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Abstract: AC (asphalt concrete)-13, as the main material used in pavement construction, has been
applied widely in seasonal frozen areas. In order to understand the fracture mechanism in the
freeze-thaw (F-T) damage process, the mesoscale structure of AC-13 is obtained by computed
tomography (CT). The fractal dimension of cracks is used as a damage evaluation index. Most
previous studies have only focused on the fractal dimensions of whole cracks, while ignoring the
fractal tectonic process and the self-similarity degree of a single fracture. Therefore, in this study, the
intrinsic mechanism of fractures and damage were investigated. In addition, the critical crack stress
and fracture toughness models of a single fracture in a freeze-thaw damage process are established
for AC-13. The results indicate that in terms of the critical crack stress and fracture toughness, with
the increase of F-T times, there is an obvious decreasing trend. The fracture model can effectively
describe the fracture toughness calculated by ABAQUS in the process of freeze-thaw cycles.
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1. Introduction

Asphalt concrete is the most common pavement construction material for each level of roads;
it is characterized by the advantages of energy savings, emissions reductions and superior skid
resistance [1,2]. As we know, asphalt is both a thermoplastic and a cementing material, showing
sensitivity to temperature changes. Nowadays, increased traffic loading and climate change have
elevated the requirements for the asphalt concrete [3,4]. Especially in seasonal frozen areas, thermal
cracking caused by the contraction and expansion of asphalt under freeze-thaw cycles causes major
pavement damage, and could cause many disasters, such as pavement cracking and mud boiling [5–7].
These phenomena shorten the service life of asphalt concrete. Therefore, maintaining the stability of
pavements in the process of freeze-thaw cycles has drawn more and more attention.

In seasonal regions, freeze-thaw damage is the most common damage for asphalt pavements, and
the main cause of asphalt pavement disasters [8–10]. In the warm-thaw season, snow and ice melt into
water and penetrate into the interior of asphalt pavement along cracks. In the winter-freeze season,
the moisture in the surface layer does not discharge quickly and efficiently, and when the surface
layer temperature is below 0 ◦C, the frost heave effect of water produces uneven stresses on asphalt
pavements. In conclusion, with the process of moisture immersion and freeze-thaw cycles, the interface
between aggregate and asphalt is weaken by frost heave stress, and the mechanical properties of the
integral asphalt concrete gradually decrease [11]. In recent years, a number of researchers have focused
their efforts on to the freeze-thaw damage mechanism of mechanical property degradation of asphalt
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concrete—and have made great progress. Miao et al. introduced entropy theory to describe the decay
behavior of the three-dimensional macro and micro textures of asphalt surfaces. The results showed
that entropy has significant advantages in describing the anti-skid performance of asphalt pavements
in freeze-thaw cycles [12]. Xu, Gong and Geng et al. employed the information entropy theory, an X-ray
CT scanner and digital image processing technology to identify the behavior of asphalt mixtures under
freeze-thaw cycles, and explained the development process of F-T damage from a microscopic point of
view [13–15]. Guo et al. investigated the deteriorating properties of NHSS modified asphalt under a
freeze-thaw aging process, and found that such a process had a great impact on the thermal properties
of NHSS modified asphalt [16]. Huang et al. established a three-dimensional failure criterion for
asphalt mixtures after freeze-thaw cycles by triaxial tests in the laboratory. The results indicated that
the multi-axial strength decayed significantly after 20 freeze-thaw cycles [17]. Wang et al. conducted a
freeze-thaw split to evaluate the flexural resistance damage caused by freeze-thaw cycles [6,15,18–20].

