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Abstract: This study presents a hybrid framework for mechanical identification of materials and
structures. The inverse problem is solved by combining experimental measurements performed
by optical methods and non-linear optimization using metaheuristic algorithms. In particular,
we develop three advanced formulations of Simulated Annealing (SA), Harmony Search (HS) and Big
Bang-Big Crunch (BBBC) including enhanced approximate line search and computationally cheap
gradient evaluation strategies. The rationale behind the new algorithms—denoted as Hybrid Fast
Simulated Annealing (HFSA), Hybrid Fast Harmony Search (HFHS) and Hybrid Fast Big Bang-Big
Crunch (HFBBBC)—is to generate high quality trial designs lying on a properly selected set of descent
directions. Besides hybridizing SA/HS/BBBC metaheuristic search engines with gradient information
and approximate line search, HS and BBBC are also hybridized with an enhanced 1-D probabilistic
search derived from SA. The results obtained in three inverse problems regarding composite and
transversely isotropic hyperelastic materials/structures with up to 17 unknown properties clearly
demonstrate the validity of the proposed approach, which allows to significantly reduce the number
of structural analyses with respect to previous SA/HS/BBBC formulations and improves robustness of
metaheuristic search engines.

Keywords: optical methods; inverse problems; hybrid metaheuristic algorithms; simulated annealing;
harmony search; big bang-big crunch

1. Introduction and Theoretical Background

An important type of inverse problems is to identify material properties involved in
constitutive equations or stiffness properties that drive the mechanical response to applied loads.
Since displacements represent the direct solution of the general mechanics problem for a body subject
to some loads and kinematic constraints, the inverse solution of the problem is to identify structural
properties corresponding to a given displacement field {u(x, y, z), v(x, y, z), w(x, y, z)}. The term
“structural properties” covers material parameters (e.g., Young’s modulus, hyperelastic constants,
viscosity etc.) and stiffness terms including details on material constituents (e.g., tension/shear/bending
terms in composite laminates, fiber orientation and ply thickness etc.) evaluated for the region of the
body under investigation.

The finite element model updating technique (FEMU) [1–3] and the virtual fields method
(VFM) [2–4] are the most common approaches adopted in the literature for solving mechanical
characterization problems. In general, FEMU is computationally more expensive than VFM but the
latter method may require special cares in selecting specimen shape, virtual displacement fields and
kinematic boundary conditions to simplify computations entailed by the identification process and
obtain realistic results.
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In the FEMU method, experimentally measured displacement fields are compared with their
counterparts predicted by a finite element model simulating the experiment. This comparison is
made at a given set of control points. If boundary conditions and loads are properly simulated by
the FE model, computed displacements match experimental data only when the actual structural
properties are given in input to the numerical model. The difference between computed displacement
values and measured target values may be expressed as an error functional Ω that depends on the
unknown material/structural properties to be identified. Hence, the inverse problem of identifying
NMP unknown mechanical properties may be stated as an optimization problem where the goal is to
minimize the error functional Ω. That is:

Min

Ω(X1, X2, . . . , XNMP) =

√
1

NCNT

NCNT∑
j=1

(
δFEM

j−δj

δj

)2


Gp(X1, X2, . . . , XNMP) ≥ 0
Xi

L
≤ Xi ≤ Xi

U

{
i = 1, . . . , NMP
p = 1, . . . , NC

(1)

where: XPROP (X1,X2, . . . ,XNMP) is the design vector containing the NMP unknown properties ranging
between the lower bounds “L” and the upper bounds “U”; NCNT is the number of control points at

which FE results are compared with experimental data; δFEM
j and δj, respectively, are the computed

and target displacement values at the jth control point; Gp(XPROP) define a set of NC constraint
functions depending on unknown properties that must be satisfied in order to guarantee the existence
of a solution for the inverse problem. Buckling loads or natural frequencies can also be taken as target
quantities in the optimization process: in this case, the displacement field of the structure is described
by the corresponding normalized mode shape.

Non-contact optical techniques [5–7] such as moiré, holography, speckle and digital image
correlation are naturally suited for material/structure identification because they can accurately
measure displacements in real time and gather full field information without altering specimen
conditions. The full field ability of optical techniques allows to select the necessary amount of
experimental data for making the results of identification process reliable. Furthermore, their versatility
also allows to choose the best experimental set-up for the inverse problem at hand. Based on the
type of illumination varying from coherent or partially coherent light to white light, the magnitude
of measured displacements may range from fraction of microns (using, for example, lasers and
interferometry) to some millimetres (using, for example, grating projection, image correlation and
white light), thus covering a wide spectrum of materials and structural identification problems.

Regardless of the way displacement information are extracted from recorded images, all optical
methods share a common basic principle. The light wave fronts hitting the specimen surface are
modulated by the deformations undergone by the tested body. By comparing the wave fronts
modulated by the body surface and recorded by a sensor before and after deformation a system of
fringes forms on the specimen surface; each fringe represents the locus of an iso-displacement region.
The spatial frequency distribution of fringes can be used for recovering strain fields. Material anisotropy,
presence of local defects (e.g., dislocations in crystalline structures) and/or damage (e.g., delamination or
cracks) produce fringe distortions or changes in spatial frequency of fringe patterns.

The inverse problem (1) is in general highly nonlinear and in all likelihood non-convex, especially if
there are many parameters to be identified. Furthermore, the error functional Ω is not explicitly defined
and each new evaluation of Ω entails a new finite element analysis. Such a non-smooth optimization
problem cannot be handled efficiently by gradient-based algorithms. In fact, their utilization has
continuously been decreasing in the last 10 years. For example, in the case of soft materials
(a rather complicated subject) just a few studies using Levenberg-Marquardt or Sequential Quadratic
Programming techniques (see, for example, [8–16]) have earned at least one or two citations per year.

