembly line.

The compression molding process of our PAN-based CFRTP is illustrated in Figure 5 below.
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The prepreg was processed in the following steps: First, cut the carbon fiber prepreg into
495 mm × 495 mm to suit the mold size; Then, place the prepreg into an oven to dry for 4 h at 45 ◦C
under near-vacuum conditions; after that, lay the prepreg fibers interlaced at 90◦ within the flat mold,
followed by preheating, heating, pressurizing, pressure holding, cooling, and unloading; finally, the
sample was demolded and cut into standard test samples by the four-axis cantilever waterjet cutting
machine. The carbon fiber broad after compression molding is shown in Figure 6 (non-optimal process
parameters).
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2.4. Characterization and Testing

According to the ASTM D3039 test standard [25], each tensile test sample was prepared into a
dumbbell-shape with a width of 25 mm and a total length of 250 mm and subjected to tensile loading
at 2 mm/min with the standard strain rate of 0.01 min−1.

According to the ASTM D790 test standard [26], each bending test sample was prepared with a
span thickness ratio of 32:1 and a width of 13 mm, prestressed to 5 N, and subjected to bending at
1 mm/min with the test length exceeding the span by 20%.

According to the ASTM D2344 test standard [27], each ILSS test sample was prepared with a
width of 25 mm and a length of 250 mm, and subjected to shearing at 2 mm/min.

The sample after cutting based on ASTM D2344 is shown in Figure 7.
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2.5. Test Orthogonal Plan

The properties of PAN-based CFRTC are influenced by many process conditions of compression
molding. This paper mainly targets five process parameters, namely, compression temperature,
pressure holding time, compression pressure, cooling rate, and mold-opening temperature. Table 2
shows the levels of the five parameters in the orthogonal tests.

Table 2. The levels of the five parameters in the orthogonal tests.

Level
A B C D E

Compression
Temperature (◦C)

Mold-Opening
Temperature (◦C)

Cooling Rate
(◦C/min)

Compression Pressure
(MPa)

Pressure-Holding
Time (min)

1 140 70 3 40 10
2 150 80 3.5 45 15
3 160 90 4 50 20
4 170 100 4.5 55 25
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The orthogonal tests mainly investigate the effects of the five parameters on the mechanical
performance of the CFRTP made through compression molding, without considering the interaction
between the parameters. The L16(45) orthogonal scheduling (Table 3) was adopted for the tests [28,29].

Table 3. Orthogonal test schedule.

Test No.
Influencing Factors

A B C D E

1 140 70 3 40 10
2 140 80 3.5 45 15
3 140 90 4 50 20
4 140 100 4.5 55 25
5 150 80 4 55 10
6 150 90 4.5 40 15
7 150 100 3 45 20
8 150 70 3.5 50 25
9 160 90 3 45 25

10 160 100 3.5 50 10
11 160 70 4 55 15
12 160 80 4.5 40 20
13 170 100 4 40 15
14 170 70 4.5 45 20
15 170 80 3 50 25
16 170 90 3.5 55 10

3. Results and Discussion of Orthogonal Testing

3.1. Result of Orthogonal Test

The standard test samples were prepared according to Table 3, and subjected to tensile strength,
bending strength, and ILSS tests on the universal material testing machine. In order to test the results
accurately, each molded laminate was randomly cut into 20 samples, then tensile strength, bending
strength, and ILSS were tested in turn, the final measurement results were averaged. The measurement
error is indicated by the standard deviation.

The test results are recorded in Table 4.

Table 4. The results of L16(45) orthogonal tests.

Test No.
Tensile Strength Bending Strength ILSS

Test Results (MPa) Error Test Results (MPa) Error Test Results (MPa) Error

1 742.16 11.05 627.93 10.15 50.57 3.96
2 753.45 12.47 615.56 9.87 58.71 4.13
3 712.26 11.46 638.37 9.62 54.35 4.64
4 724.13 12.78 620.03 10.58 62.19 4.29
5 698.72 14.21 668.40 11.02 57.08 3.89
6 733.38 13.52 642.66 10.84 72.74 3.78
7 719.75 12.89 628.41 9.81 60.48 5.06
8 688.96 13.46 557.83 15.42 66.36 5.22
9 661.37 10.99 604.07 10.35 59.94 5.48
10 692.62 11.47 626.93 12.77 51.23 3.72
11 723.58 14.23 647.45 12.93 60.90 3.90
12 722.21 13.74 585.28 9.84 56.65 4.27
13 672.49 11.67 572.74 9.21 61.97 4.02
14 663.85 12.10 590.26 10.86 64.04 4.45
15 658.27 12.79 601.82 10.93 63.29 4.67
16 704.32 13.62 610.19 10.83 65.22 3.92

ILSS—interlaminar shear strength.
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3.2. Discussion of Orthogonal Test

The test results on the tensile strength of factor A are cited as an example to interpret the results of
the orthogonal tests. As shown in Table 3, the first level of factor A, denoted as A1, exerted an impact
on the tensile strengths measured in tests 1–4, the second level of factor A, denoted as A2, exerted an
impact on the tensile strengths measured in tests 5–8, the third level of factor A, denoted as A3, exerted
an impact on the tensile strengths measured in tests 9–12, and the fourth level of factor A, denoted as
A4, exerted an impact on the tensile strengths measured in tests 13–16.