The interface between the asphalt binder and mineral aggregate affected by freeze-thaw cycles
determines the service life of asphalt pavement, because degradation and stress concentrations occur
more easily in the interface [21]. When the is temperature below zero, the interface fracture propagation
caused by frost-heave force is the main reason for freeze-thaw damage. Many researchers have
attempted to explain the relationship between fracture properties and asphalt pavement cracking.
Zhao et al. presented a new analysis method, including both dimensional and J-integral analyses
based on classic fracture theory, in order to evaluate the fracture and fatigue properties of asphalt
binder [22]. Omranian et al. compared the maximum stresses at failure, fracture toughness, and
fracture energy by a semicircular asphalt concrete bending test; the velocity of fracture initiation,
velocity of crack growth, and fragility index were proposed to better understand the fracture behavior
of asphalt mixtures with respect to the mixtures’ crack resistance and its propagation [23]. Le et al. used
a discrete element model to simulate the fracture behavior of asphalt mixtures at low temperatures; a
series of BBR and SCB tests were undertaken in order to verified the model [24]. Doll et al. conducted
fracture tests on semi-circular bend edge cracked specimens, and the fractures was recorded with
a camera to allow digital image correlation (DIC) measurements [25,26] to be undertaken. Onifade
proposed a hierarchical approach to evaluate fatigue cracking in asphalt concrete pavements, providing
a systematic approach to understanding the fundamental mechanisms of pavement deterioration [27].
Liu et al. applied a cohesive zone model in the software ABAQUS to analyze crack propagation in
asphalt layers to predict service life under cyclic loads with an initial onset macro-crack [28]. Xin et al.
put forward a method to determine the material composition of small particle-size (SPS) asphalt
mixtures to control cracks in asphalt pavements in order to improve effectively crack resistance [29].

While the viewpoint that crack propagation is the cause of damage to asphalt concrete materials
has reached a consensus, most studies on the subject have only adopted fractal dimensions to describe
the irregularities and self-similarities of the whole cracks, neglecting the fractal construction degree of a
single crack. In this study, the models of critical crack stress and fracture toughness for a single fracture
based on fractal characteristics will be established to better understand the intrinsic mechanisms of
fractures and damage in the process of freeze-thaw cycles.

2. Experiment

2.1. Materials and Methodology

First, 90# petroleum asphalt was used as a cementing agent; the basic tested index is shown in
Table 1. All the above basic indicators for asphalt meet the requirements of 90# road asphalt as specified
in the “Technical Specification for Construction of Highway Asphalt Pavement” (JTG F40-2004) [30].
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Table 1. Basic index for 90# petroleum asphalt.

Test Item Unit Test Result

Density (15 ◦C) g/cm3 1.0364
Penetration (25 ◦C,100 g, 5 s) 0.1 mm 89

Softening point TR&B ◦C 46
Flash point (COC) ◦C 254

Solubility (solvent: trichloroethylene) % 99.7
Wax content (distillation) % 2.0

Ductility (15 ◦C, 5 cm/min) cm >150

Film oven heating test
(163 ◦C, 5 h)

Mass loss % 0.0198
Penetration ratio % 72.8

Aging delay (25 ◦C) cm >150
Aging delay (15 ◦C) cm >140

Coarse aggregate, fine aggregate, and mineral powder: both coarse and fine aggregates are basalts,
and their density measurement methods are the basket and volumetric bottle methods, respectively.
The quality test results of the mineral powder are shown in Table 2.

Table 2. Quality test results of the mineral powder.

Test Item Unit Test Result

Apparent density g/cm3 2.73

Size range
<0.6 mm % 100
<0.15 mm % 100
<0.075 mm % 89.5

Hydrophilic coefficient - 0.87

In this study, asphalt concrete was used to study the fracture mechanical properties in the process
of freeze-thaw cycles; the gradation curve of AC-13 is shown in Figure 1. The lower and upper limits
were determined according to reference [30].
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The ratio of the mixing mass of asphalt, sand, and powder was determined by a laboratory test.
When the asphalt was melted and dehydrated, the specified sand and powder were stirred evenly.
After that, the hot asphalt was poured into the preheated sand and powder based on the mixture
amount, and then stirred evenly. Standard AC-13 specimens asphalt mortar with diameters and heights
of 50 mm were made using a ZMJ-II automatic Marshall compactor.

A freeze-thaw cycle test was carried out according to the standard testing methods, ASTM C666
and JTJ 270 [31]. One freeze-thaw cycle lasts about four hours and the core temperature of the asphalt
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concrete ranges from +8 ±2 Celsius to −17 ± 2 Celsius in one freeze-thaw cycle. When the freeze-thaw
cycles reach 0, 1, 3, 6, 10 and 15 times, the asphalt concrete specimens were taken out of the equipment
and CT gray images were obtained to evaluate the induced freeze-thaw damage.