Global optimization methods can explore larger fractions of design space than gradient-based
algorithms. This results in better trial solutions and higher probability of avoiding premature
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convergence to local minima. A purely random search allows in principle to explore the whole design
space but it may be computationally unaffordable because the number of trial solutions yielding
reductions of Ω rapidly decreases as the optimization process progresses. In order to rationalize
search process and improve computational speed of global optimization, metaheuristic algorithms
have been developed inspired by evolution theory, medicine, biology and zoology, physics and
astronomy, human sciences etc. Trial designs are randomly generated according to the selected
inspiring principle. Metaheuristic methods have been successfully utilized practically in every field of
science and engineering.

Genetic algorithms (GA) [17,18], evolution strategies (ES) [19–21] and simulated annealing
(SA) [22,23] were among the first metaheuristic optimization methods to be developed in the early
‘1980s and are still widely utilized nowadays. The basic difference between GA/ES and SA is that the
former algorithms operate with a population of candidate designs while the latter algorithm, at least in
its classical implementation, considers one trial design at a time and then further develops it.

Swarm intelligence algorithms mostly inspired by animals’ behavior are other population-based
algorithms developed since early 1990s. They still attract the attention of optimization experts that
continue to propose new algorithms: the most popular methods are particle swarm optimization
(PSO) [24], ant colony optimization (ACO) [25], artificial bee colony (ABC) [26], firefly algorithm
(FFA) [27], bat algorithm (BA) [28], and cuckoo search (CS) [29].

Social sciences and human activities have been for almost 20 years another important source
of inspiration for metaheuristic algorithms, yet they not as popular as swarm intelligence methods.
Among others, we can mention tabu search (TS) [30], harmony search (HS) [31], imperialist competitive
algorithm (ICA) [32], teaching-learning based optimization (TLBO) [33], search group algorithm
(SGA) [34], and JAYA [35].

Astronomy, physics (electromagnetism, optics, classical mechanics, etc.) and natural phenomena
have provided another prolific field of inspiration, especially in the last 10–15 years: for example,
big bang-big crunch (BBBC) [36], gravitational search algorithm (GSA) [37], charged system search
(CSS) [38], colliding bodies optimization (CBO) [39], ray optimization [40], water evaporation
optimization (WEO) [41], thermal exchange optimization (TEO) [42], and cyclical parthenogenesis
algorithm (CPA) [43], just to mention a few.

A rapid survey of the optimization literature produced over the last 15 years reveals that
GA [44–62], DE [63–75], SA [76–97], HS [98–112] and PSO [113–133] are the most popular metaheuristic
algorithms used in mechanical identification problems. In order to improve computational efficiency
of identification process, GA and SA were often hybridized [134–137]. Similarly, PSO was hybridized
with many other algorithms including, for example, GA [138,139], GA and ACO [140] and other swarm
intelligence methods [141]. HS was hybridized with GA [142] and PSO/RO [143].

BBBC [144–149] was more often utilized than ICA [150,151], ACO [152,153], JAYA [154,155] and
machine learning [156]. However, there are quite less studies on inverse problems employing BBBC
than for GA, DE, SA, HS and PSO. Such a difference may be explained with the informal argument
that BBBC was developed much later than GA, DE, SA, HS and PSO.

The many studies listed above is a direct consequence of the blooming of metaheuristic methods
favored by the exponentially increasing computational power. Applications of metaheuristic algorithms
to inverse problems with special emphasis on material characterization and structural damage
detection are critically reviewed in [157–161]. From the stand point of algorithmic formulation,
it should be noted that SA is the only metaheuristic algorithm inherently capable of bypassing local
optima. However, HS and BBBC include very important features that should be possessed by any
population-based algorithm. In particular, HS stores all candidate designs (i.e., those forming the
population and additional designs kept in memory from previous iterations) in a matrix called harmony
memory. Values assigned to optimization variables can be extracted from this memory to form new trial
designs. This allows one to carry out an adaptive search while avoiding stagnation. BBBC utilizes the
concept of center of mass, which makes it possible to follow the evolution of the average characteristics
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of the population over the optimization process. GA and PSO instead may suffer from premature
convergence, stagnation, sensitivity to problem formulation. Furthermore, GA and PSO include more
internal parameters than SA, HS and BBBC, which increases the amount of heuristics in the optimization
process. The same arguments may be used for DE whose performance is strongly dependent on the
crossover/mutation scheme implemented in the algorithm. Based on these considerations, we decided
to develop advanced formulations of SA, HS and BBBC for material/structural identification problems.

Lamberti et al. attempted to improve the convergence speed of SA (e.g., [77,81,83,84,162,163]),
HS (e.g., [164–166]) and BBBC (e.g., [165,166]) in inverse and structural optimization problems.
While these SA/HS/BBBC variants clearly outperformed referenced algorithms in weight minimization
of skeletal structures, improvements in computational cost were less significant for inverse problems
as those variants evaluated gradients of error functional Ω using a “brute-force” approach based
on finite differences. This occurred in spite of having enriched metaheuristic search with gradient
information. In order to overcome this limitation, this study presents new hybrid formulations of SA,
HS and BBBC that are significantly more efficient and robust than the algorithms currently available in
the literature. For that purpose, low-cost gradient evaluation and approximate line search strategies
are introduced in order to generate higher quality trial designs and a very large number of descent
directions. Populations of candidate designs are renewed very dynamically by replacing the largest
number of designs as possible. All algorithms use a very fast 1-D probabilistic search derived from
simulated annealing.