The sum of all tensile strengths under A1, denoted as δA1 , can be expressed as:

δA1 = 742.16 + 753.45 + 712.26 + 724.13 = 2932.00 MPa (1)

The mean of all tensile strengths under A1, denoted as δA1 , can be expressed as:

δA1 =
2932.00

4
= 733.00 MPa (2)

The tensile strengths under A2–4 and those under factors B–D were obtained similarly and recorded
in Table 5.

Table 5. The results on tensile strengths of the orthogonal tests.

Tensile Strength
(MPa)

Influencing Factors
A B C D E

δ1 2932.00 2818.55 2781.55 2870.25 2837.82
δ2 2840.81 2832.65 2839.35 2798.42 2882.90
δ3 2799.78 2811.33 2807.05 2752.11 2818.07
δ4 2698.93 2808.99 2843.57 2850.75 2732.73
δ1 733.00 704.64 695.39 717.56 709.46
δ2 710.20 708.16 709.84 699.61 720.73
δ3 699.95 702.83 701.76 688.03 704.52
δ4 674.73 702.24 710.89 712.69 683.18

Different factors led to test results in varied ranges. In general, a large range means the
corresponding factor has a high impact on the test results. Thus, the factor leading to the largest range
must be the dominant factor [30]. The range R can be calculated by:

R = max
(
δk
)
−min

(
δk
)
(k = 1, 2, 3, 4) (3)

where max
(
δk
)

and min
(
δk
)

are the maximum and minimum of the arithmetic mean of the test results
under level k of any factor, respectively.

The test design determines that the test conditions for A1, A2, A3, and A4 have exactly the same
comprehensive comparability. As a result, the ranges of the tensile strength, bending strength, and
the ILSS in the orthogonal tests could be computed separately. The calculated results are listed in
Table 6 below.

Table 6. The ranges of mechanical performance in the orthogonal tests.

Mechanical
Performance A B C D E Ranking

Tensile strength (MPa) 58.27 5.92 15.51 29.53 37.54 A > E > D > C > B
Bending strength (MPa) 31.72 17.96 29.11 30.28 37.43 E > A > D > C > B

ILSS (MPa) 7.71 4.13 5.34 2.54 7.56 A > E > C > B > D
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As shown in Table 6, factors A and E had greater impacts than the other three factors on tensile
strength, bending strength, and the ILSS, while factor B showed relatively small impacts on the
three mechanical performance. Meanwhile, the process parameters differed slightly in their effects
on bending strength and the ILSS, but significantly in their effects on tensile strength. Overall, the
five parameters could be ranked as compression temperature, pressure-holding time, compression
pressure, cooling rate, and mold-opening temperature, in descending order of the effect on mechanical
performance of the workpieces.

4. Results and Discussion of Single-Factor Tests

According to the degree of impacts of each process parameter on mechanical performance (i.e.,
tensile strength, bending strength, and the ILSS), the operation parameters were increased and adjusted
for single-factor tests on compression temperature, pressure-holding time, compression pressure, and
cooling rate, respectively. During the tests, one of the process parameters is changed, and the other
process parameters are unchanged. Through the single-factor tests, the mapping relationship between
the parameters and the mechanical properties as same as the influencing mechanism were analyzed.
Since the ILSS is little affected by the process parameters of compression molding, the single-factor
tests only consider the tensile strength and the bending strength.

4.1. Effects of Compression Temperature

Table 7 presents how compression temperature affects the mechanical performance of the CFRTC
samples made through compression molding at the pressure-holding time of 20 min, the compression
pressure of 50 T, the cooling rate of 3.5 ◦C/min, and the mold-opening temperature of 80 ◦C.

Table 7. Effects of compression temperature on mechanical performance.

Compression
Temperature (◦C) 140 145 150 155 160 165 170

Tensile Strength (MPa) 701.74 762.90 785.28 778.42 749.16 712.55 660.43
Bending Strength

(MPa) 632.62 663.81 680.36 654.74 632.53 608.72 582.67

Based on Table 7, the mapping relationship between compression temperature and mechanical
properties is shown in Figure 8.
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It can be seen from Figure 8 that the mechanical performance was optimized under the compression
temperature of 150 ◦C and was not greatly affected when the compression temperature fell at 150–155 ◦C.
These results can be explained as follows. In the molding process, if the heating temperature is too
low, the resin cannot fully melt or flow, leading to high flow viscosity and insufficient impregnation;
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if the temperature is too high, the fibers will be ablated, and the resin will degrade, reducing the
mechanical performance.

4.2. Effects of Pressure-Holding Time

Table 8 presents how pressure-holding time affects the mechanical performance of the CFRTC
samples made through compression molding at the compression temperature of 150 ◦C, the compression
pressure of 50 T, the cooling rate of 3.5 ◦C/min, and the mold-opening temperature of 80 ◦C.