2.2. CT Scanning

Visualization is an emerging technology, that converts symbols obtained by optical equipment
into 2D or 3D geometric shapes, and presents information in the form of specific images on a screen.
Computed Tomography (CT), a type of visualization technology, was used to scan the internal structures
of asphalt concrete specimens before and after freeze-thaw cycles. In this paper, the CT scanner used
was manufactured by the Philips Brilliance center, Netherlands; scanning thicknesses ranged from
1mm to 15 mm (see Figure 2). The CT scanning gray images in the corresponding cross-section after
freeze-thaw cycles are shown in Figure 3.
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Materials 2019, 12, 2288 5 of 21

3. Results Analysis

3.1. Digital Image Processing Technology

Digital image processing (DIP) is a technology that removes noise, and enhances, restores, and
segments. It also extracts features from images by software. In this paper, MATLAB 2016, IPP 6.0
(Image process plus) and MATHEMATICA are introduced to process and analyze the CT gray images.
As shown in Figure 4, according to different CT value of asphalt concrete components, the CT number
threshold was determined by the peak points of the CT number distribution curve in Figure 4b;
this process is called threshold segmentation [32]. After enhancement of the original gray image in
MATLAB, the boundary discrimination of each medium becomes more obvious. MATHEMATICA
was used to extract the boundaries of the aggregate.

IPP is used to analyze and calculate the geometric parameters of the processed DIP images. The
crack boundaries are selected as the AOI (area of interest) to calculate the geometric parameters by the
measurement function of IPP. The function of defining the scale based on the real size of the sample
makes it possible to calculate and analyze accurately.
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sections are selected as the analysis object, and the process of fracture analysis by IPP comprises importing the 
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Figure 4. Digital image processing technology for the crack extraction procedure. (a) CT gray image,
(b) CT number distribution, (c) Enhanced image, (d) Binary image, (e) Skeleton on binary image,
(f) “AOI” selection.

From the binary image shown in Figure 4d, we can see that cracks after freeze-thaw cycling can
be distinguished from each other, and the geometric parameters in such as area, i.e., perimeter, major
axis length, and fractal dimension, can be easily calculated by the measurement function of IPP, which
makes the quantitative analysis of pore meso-characteristics a reality. This CT scanner consists of three
parts: a scanning system, the computer system, and the operating system. The thickness of the slices
ranged from 1 mm to 10 mm, and the resolution was 0.5 mm × 0.5 mm. The scanning thickness was
2 mm, and the scanning interval was 3 mm in the experiment. As presented in Figure 5, the relationship
between the crack length and the freeze-thaw cycles was established where the crack length is the sum
of the crack lengths in each CT scanning section. The three cross-sections are selected as the analysis
object, and the process of fracture analysis by IPP comprises importing the section pictures, defining
scales, opening measurement functions, and exporting the data for analyzing.
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From Figure 5, the crack lengths increased with increasing freeze-thaw cycling. The results
displayed that the crack length mainly increased after the peak point of the loading curve; the
minimum and maximum values were 5.58 and 38.84 mm, respectively. From these results, crack
lengths are found to be closely related to the damage degree of asphalt concrete. Cracks were always
generated from pores and gradually propagated along with the aggregate and asphalt mortar interfaces.
In addition, cracks branched and connected until the specimen failed. From Figure 3, the development
paths of the cracks can be divided into two types: main and secondary cracks. The main cracks
propagated along the interfaces of the aggregate and the asphalt mortar. The secondary cracks
propagated around pores, and formed the branches of the main cracks.

3.2. 3D Reconstruction Technology

The 3D internal structures in the spatial distribution of concrete aggregate, mortar, pores, and
cracks were acquired using X-ray CT. Several 2D image slices of concrete specimens were put together
and rendered to produce a 3D image. According to the law of three-phase threshold distribution of
asphalt concrete (Figure 4b), the 3D distributions for aggregates, asphalt mortar, pores, and cracks are
visualized via MIMICS, as shown in Figure 6. The reconstructed 3D image showed the characteristic
of the spatial distribution of aggregates, asphalt mortar, and pores [33]. It was obvious that cracks
from different angles merged as well as separated. The 3D reconstruction effect image and threshold
segmentation images are shown in Figure 6a.
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As can be seen from the threshold segmentation images (Figure 6b–d), the three components
of AC-13 asphalt concrete can be separated from each other by the segmentation threshold. The
CT value of voids, asphalt mortar and coarse aggregate used in this paper were −450 Hu~500 Hu,
501 Hu~1600 Hu and 1601 Hu~2250 Hu, respectively. Coarse aggregate particles have similar contact
characteristics. Asphalt mortar is closely distributed in the gap of the coarse aggregate and plays a
good bonding role. The voids are closely distributed around the edges and sparsely distributed in
the middle. This is characterized as “high around and low in the middle”, where it is related to the
forming method of the specimen in the manufacturing process. The components of AC-13 specimens
of the asphalt mixture not having undergone any freeze-thaw cycles were analyzed by micro-structure
analysis. The change of volume ratio of each component is shown in Figure 7.