The new algorithms—denoted as Hybrid Fast Simulated Annealing (HFSA), Hybrid Fast Harmony
Search (HFHS) and Hybrid Fast Big Bang-Big Crunch (HFBBBC)—are tested in three inverse elasticity
problems: (i) mechanical characterization of a composite laminate used as substrate in electronic
boards (four unknown elastic constants); (ii) mechanical characterization and layup identification of
a composite unstiffened panel for aeronautical use (four unknown elastic constants and three unknown
layup angles); (iii) mechanical characterization of bovine pericardium patches used in biomedical
applications (sixteen unknown hyperelastic constants and the fiber orientation). Sensitivity of inverse
problem solutions and convergence behavior to population size and initial design/population is
evaluated in statistical terms.

The rest of this article is structured as follows: Sections 2–4, respectively, describe the new
SA, HS and BBBC formulations developed here trying to point out the theoretical aspects behind
the proposed enhancements and critically compare the new formulations with currently available
SA/HS/BBBC variants including those developed in [77,81,83,84,162,166]. Section 5 presents the results
obtained in the inverse problems. Finally, Section 6 discusses the main findings of this study.

2. Hybrid Fast Simulated Annealing

The flow chart of the new HFSA algorithm developed in this study is shown in Figure 1.
HFSA includes a multi-level and multi-point formulation combining global and local annealing,
evaluation of multiple trial points, and line search strategies based on fast gradient computation.
The hybrid nature of HFSA derives from the fact that metaheuristic search is enriched by approximate
line searches. Similar to classical SA, the proposed algorithm starts with setting an initial design
vector X0 as the current best record XOPT. The corresponding cost function value ΩOPT = Ω(XOPT)
is computed. Set the counter of cooling cycles as K = 1 and the maximum number of cooling cycles
as KMAX = 100. Set the initial temperature T0 equal to 0.1 near to the target value 0 of the error
functional Ω.
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Figure 1. Flow chart of the HFSA algorithm developed in this research. 
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2.1. Step 1: Generate A New Trial Design with “Global” Annealing by Perturbing All Design Variables

Since determination of sensitivities ∂ω/∂xj entails new structural analyses, material parameters
taken as optimization variables are perturbed as follows:

xj = xOPT,j −
(
xOPT,j

l
− xOPT,j

l−1
) ∣∣∣ωOPT

l
−ΩOPT

l−1
∣∣∣

‖XOPT
l−XOPT

l−1‖
×NRND,j × ΩOPT,l−1/ΩOPT,l(j = 1, . . . , NMP) (2)

where XOPT
l and XOPT

l−1 are the best records for the last two iterations; (XOPT
l) and (XOPT

l−1) are the
corresponding values of error functional; NRND,j is a random number in the interval (0,1).

If Ω(XOPT
l) < Ω(XOPT

l−1), (XOPT
l
− XOPT

l−1) is a descent direction with respect to the previous
best record XOPT

l−1 while −(XOPT
l
− XOPT

l−1) may be a descent direction with respect to the current
best record XOPT

l. The approximate gradient of Ω is computed as |ΩOPT
l
−ΩOPT

l−1|/||XOPT
l
− XOPT

l−1||:
the absolute value accounts for the “−” sign included in Equation (2). The NRND,j random number
preserves the heuristic character of the SA search while the ΩOPT,l−1/ΩOPT,l ratio forces the optimizer
to take a large step along a potentially descent direction. Using approximate gradient evaluation
allows computational cost of the inverse problem to be drastically reduced with respect to other SA
applications [76,77,81,83,84].

A trial design XTR(xOPT,1 + ∆x1, xOPT,2 + ∆x2, . . . ,xOPT,NMP−1 + ∆xNMP−1, xOPT,NMP + ∆xNMP) is
hence formed.

2.2. Step 2: Evaluation of the New Trial Design

If Ω(XTR) < Ω(XOPT), XTR is set as the new best record XOPT. Step 5 is executed in order to check
for convergence and reset parameters K and TK.

If Ω(XTR) > Ω(XOPT), a “mirroring strategy” is used to perturb design along
a descent direction. In fact, since Ω(XTR) > Ω(XOPT) yields (XTR − XOPT)T

∇Ω(XOPT) > 0,
the −(XTR − XOPT)T

∇Ω(XOPT) < 0 condition is expected to be satisfied thus defining the new descent
direction (XTR

new
− XOPT)≡−(XTR − XOPT). The new candidate design XTR

new is defined as:

XTR
new = 2XOPT − XTR (3)

If the mirror trial point XTR
new yet does not improve XOPT (i.e., if Ω(XTR

new) > Ω(XOPT)), the cost
function Ω(X) is approximated by a 4th order polynomial that passes through the five trial points XTR,
XINT

’, XOPT, XINT
” and XTR

new where XINT
’ is randomly generated on the segment limited by XTR

and XOPT while XINT
” is randomly generated on the segment limited by XOPT and XTR

new. A local 1-D
coordinate system is set for the segment limited by XTR and XTR

new: the origin is located at XOPT and
coordinates are normalized with respect to the distance from the origin. The trial point XOPT* at which
the approximate error functional ΩAPP(X) takes its minimum value is determined. An exact analysis is
performed at XOPT* and the real value of error functional Ω(XOPT*) is computed. The following cases
may occur.

If Ω(XOPT*) < Ω(XOPT), XOPT* is reset as the current best record. Hence, Step 5 is executed in
order to check for convergence and reset K and TK.