Table 8. Effects of pressure-holding time on mechanical performance.

Pressure-Holding Time (min) 10 15 20 25

Tensile Strength (MPa) 712.39 768.90 785.28 776.64
Bending Strength (MPa) 640.27 656.43 680.36 681.76

Based on Table 8, the mapping relationship between compression temperature and mechanical
properties is shown in Figure 9.
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As shown in Figure 9, the mechanical performance of the test material gradually increased with
the elapse of the pressure-holding time, before the time reached a certain threshold. Any further
growth in the time had a negligible effect on the mechanical performance. The mechanical performance
remained constant after the threshold because the resin flow and impregnation both improve with the
extension of the pressure-holding time, but the flow ceases after the resin is fully impregnated. Taking
tensile strength as the main criterion, the optimal pressure-holding time was determined as 20 min for
the mechanical properties of the samples.

4.3. Effects of Compression Pressure

Table 9 displays how compression pressure affects the mechanical performance of the CFRTC
samples made through compression molding at the compression temperature of 150 ◦C, the
pressure-holding time of 20 min, the cooling rate of 3.5 ◦C/min, and the mold-opening temperature of
80 ◦C.

Table 9. Effects of compression pressure on mechanical performance.

Compression Pressure (MPa) 40 45 50 55

Tensile Strength (MPa) 710.39 758.91 785.28 755.35
Bending Strength (MPa) 624.83 661.32 680.36 652.47
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Based on Table 9, the mapping relationship between compression pressure and mechanical
properties is shown in Figure 10.
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As can be seen from Figure 10, the mechanical performance of the samples improved and then
declined with the continuous growth in compression pressure. A possible reason is that: The growing
pressure provides a greater driving force to resin flow, thus increasing the impregnation rate and
permeability of the resin. In this case, the porosity is reduced, and the PAN matrix and the fiber
cross-section are bonded tighter than before. If the pressure is too high, the molten resin may overflow
and damage the structure, resulting in a decrease in mechanical performance.

4.4. Effects of Cooling Rate

Table 10 showcases how cooling rate affects the mechanical performance of the CFRTC samples
made through compression molding at the compression temperature of 150 ◦C, the pressure-holding
time of 20 min, the compression pressure of 50 T, and the mold-opening temperature of 80 ◦C.

Table 10. Effects of cooling rate on mechanical performance.

Cooling Rate (◦C/min) 3 3.5 4 4.5

Tensile Strength (MPa) 760.14 785.28 780.17 778.42
Bending Strength (MPa) 653.37 680.36 669.45 672.60

Based on Table 10, the mapping relationship between cooling rate and mechanical properties is
shown in Figure 11.
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Theoretically, the faster the cooling rate, the shorter the cooling time, the greater the residual
stress inside the samples, the lower the geometric stability, and the more unstable the mechanical
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performance. In our test, however, the best mechanical performance was observed at the cooling rate
of 3.5 ◦C/min, under the joint effect of multiple factors.

To sum up, our PAN-based CFRTP achieved the optimal mechanical performance under
the following combination of process parameters: A compression temperature of 150 ◦C, the
pressure-holding time of 20 min, a compression pressure of 50 T, a cooling rate of 3.5 ◦C/min,
and a mold-opening temperature of 80 ◦C. Under this parameter combination, the tensile strength,
bending strength, and the ILSS of the samples were respectively 785.28, 680.36, and 66.15 MPa.
However, the optimum process parameters are the best parameters in the test state. Through the test,
it is difficult to obtain the optimal process parameters of carbon fiber compression molding, and the
interaction between theory and finite element analysis is needed.

5. Conclusions

The following conclusions were drawn from the study on the process parameters in the
compression molding of PAN-based CFRTC: (i) During compression molding, the mechanical
performance of the workpiece increased and then decreased with the growth in such process
parameters as compression temperature, pressure-holding time, and compression pressure. Therefore,
the mechanical performance of the CFRTC should be maximized by selecting the proper values of
the process parameters for compression molding. (ii) During compression molding, the process
parameters can be ranked as compression temperature, pressure-holding time, compression pressure,
cooling rate, and mold-opening temperature in descending order of their impact on the tensile
strength; as pressure-holding time, compression temperature, compression pressure, cooling rate,
and mold-opening temperature in descending order of their impact on the bending strength; and
as compression temperature, pressure-holding time, cooling rate, mold-opening temperature, and
compression pressure in descending order of their impact on the ILSS. (iii) The PAN-based CFRTC
achieved the optimal mechanical performance under the compression temperature of 150 ◦C, the
pressure-holding time of 20 min, the compression pressure of 50 T, the cooling rate of 3.5 ◦C/min,
and the mold-opening temperature of 80 ◦C. Under this parameter combination, the tensile strength,
bending strength and the ILSS of the samples were respectively 785.28, 680.36, and 66.15 MPa. (iv) The
optimal process curve was plotted according to the results of the orthogonal tests and the single-factor
tests, laying a solid basis for intelligent forming and constitutive model.
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