As seen in Figure 7, with the increase of freeze-thaw cycling, the volume ratio of asphalt mortar
goes up first, and then goes down. The volume ratio of coarse aggregate decreases all along the
cycles, and the volume ratio of the void increases all along the cycles. This is mainly caused by the
irreversible plastic volume deformation of the pore under the action of frost heaving force, and the loss
of asphalt mortar along the crack channel with pore water [11]. As shown in Figure 7, the coefficients
of correlations are all above 0.9779, indicating that the fitting equation explains the law on the change
of volume ratio for each component reasonably.
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3.3. Fractal Dimension

The fractal dimension reflects the validity of the space occupied by complex bodies, which is
a measure of irregularity of complex shapes and bodies including the Hausdorff dimension, the
box covering method, and so on. Consider a 3D space where two coordinates (x, y) represent a 2D
position of each point in asphalt concrete, and the third coordinate (z) represents the optical intensity
of image [34]; the 3D optical intensity is displayed in Figure 8a. The variation of intensity reflects the
roughness of the surface and light absorptivity of the medium. As shown in Figure 8b, for a given
image of size of M ×M, we partitioned the 3D space into boxes of sides L × L × L′, where L is a given
scale and is used as a multiple of the side length of a pixel in (x, y). L′ can be a multiple of the gray
level unit in z direction. If G is the total gray levels, then L′ = L × G/M. Given a L × L grid at point
(i, j), suppose that the minimum gray value is in box b and the maximum gray value is in box u, the
minimum amount of the boxes that can cover the whole gray values in grid (i, j) is:

nL(i, j) = u− b + 1 (1)
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Then, the number of boxes that can cover all the patches can be calculated.

NL =
∑
i, j

nL(i, j) (2)

Fractal dimension d f of the image is:

d f = lim
L→0

log(NL)

log(1/L)
(3)

The fractal dimension on each section and the mean of all sections are shown in Figure 9.
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The mean fractal dimension of pore shows a fluctuation law at first, and then decreases gradually
with the number of freeze-thaw cycles. It reaches the lowest value after the third freeze-thaw cycle and
the highest value after the sixth freeze-thaw cycle. After more than 6 freeze-thaw cycles, the fractal
dimension reaches a stable level, which indicates that the pore complexity at this time also reaches a
stable level. This is mainly due to the joint action of pore expansion and pore closure. After more than
six freeze-thaw cycles, the interaction between the two reached an approximate dynamic equilibrium,
which is consistent with the results in reference [35].

3.4. Fractal Construction of Cracks

In order to simulate the fractal characteristics of fracture structures, the Koch curve is used. The
Koch curve is a kind of typical fractal curve, which was first proposed by Koch, H.von in 1904 [36]
and is now widely used to analyze specific and complex engineering problems. The construction
process of the Koch fractal curve is shown in Figure 10. The more tortuous the external boundary of the
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fracture, the higher degree the fractal construction. The Koch snowflake, with a strong characteristic of
self-similarity, can be used to simulate the characteristics of irregular edges for fracture propagation in
the process of freeze-thaw cycles.
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construction, (d) 6th construction.