If Ω(XOPT*) > Ω(XOPT), trial designs XTR, XINT
’, XOPT*, XINT

” and XTR
new are evaluated with

the Metropolis’ criterion. The cost function variation ∆Ωs = [Ω(Xs) − Ω(XOPT)] is computed for these
designs (the s subscript denotes TR, INT’, OPT*, INT” and TRnew, respectively). For the trial design
yielding the smallest increment ∆Ωs > 0 (in all likelihood XOPT*), the Metropolis’ probability function
is defined as:

P(∆Ωs) = e
−∆Ωs

(
∑NDW

r=1 ∆Ωr/NDW)·TK (4)

where NDW are the trial points at which error functional was higher than the previously found
best records up the current iteration. The ∆Ωr terms are the corresponding cost penalties. The ratio



Materials 2019, 12, 2133 7 of 46

∑
r=1, NDW ∆Ωr/NDW accounts for the general formation of all previous trial designs and normalizes

probability function with respect to cost function changes.
The design Xs is provisionally accepted or certainly rejected according to the Metropolis’ criterion:
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P(Ωs)  <  NRDs   Reject  
(5) 

where NRDs  is a random number defined in the interval (0, 1). 

If Xs may be accepted from Equation (5), it is added to the database , that includes all trial 

designs that could not improve the current best record. Hence, Step 4 is executed. 

If all of the Xs points are rejected from Equation (5), Step 3 is executed. 

2.3. Step 3: Generate New Designs with “Local” Annealing by Perturbing One Variable at A Time. 

(5)

where NRDs is a random number defined in the interval (0, 1).
If Xs may be accepted from Equation (5), it is added to the database Π, that includes all trial

designs that could not improve the current best record. Hence, Step 4 is executed.
If all of the Xs points are rejected from Equation (5), Step 3 is executed.

2.3. Step 3: Generate New Designs with “Local” Annealing by Perturbing One Variable at A Time

In classical SA, Mann cycles are completed and a total of Mann·NMP analyses are performed.
Here, derivatives ∂Ω/∂xj (j = 1,2, . . . ,NMP) computed at XOPT are sorted in ascending order from the
minimum value to the maximum value. Following this order, design variables are perturbed one by
one as:

xj
TR,1d = xOPT,j ± (xj

U
− xj

L)·NRND,j (j = 1,2, . . . ,NMP) (6)

where the sign “+” is used if ∂Ω/∂xj < 0 while the sign “−” is used if ∂Ω/∂xj > 0. If xj
TR violates side

constraints, it is reset as follows:
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β
K
= [∑ β

r

K−1

r=0

/K]  ×  Max [0.95/ (1 +
NREJE

NTRIA
) ; (1 −

ΩFIN,K−1

ΩINIT,K−1

)] (9) 
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Each new design XTR
j(xOPT,1,xOPT,2, . . . ,xj

TR, . . . ,xOPT,NMP−1,xOPT,NMP) defined with Equations
(6) and (7) is evaluated and the current best record is updated if it holds Ω(XTR

j) < Ω(XOPT).
Conversely, if Ω(XTR

j) > Ω(XOPT), the mirror trial point XTR
j,mirr(xOPT,1,xOPT,2,2xOPT−xj

TR,
. . . ,xOPT,NMP−1,xOPT,NMP) is evaluated. Two scenarios may occur: (i) if Ω(XTR

j,mirr) < Ω(XOPT),
XTR

j,mirr is set as the new best record XOPT; (ii) if also Ω(XTR
j,mirr) > Ω(XOPT), XTR

j and XTR
j,mirr are

evaluated with the Metropolis criterion (5) and the best of them is eventually set as the current best
record. The 1-D search lasts until no improvement in design is achieved over two consecutive cycles.

Similar to the “global” annealing strategy, the 1-D probabilistic search attempts to generate trial
designs lying on descent directions. However, perturbation initiates from the most sensitive variables
in order to capture the effect of each single variable in a more efficient way. In fact, in the global
annealing search, the vector (XTR − XOPT) was defined so as to have (XTR − XOPT)T

∇Ω(XOPT) < 0,
thus forming a descent direction. However, non-linearity of cost function made such a condition be
not sufficient for improving design. In view of this, “local” annealing selects the most important terms
(XTR − XOPT)j∂Ω/∂xj that form the cost function variation and promptly correct them should they not
contribute effectively to the reduction of cost function.

2.4. Step 4: Evaluation of Trial Designs that Satisfy Metropolis’ Criterion

If there are no trial designs for which the cost function decreases, HFSA extracts from the database
Π (including designs that satisfy the Metropolis’ criterion) the design Xj

BEST for which the cost function
value is the least, and then sets this design as the current best record. Hence, the increase in cost is
minimized each time all improvement routines failed and the 1-D local annealing search could not
improve design.
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2.5. Step 5: Check for Convergence and Eventually Reset Parameters for A New Cooling Cycle

If the annealing cycles counter K > 3, HFSA utilizes the following convergence criterion:

Max


Max


|ΩOPT,K−ΩOPT,K−1|

ΩOPT,K
;

|ΩOPT,K−1−ΩOPT,K−2|
ΩOPT,K−1

;
|ΩOPT,K−2−ΩOPT,K−3|

ΩOPT,K−2

; Max


||XOPT,K−XOPT,K−1||

||XOPT,K||
;

||XOPT,K−1−XOPT,K−2||

||XOPT,K−1||
;

||XOPT,K−2−XOPT,K−3||

||XOPT,K−2||



≤ εCONV (8)

where ΩOPT,K and XOPT,K, respectively, are the best record and corresponding design vector obtained
in the Kth cooling cycle. The convergence parameter εCONV is set equal to 10−7.

If the criterion (8) is satisfied or K = KMAX, go to Step 6.
Conversely, if K < 3 or stopping criterion is not satisfied (also for K ≥ 3), the number of cooling

cycles is reset as K = K + 1. The temperature is adaptively reduced as TK+1 = βK TK where:

βK =

K−1∑
r=0

βr/K

 × Max
[
0.95/

(
1 +

NREJE

NTRIA

)
;
(
1−

ΩFIN,K−1

ΩINIT,K−1

)]
(9)

ΩINIT,K−1 and ΩFIN,K−1, respectively, are the cost function values at the beginning and at the end of
current annealing cycle. NREJE is the number of trial designs rejected out of total number of trial
designs NTRIA generated in the current cooling cycle.

2.6. Step 6: End Optimization Process

HFSA terminates the optimization process and writes the output data in the results file.

3. Hybrid Fast Harmony Search

The new HFHS algorithm developed in this research is now described in detail. Like HFSA,
HFHS enriches the metaheuristic search with gradient information and approximate line searches.
This is done at low computational cost. Furthermore, the HS engine is enhanced by a 1-D probabilistic
search based on simulated annealing. Like many state-of-the-art HS variants, internal parameters
such as harmony memory considering rate (HMCR) and pitch adjusting rate (PAR) are adaptively
changed by HFHS in the optimization process based on convergence history. Last, classical harmony
refinement process based on bandwidth parameter (bw) is replaced by another random movement
that forces HFHS to refine the new harmony moving along a descent direction. The flow chart of the
new algorithm is presented in Figure 2.
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The initial population of NPOP solutions is randomly generated using the following equation:

xk
j = xL

j + ρj
k (xU

j − xL
j )(k = 1, 2, . . .NPOP; j = 1, 2, . . . , NMP) (10)

where ρj
k is a random number uniformly generated in the (0,1) interval.

These designs are sorted in ascending order according to values taken by the error functional Ω.

[HM] =



x1
1

x1
2
. . .

xNPOP−1
1

xNPOP
1

x1
2

x2
2
. . .

xNPOP−1
2
xNPOP

2

. . .

. . .

. . .

. . .

. . .

x1
NMP−1

x2
NMP−1
. . .

xNPOP−1
NMP−1

xNPOP
NMP−1

x1
NMP

x2
NMP
. . .

xNPOP−1
NMP

xNPOP
NMP


(11)

As mentioned above, the present HFHS algorithm does not require initialization of internal
parameters HMCR, PAR and bw.

3.1. Step 1: Generation and Adjustment of a New Harmony with Adaptive Parameter Selection

Let XOPT = {xOPT,1,xOPT,2, . . . ,xOPT,NMP} be the best design stored in the population corresponding
to ΩOPT. The gradient of error functional with respect to design variables ∇Ω(XOPT) is computed at
XOPT. For each variable, a random number NRND,j is extracted from the (0,1) interval.

If NRND,j > HMCR, the new value xTR,j assigned to the jth optimization variable (j = 1,2, . . . ,NMP)
currently perturbed is:
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As mentioned above, the present HFHS algorithm does not require initialization of internal 

parameters HMCR, PAR and bw. 

3.1. Step 1: Generation and Adjustment of a New Harmony with Adaptive Parameter Selection 

Let XOPT  = {xOPT,1,xOPT,2,…,xOPT,NMP} be the best design stored in the population corresponding to 

ΩOPT. The gradient of error functional with respect to design variables WΩ(XOPT) is computed at 

XOPT. For each variable, a random number NRND,j is extracted from the (0,1) interval. 

If NRND,j  >  HMCR, the new value xTR,j assigned to the jth optimization variable (j = 1,2,…,NMP) 

currently perturbed is:  

(xOPT,j  xjL )  >  (xjU   xOPT,j) & Ω/xj < 0  xTR,j = xOPT,j  NRND, j × (xOPT,j  xjL) × j

(xOPT,j  xjL)  <  (xjU   xOPT,j) &. Ω/xj < 0  xTR,j = xOPT,j  NRND, j × (xjU  xOPT,j) × j 
(12) 

where Ω/xj is the cost function sensitivity for the jth design variable currently perturbed, j = 

(Ω/xj) / ||WΩ(XOPT)|| is the sensitivity coefficient normalized with respect to the gradient vector

modulus. Sensitivities Ω/xj are computed with Equation (22), which will be described later on in

this section. Using the ‘+’ sign if it holds Ω/xj < 0 and the ‘−’ sign if it holds Ω/xj > 0, allows to

generate trial points lying on descent directions.

(12)

where ∂Ω/∂xj is the cost function sensitivity for the jth design variable currently perturbed,
µj = (∂Ω/∂xj)/||∇Ω(XOPT)|| is the sensitivity coefficient normalized with respect to the gradient vector
modulus. Sensitivities ∂Ω/∂xj are computed with Equation (22), which will be described later on in
this section. Using the ‘+’ sign if it holds ∂Ω/∂xj < 0 and the ‘−’ sign if it holds ∂Ω/∂xj > 0, allows to
generate trial points lying on descent directions.