As shown in Figure 10, the construction rule can be determined by the first step of the fractal
construction, and by fractal construction size δ. After fractal construction, it can be expressed as [37]:

δ = a0/3n (4)

where n is the number of constructions, and a0 is the half projection length.
Since the frost heaving force is the driving force of crack development, a mode I crack on the

infinite plane plate was used to study the development of cracks during freeze-thaw cycling (Figure 11).
The edge of cracks has the obvious characteristic of self-similarity caused by the effect of fractal
construction. The relationship between the actual fractal length and the projection length can be
expressed as follows [38]:

a = a
d f
0 δ

1−d f (5)

where a0 is the projection length, a is the actual fracture length, and δ is the size of fractal structure.
As the edge of crack is made up of two parts, the perimeter p can be determined.

p = 4a = 4a
d f
0 δ

1−d f (6)

If the crack is constructed using the Koch curve, then the perimeter of the crack is equal to the
Koch fractal curve length of a certain construction number is which is taken as a criterion to determine
the number of fractal constructions. According to Equations (4) and (6), the fractal construction number
(n) can be expressed as:

n =
1

log 3

log a0 −
1

1− d f
log

 p

4a
d f
0


 (7)

For a certain crack perimeter, the number of fractal constructions is determined by a0 and d f in
Equation (4). MATHEMATICA is a mathematical computing software which combines numeric and
symbolic computing functions. By programming Equation (7), complex mathematical relations can be
visualized in 3-D. As shown in Figure 12, the 3-D visualization image is displayed.

Seen from Figure 12, when a0 is small, n decreases with the increase of fractal dimension d f ,
whereas when a0 is large, the effect of d f on n is not obvious. The fractal construction times with
freeze-thaw cycling of all cracks are shown in Figure 13. The mean of fractal construction times on the
1st cross-section are displayed in Figure 14.
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As can be seen in Figure 13, the fractal construction times ranged from 0.19 to 4.9, and showed
non-integer characteristics. Crack expansion can be considered as the process of Koch snowflake
construction, but the degree of the fractal construction is relatively low. As seen from Figure 14,
when fewer than freeze-thaw cycles were carried out, the construction times went up with increasing
numbers of freeze-thaw cycles. When the number of freeze-thaw cycles ranged from 6 to 10, the
construction times went down with increasing the number of freeze-thaw cycles. In contrast, when
the number of freeze-thaw cycles was greater than 6, the mean construction times increased again.
This is the result of an alternation of two functions of the original crack expansion and primary crack
formation [22]. By this means, the fractal size δ of Equation (4) can be determined.

4. Discussion

4.1. Fracture Toughness

Under the action of frost heaving force, the crack edge of asphalt concrete, as a heterogeneous
material, has self-similar characteristics, which can be measured by the fractal dimension. For Euclidean
two-dimensional space, the relationship between the perimeter (p) and sectional area (A) is p ∝ A1/2;
for a circle, p = 2

√
πA1/2; for a square, p = A1/2/4. Therefore, for a fractal space with fractal

dimension of d f , the relationship between the effective fractal perimeter (p) and section area (A) is
p1/d f ∝ A1/2 [39]. Then, we can get:

p1/d f = c ·A1/2 (8)

According to Equation (8), theoretically, there is a good linear relationship between p1/d f and A1/2.
The coefficient of correlation R2 can be used as a criterion for their linear correlation. For a certain
number of freeze-thaw cycles, each crack boundary is isolated and closed. The fractal dimension will
fluctuate in a small interval which is closely related to the damage caused by freeze-thaw cycles. The
linear relationship between p1/d f and A1/2 can be fitted as:

p1/d f = cA1/2 + m (9)

where c is the slop of the fitting line, and m is the intercept of the fitting line. The fitting effects of the
linear relationships are shown in Figure 15.
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As shown in Figure 15, there is a strong linear correlation between p1/d f and A1/2; the correlation
coefficients are all above 0.9, which indicates that the fracture evolution under freeze-thaw conditions
has good fractal characteristics. Therefore, parameter c can be determined, as shown in Equation (12).
The critical fracture stress can be calculated.

4.2. The Critical Cracking Stress

According to Equation (6), the surface free energy Π should be expressed as:

Π = ptγ = 4a
d f
0 δ

1−d f tγ (10)

where t is the thickness of the plate, γ is the unit free energy density, J/m2.
Based on Equations (6) and (10), the expression of fractal area A(δ) can be determined.