If HMCR is small, Equation (12) is more likely to be used. The (xTR,j − xOPT,j) perturbations given
to each design variable are weighted by sensitivities to form the cost function variation ∆ΩTR for the
new harmony XTR. This variation is expressed by the scalar product ∆ΩTR between the gradient
∇Ω(XOPT) and the search direction STR

T = (XTR − XOPT) formed by the new harmony and the current
best record. If ∆ΩTR < 0, STR

T is a descent direction. In order to make STR
T a descent direction,

all increments (xTR,j − xOPT,j) ∂Ω/∂xj must hence be negative. The following strategy is adopted to
retain or adjust the perturbation given to the current design variable (j = 1,2, . . . ,NMP):
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less,HM

j,TR
x̂ and 

more,HM

j,TR
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HM

j,TR
x̂ value stored in [HM], such that 

less,HM

j,TR
x̂  < 

HM

j,TR
x̂  < 

more,HM

j,TR
x̂ . Unlike classical HS and advanced formulations [163,164,166], 
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j,TR
x̂ value. 

The xTR,j value is then adjusted with Equations (13) to make also step (xTR,j  −  xOPT,j) lie on a descent 

direction. Conversely, in classical HS and [164,165,167], the pitch adjusting operation did not include 

any information on how much the design may be sensitive to the currently analyzed variable.  

If it holds also NRND,j < Min(HMCR,PAR), the xTR,j value is finally pitch adjusted as: 

, ,,
,, , ,

TR j OPT jpitch adj
pitch adjTR j TR j scale RND j

tot

N NG
NG

x x
x x   



   

(j = 1,2,…,NMP) 

(15) 

where NGpitch,adj is the number of previously pitch adjusted trial designs; NGtot is the total number of 

trial designs generated in the optimization search. The NGpitch,adj parameter is reset as (NGpitch,adj + 1) 

if the number of pitch adjusted variables included in a new harmony is larger than the number of 

design variables perturbed with Equation (12) using gradient information.  

The scale parameter scale is set as:  

(13)

Hence, Equations (12) and (13) randomly generate new trial designs that must lie on descent
directions. Sensitivities are computed at the current best record to improve convergence speed.
The mirroring strategy implemented by the second relationship of Equation (13) attempts to
transform the non-descent direction STR into the descent direction −STR by perturbing design
in the opposite direction.
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The effect of the distance of current best record XOPT from side constraint boundaries is taken
into account by perturbing design variables by the largest step as possible (i.e., (xOPT,j − xj

L) or
(xj

U
− xOPT,j)) along the currently defined descent direction. This allows to maximize the improvement

in cost function.
If NRND,j < HMCR, the new value xTR,j assigned to the jth variable is defined as (j = 1,2, . . . ,NMP):

xTR, j = x̂HM
TR, j +

(
NRND, j − 0.5

)
×Max

[(
x̂HM

TR, j − x̂HM,less
TR, j

)
,
(
x̂HM,more

TR, j − x̂HM
TR, j

)]
(14)

where x̂HM,less
TR,j and x̂HM,more

TR,j are two adjacent values to the x̂HM
TR,j value stored in [HM], such that

x̂HM,less
TR,j < x̂HM

TR,j < x̂HM,more
TR,j . Unlike classical HS and advanced formulations [163,164,167], HFHS does

not select the value xTR,j from the jth column of the harmony memory storing values of the corresponding
variable for each design of the population. This enhances diversity of optimization process and allows
to avoid stagnation.

By considering the difference (NRND,j − 0.5), it is possible to increase or reduce the x̂HM
TR,j value.

The xTR,j value is then adjusted with Equation (13) to make also step (xTR,j − xOPT,j) lie on a descent
direction. Conversely, in classical HS and [164–166], the pitch adjusting operation did not include any
information on how much the design may be sensitive to the currently analyzed variable.

If it holds also NRND,j < Min(HMCR,PAR), the xTR,j value is finally pitch adjusted as:

xpitch,adj
TR, j = xTR, j + λscale ×NRND, j ×

∣∣∣xTR, j − xOPT, j
∣∣∣

NGtot
×NGpitch,adj(j = 1, 2, . . . , NMP) (15)

where NGpitch,adj is the number of previously pitch adjusted trial designs; NGtot is the total number of
trial designs generated in the optimization search. The NGpitch,adj parameter is reset as (NGpitch,adj + 1)
if the number of pitch adjusted variables included in a new harmony is larger than the number of
design variables perturbed with Equation (12) using gradient information.

The scale parameter λscale is set as:

λscale =


(
XTR,j − xOPT,j

)
< 0⇒ −1(

XTR,j − xOPT,j
)
> 0⇒ 1

(j = 1, 2, . . . , NMP) (16)

Equations (14)–(16) replace the bandwidth parameter bw usually used in many HS variants.
The new harmony XTR(xTR,1,xTR,2, . . . ,xTR,NMP) can be decomposed in NMP sub-harmonies
XTR,j(xOPT,1,xOPT,2, . . . ,xTR,j, . . . ,xOPT,NMP) obtained by perturbing only one design variable at a time,
and that lie on descent directions. These movements are amplified by the scale factor defined
by Equation (16). Furthermore, Equation (15) accounts also for optimization history. In fact,
since NGpitch,adj/NGtot decreases as optimization progresses, the perturbation step defined to pitch
adjust each design variable gets finer as the optimum is approached.

The case NRND,j < HMCR and NRND,j > PAR is dealt with Equation (13) eventually including the
mirroring strategy. Hence, the present algorithm intrinsically pitch adjusts design variables and tries
anyhow to improve the current design.