A(δ) = c−2
(
4a

d f
0 δ

1−d f

)2/d f
= c−242/d f a2

0δ

2(1−d f )

d f (11)

When the minor axis of fractal crack approaches zero, the increment of strain energy ∆U is

∆U =
tσ2A(δ)

2E
=

tσ242/d f a2
0

2c2E
δ

2(1−d f )

d f (12)

where E is the modulus of elasticity, as determined by an indoor experiment. The symbol σ is the frost
heaving stress, introduced by the freezing of water.

The process of crack growth is accompanied by the accumulation and transformation of energy.
Therefore, it is reasonable to assume that the total potential energy increment is caused by frost heaving
force, which is determined by the increment of strain energy ∆U and surface free energy Π. This can
be calculated as follows:

P = −∆U + Π = −
tσ242/d f a2

0

2c2E
δ

2(1−d f )

d f + 4a
d f
0 δ

1−d f tγ (13)
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According to the potential energy extremum principle, when the released strain energy is exactly
equal to the surface energy, the crack is in the critical equilibrium state. Meanwhile, the boundary
conditions for the maximum of the total potential energy can be expressed as [40]:

∂P
∂a0

= 0,
∂2P
∂a2

0

< 0 (14)

By introducing Equation (13) into Equation (14), we can obtain:

−
tσ242/d f a0

c2E
δ

2(1−d f )

d f + 4d f a
d f−1
0 δ1−d f tγ = 0 (15)

Simplifying Equation (15), critical cracking stress σc can be calculated as follows:

σc =
2c

41/d f

√
d f a

d f−2
0 γEδ

3− 2
d f
−d f

(16)

The relationship between critical cracking stress σc and fractal dimension d f with different
projection lengths of cracks is shown in Figure 16. So, the fracture parameters of AC-13 asphalt concrete
can be determined and shown below:

The free surface energy γ = 0.5 J·m−2;
The fractal proportional coefficient is c = 4.05;
The fractal size δ = a0/32.

The relationship between elastic modulus and critical crack stress is shown in Figures 17
and 18, respectively.
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The relationship between critical cracking stress
c  and fractal dimension fd with different projection lengths 

of cracks is shown in Figure 16. So, the fracture parameters of AC-13 asphalt concrete can be determined and shown 

below: 

The free surface energy γ = 0.5 J·m-2; 

The fractal proportional coefficient is c = 4.05;  

The fractal size δ = 
0a /32.  

The relationship between elastic modulus and critical crack stress is shown in Figures 17 and 18, respectively.  
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Figure 18. Change of critical crack length with freeze-thaw cycles.

As seen in Figure 17, the elastic modulus deteriorates with increasing the freeze-thaw cycles,
and decreases rapidly in the initial freeze-thaw cycles. This is due to the micro cracks in asphalt
concrete caused by freeze-thaw cycle damage, which leads to a considerable decline in overall integrity
and brittle fracture in advance. This is why many people define the degree of damage by modulus
degradation [41]. As seen in Figure 18, the critical crack stress decreases with increasing the number
of freeze-thaw cycles; this is because of the decline of the tensile strength at the interface due to
freeze-thaw damage.

4.3. Intensity Factor of Frost Heave Stress

Based on the theory of elastic fracture mechanics [42], the components of the stress field for the tip
of cracks in Figure 19 can be determined using the following equations.

σr =
Kf

I√
2πr

cos θ2
(
1 + sin θ

2 sin 3θ
2

)
σθ =

Kf
I√

2πr
cos θ2

(
1− sin θ

2 sin 3θ
2

)
τrθ =

Kf
I√

2πr
cos θ2 sin θ

2 sin 3θ
2

(17)

where Kf
I is the stress intensity factor of Griffith I mode crack caused by frost heaving force, θ is the

deflection angle of σr relative to the major axis, and r is the distance between stress element and the
crack tip. The change of each component with the variations of θ and r in Equation (17) is shown in
Figure 20.
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Based on basic fracture theory [43], σy = σθ|θ = 0 is the driving force for cracking development.
The boundary conditions are:

when y = 0, |x| < a, σy = τxy = 0, σy = p.
when |x| → ∞ , σx = σy = τxy = 0.