As mentioned above, new values of HMCR and PAR parameters are randomly generated in each
new iteration and adapted based on optimization history. In the qth iteration, HMCR and PAR are
set as:

HMCRq = HMCRextracted
q
×

Ωaver,end
q−1

Ωaver,init
q−1
×

NGpitch,adj

NGgradient
(17)

PARq = PARextracted
q
×

Ωaver,end
q−1

Ωaver,init
q−1
×

∣∣∣∣∣∣XOPT,end −XWORST,end
∣∣∣∣∣∣q−1∣∣∣∣∣∣XOPT,init −XWORST,init
∣∣∣∣∣∣q−1

×
NGpitch,adj

NGgradient
(18)
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In Equations (17) and (18), Ωaver,init
q−1 and Ωaver,end

q−1, respectively, are the average values of
cost function for the trial designs included in the harmony memory at the beginning and the end of the
previous optimization iteration (the Ωaver,end

q−1/Ωaver,init
q−1 ratio should always be smaller than 1).

XOPT,init and XWORST,init, XOPT,end and XWORST,end, respectively, denote the best and worst designs at
the beginning and the end of the previous iteration. NGgradient is the number of trial designs generated
by including gradient information: this parameter is reset to (NGgradient + 1) if the number of design
variables perturbed with Equation (12) is greater than NMP/2.

Random values HMCRextracted
q and PARextracted

q are defined as:{
HMCRextracted

q = 0.01 + ξHMCR × (0.99− 0.01)
PARextracted

q = 0.01 + ξPAR × (0.99− 0.01)
(19)

where ξHMCR and ξPAR are two random numbers in the interval (0,1). The bounds of 0.01 and 0.99 set
in Equation (19) allow all possible values of internal parameters to be covered [168].

In the first iteration (q = 1), it obviously holds HMCRq = HMCRextracted
q and PARq = PARextracted

q.
Equations (17) and (18) rely on the following rationale: the error functional may decrease more

rapidly if large perturbations are given to many variables. This is more likely to happen when
gradient information is directly utilized, that is when it holds NRND,j > HMCR. In order to increase the
probability of using Equation (12) for many design variables, the HMCR value randomly generated is
scaled by the (Ωaver,end

q−1/Ωaver,init
q−1) ratio. The generation process of new harmonies is hence forced

to be consistent with the current rate of reduction of Ω.
Furthermore, HMCRq is scaled by the NGpitch,adj/NGgradient ratio. If the number of new harmonies

generated via pitch adjusting tends to be smaller than the number of new harmonies directly generated
including gradient information (i.e., if NGpitch,adj/NGgradient < 1), it is more logical to keep following
such a trend.

Similar arguments hold for the PARq parameter. Pitch adjustment is performed
if NRND,j < Min(HMCR,PAR). Besides information on cost function reduction rate
(Ωaver,end

q−1/Ωaver,init
q−1), Equation (18) accounts for population diversity. In fact, pitch adjusting is

less effective as population becomes less sparse, that is when the ||XOPT,end − XWORST,end||/||XOPT,init

− XWORST,init|| ratio decreases. Again, the NGpitch,adj/NGgradient ratio preserves the current trend of
variation of the pitch adjusting rate parameter.

Determination of Sensitivities of Ω

Since the error functional is implicitly defined, gradients are determined by approximate line
search. The cost function variation ∆Ωk = [Ω(Xk) − Ω(XOPT)] that occurs by moving from the best
design XOPT to the kth design Xk stored in the harmony memory is determined for all designs.
The corresponding distance ∆Sk = ||Xk

−XOPT|| is computed. The approximate (i.e., “average”) gradient
along each direction Sk = (Xk

− XOPT) is computed as ∆Ωk/∆Sk. Since the new harmony must lie on
a descent direction, the Sk vectors must be transformed into descent directions Sdesc

k = (XOPT − Xk),
that is Sdesc

k = −∆Sk. Three descent directions are considered: (i) best direction SBEST corresponding to
the largest cost variation between candidate designs (this is the opposite direction to (XWORST − XOPT));
(ii) steepest descent direction SFAST corresponding to the largest gradient ∆Ωk/∆Sk; (iii) the second
best direction S2ndBEST corresponding to the second largest cost variation between candidate designs
(this is the opposite direction to (X2ndWORST − XOPT)).

Figure 3 illustrates the formation of the descent directions and their mutual positions with respect
to the gradient of cost functional. Any descent direction should be within the region limited by SBEST,
S2ndBEST and SFAST. However, if the problem is highly nonlinear, it may happen that cost function
oscillates along these directions and exceeds the current optimum cost. For this reason, step sizes are
taken along SBEST, S2ndBEST and SFAST. The scale factors βBEST, β2ndBEST and βFAST are defined so that
SBEST

unit, S2ndBEST
unit and SFAST

unit are unit vectors. If ||SBEST|| < 1 or ||S2ndBEST|| < 1 or ||SFAST|| < 1,
the corresponding unit direction coincides with the original direction and remains a descent direction.
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In order to check if unit directions are descent directions, three new trial designs XGR
(1), XGR

(2) and
XGR

(3) are defined as: 
XGR

(1) = XOPT + SBEST
unit

XGR
(2) = XOPT + S2ndBEST

unit

XGR
(3) = XOPT + SFAST

unit
(20)
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Figure 3. Determination of sensitivities for HFHS and HFBBBC. Red dots represent designs stored in
the population. Since vectors (Xk − XOPT) are non-descent directions as (Xk − XOPT)T

∇Ω(XOPT) > 0,
the opposite vectors are considered in order to perturb design along descent directions.