The stress state function z(x), satisfying all the above boundary conditions, is:

z(x) =


p, (|x| ≤ a0)

px√
x2−a2

0

, (|x| > a0) (18)

where p is the frost heave force caused by water freezing.
For convenience purposes, the origin of the coordinate system is shifted from the center of the

crack to the right edge, and r = x − a0 is the new coordinate. When |x| > a0, Equation (18) can be
rewritten as follows:

z(r) =
p(r + a0)√
r2 + 2ra0

(19)

So, the stress intensity factor of the frost heaving force on the crack tip can be calculated as the
following limit- form.

Kf
I = lim

|r|→0

√

2πr · z(r) = lim
|r|→0

p(r + a0)
√

2πr√
r(r + 2a0)

= p
√
πa0 (20)

4.4. Fracture Toughness

Based on the research of Wnuk [44] regarding the fact that stress fields at the crack tip as shown in
Figure 21, the frost heaving stress σy = σθ|θ = 0 at the tip of crack in y-direction can be calculated.

σy =
Kf

I

(2πr)α
{
cos(αθ) + α sinθ sin[(α+ 1)θ]

}
(21)

where Kf
I is the stress intensity factor of frost heaving force, and α is the singularity order of the stress

field for self-similar fractal crack. A noteworthy phenomenon in the theoretical studies of fractal
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fracture mechanics is the change of the order of stress singularity at the crack tip. For a fractal version
of the Griffith crack, the familiar singularity of r−1/2 is replaced by a weaker singularity for the near-tip
stress r−α, where α depends on the fractal dimension d f [44].

α =

{
1− d f /2, 1 ≤ d f ≤ 2
1.5− d f /2, 2 < d f ≤ 3

(22)

Once σy = σc, the stress intensity factor Kf
I of frost heaving will reach its fracture toughness Kf

IC.
When an asphalt concrete crack expands, the expression of fracture toughness can be determined as
follows:

Kf
Ic =

2c(2πr)α
√

d f a
d f−2
0 γEδ

3− 2
d f
−d f

4
1

d f
{
cos(αθ) + α sinθ sin[(α+ 1)θ]

} (23)

Seen from Figure 20b, a maximum cracking stress exists at θ = 0◦. Equation (23), used to determine
the maximum cracking stress

(
Kf

Ic

)
max

, can be simplified into Equation (24). The relationship between(
Kf

Ic

)
max

and fractal dimension of the different half crack length is shown in Figure 21.

(
Kf

Ic

)
max

= 2
1− 2

d f c(2πr)α
√

d f a
d f−2
0 γEδ

3− 2
d f
−d f

(24)    
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Figure 21. The relationship between fracture toughness and fractal dimension.

As seen in Figure 21, the fracture toughness goes up with increments in the fractal dimension
in the intervals 1–2. When the half-crack length is constant, the farther away from the crack tip, the
greater the fracture toughness. This indicates that the distant part of the crack tip is less affected by
the crack. When the distance from the crack tip remains constant, the larger the crack half-length, the
smaller the fracture toughness.

4.5. Certification

In order to study the influence of freeze-thaw damage on fracture toughness, the simulation of
fractal fractures after freeze-thaw cycling was carried out using ABAQUS. The extended finite element
method (XFEM) is a new finite element method for solving fracture mechanics problems, which is
widely used in the soil and rock fracture engineering field. The pictures in Figure 22 show the dynamic
evolution of a prefabricated fracture with the fractal dimension (1.161). The spreading speed and
geometry characteristic evolution with the time of freeze-thaw cycle = 0 were monitored [45].
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Figure 22. Dynamic evolution of fractal fractures in different time. (a) t = 0.01 s, (b) t = 0.05407s,
(c) t = 0.5409 s, (d) t = 0.05526 s, (e) t = 0.05683 s, (f) t = 0.06034 s, (g) t = 0.07118 s, (h) t = 0.08267 s,
(i) t = 0.08865 s, (j) t = 0.09205s, (k) t = 0.09370 s, (l) t = 0.09427 s.

As seen in Figure 22, the fractal fractures expand at the tip of crack over time, showing the
characteristics of non-uniform propagation. When the stress intensity factor reaches the fracture
toughness, the growth rate of the fracture will increase sharply, and the stress intensity factor can be
used as the fracture toughness.

The free surface energy density keeps constant in the process of freeze-thaw cycles, γ = 0.5 J/m2,
the fracture parameters and mechanical parameters are listed in Table 3. The comparison between
calculation data from Equation (24) and the simulated data by using ABAQUS is shown in Figure 23.
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Table 3. Fracture toughness and fractal dimension.

Freeze-Thaw
Cycles

Specimen
No. c a0/mm df α E/MPa δ Kf

IC/MPa
√

mm

0

S1

4.50

3.385 1.161 0.081

317.78

0.404 0.5324
S2 1.235 1.155 0.078 0.307 0.8003
S3 2.125 1.123 0.062 0.998 0.6695
S4 1.648 1.203 0.102 0.155 0.6776
S5 1.219 1.169 0.085 1.788 0.8932

1

S6

4.05

1.076 1.103 0.052

197.84

0.131 0.5859
S7 1.582 1.120 0.060 1.109 0.5439
S8 1.490 1.157 0.079 0.512 0.5406
S9 1.761 1.195 0.098 0.040 0.4290

S10 1.459 1.107 0.054 0.132 0.5108

3

S11

4.59

2.677 1.213 0.107

177.34

0.535 0.4641
S12 1.985 1.156 0.078 0.187 0.4859
S13 1.236 1.207 0.104 0.600 0.6342
S14 1.685 1.122 0.061 0.066 0.4966
S15 3.030 1.120 0.060 0.083 0.3880

6

S16

4.23

1.165 1.164 0.082

159.05

0.404 0.5545
S17 1.327 1.174 0.087 0.307 0.5163
S18 1.655 1.153 0.077 0.998 0.5025
S19 2.531 1.176 0.088 0.155 0.3793
S20 4.189 1.154 0.077 1.788 0.3512

10

S21

4.15

1.099 1.143 0.072

140.89

0.136 0.4951
S22 2.855 1.112 0.056 0.020 0.3013
S23 1.404 1.137 0.069 0.148 0.4484
S24 1.187 1.185 0.093 0.326 0.4997
S25 1.568 1.130 0.065 0.536 0.4572

15

S26

3.39

1.749 1.1772 0.089

133.25

0.299 0.3371
S27 2.286 1.1479 0.074 0.044 0.2705
S28 2.088 1.1944 0.097 0.081 0.2888
S29 1.389 1.1372 0.069 0.072 0.3448
S30 4.252 1.2023 0.101 0.081 0.2172
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Figure 23. The comparison of calculated data and tested data.

As can be seen from Figure 23, fracture toughness decreases with an increase in the number
of freeze-thaw cycles due to freeze-thaw damage. In other words, freeze-thaw cycles make asphalt
concrete more brittle. The calculated data is in good agreement with the measured data, indicating
that the fracture toughness calculation model, considering the fractal characteristics proposed in this
study, is reasonable.
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5. Conclusions

In this study, an image process for meso-damage fracture evolution in asphalt concrete was
developed using the CT scanning technique. The pore and fracture were obtained nad analyzed by
digital image processing techniques. Additionally, an evaluation of the mesoscopic fracture fractal
behavior after freeze-thaw damage was undertaken, based on Griffith fracture theory. The model of
critical crack stress, stress intensity factor, and fracture toughness with fractal characteristics were
established. The conclusions may be summarized as follows:

1. A quantitative analysis of internal mesoscopic cracks could be regarded as the quantity index that
reflected the freeze-thaw damage process of asphalt concrete. It confirmed that the fracture process
of asphalt concrete accumulates gradually with the evolution of the cracks’ fractal dimensions.
A transition develops from meso-crack to failure. Optical intensity was used to calculate the
fractal dimension of the whole CT gray image, which ranged from 1.9 to 1.99.

2. The digital image processing technique was successfully applied to this study by introducing a
series of software, such as MATLAB, IPP, MATHEMATICA, and MIMICS. The spatial distribution
state of aggregates, asphalt mortars, and pores can be visualized using 3D reconstruction and
threshold segmentation based on CT number. The fractal dimension of a single crack was obtained
using the function of IPP measurement.

3. The law on the fracture and damage evolution is established by combining Griffith fracture theory
and fractal theory. The calculation results show that critical stress grows with increasing the
fractal dimension, and the longer the projection crack length, the less critical the crack stress
will be. Meanwhile, the fracture toughness displays similar regularity. The calculation results,
obtained using Equation (24), were very closed to the numerical simulation results obtained
by ABAQUS.
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