The SBEST
unit, S2ndBEST

unit and SFAST
unit unit vectors are classified as descent directions if the

following conditions hold true, respectively:
Ω

(
XGR

(1)
)
−ΩOPT < 0⇒ SBEST

unit descent
Ω

(
XGR

(2)
)
−ΩOPT < 0⇒ S2ndBEST

unit descent
Ω

(
XGR

(3)
)
−ΩOPT < 0⇒ SFAST

unit descent
(21)

At this point, it is very likely that there will be between one and three unit descent directions in the
neighborhood of the current best record. Sensitivities are hence defined as follows (j = 1,2, . . . NMP):

∂Ω
∂x j

= Min


[Ω(XGR

(1))−ΩOPT]
‖SBESTunit‖

(xGR,j
(1)
−xOPT,j)

‖SBESTunit‖
;
[Ω(XGR

(2))−ΩOPT]
‖S2ndBEST

unit‖

(xGR,j
(2)
−xOPT,j)

‖S2ndBEST
unit‖

;
[Ω(XGR

(3))−ΩOPT]
‖SFASTunit‖

(xGR,j
(3)
−xOPT,j)

‖SFASTunit‖

 (22)

Equation (22) shows that the directional derivative along a unit direction is scaled by the direction
cosines in order to get sensitivities with respect to optimization variables. The minimum in Equation (22)
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accounts for the possibility of having non-descent unit directions. In the limit case of three non-descent
directions, sensitivity is set equal to the minimum positive value so as to minimize the cost function
increment in the neighborhood of the current best record. The approximate gradient evaluation strategy
implemented by HFHS allows computational cost of the identification process to be significantly
reduced with respect to previously developed HS variants. Once derivatives are computed, Step 1 is
completed in the same way as described before.

3.2. Step 2: Evaluation of The New Trial Design

The quality of the new harmony XTR defined in Step 1 is evaluated in this step. In classical HS,
if the new trial design XTR is better than the worst design XWORST currently stored in the harmony
memory, it replaces the worst design in [HM]. The sophisticated generation mechanism developed in
this research makes the new trial design have a high probability of improving also the current best
record. The following cases may occur: (i) Ω(XTR) < ΩOPT; (ii) Ω(XTR) > ΩOPT.

If Ω(XTR) < ΩOPT, the worst design is removed and the new harmony XTR is set as the current
best record. The former optimum design becomes the second best design stored in the population.
The remaining (NPOP − 2) designs are analyzed. Let (XNPOP−2)r be a generic harmony of these
(NPOP − 2) designs. For each remaining harmony (XNPOP−2)r, the approximate gradient with
respect to the current optimum is determined as ∆Ωr/∆Sr, where ∆Ωr = [Ω((XNPOP−2)r) − ΩOPT]
and ∆Sr = ||(XNPOP−2)r

− XOPT||. Let XNPOP−2
FAST be the harmony corresponding to the largest

approximate gradient. Each (XNPOP−2)r harmony is tentatively updated using Equation (23),
with r∈(NPOP − 2):

(XNPOP−2)r,new = (XNPOP−2)r + ηBEST × [XOPT − (XNPOP−2)r] + η2ndBEST × [XOPT − (XNPOP−2)r]
(23)

+ ηFAST × [(XOPT − XNPOP−2
FAST)]

where ηBEST, η2ndBEST and ηFAST are three random numbers extracted in the (0,1) interval.
If Ω((XNPOP−2)r,new) < Ω((XNPOP−2)r), the new harmony (XNPOP−2)r,new replaces the old harmony

(XNPOP−2)r. Otherwise, the new harmony is discarded and the hold harmony is kept in the population.
The population is reordered based on the cost of each harmony. Equation (23) introduces a sort of
social behavior that induces harmonies to approach the two best designs stored in the population and
to reduce the cost function as fastest as possible.

If Ω(XTR) > ΩOPT, the new harmony XTR is compared with the rest of the population. Let us
assume that XTR ranks pth in the population of NPOP designs. The former worst design is removed from
the population and the former second worst design becomes the new worst design. Hence, there are
(p − 1) better designs than XTR and (NPOP − p) worse designs than XTR.

The (NPOP − p) designs are analyzed similarly to what is done for Ω(XTR) < ΩOPT. New harmonies
are defined using Equation (24), with r∈(NPOP−p):

(XNPOP−p)r,new = (XNPOP−p)r + ηBEST·[XOPT − (XNPOP−p)r] + η2ndBEST·[XOPT − (XNPOP−p)r] (24)

+ ηFAST·[(XOPT − XNPOP−p
FAST)]

where ηBEST, η2ndBEST and ηFAST are three random numbers in the (0,1) interval. The new harmony
(XNPOP−p)r,new replaces the old harmony (XNPOP−p)r if it yields a lower value of error functional.
The population is reordered based on the new values of Ω.

This strategy has the following rationale. Whilst XTR could not replace the optimum, it has
a higher quality than other designs of the population. Hence, the other individuals try to imitate its
behavior, at least approaching the optimum and improving their positions.
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3.3. Step 3: Perform 1-D “Local” Annealing Search

If Step 2 could not improve XOPT, the 1-D “local” annealing search mechanism described in
Section 2 is utilized. Variables are perturbed in the neighborhood of XOPT based on the magnitude of
sensitivities ∂Ω/∂xj. Trial designs that yield a positive increment ∆Ωs > 0 with respect to ΩOPT and
satisfy the Metropolis’ criterion replace the worst designs stored in the harmony memory [HM].

3.4. Step 4: Check for Convergence

As the optimization process proceeds towards the global optimum, population sparsity must

decrease. For this reason, the “average” design is defined as Xaver =

(NPOP∑
k=1

Xk

)
/NPOP. The average

value of error functional Ωaver is defined as Ωaver =

(NPOP∑
k=1

Ω(Xk)

)
/NPOP.

The following termination criterion is utilized in this research:

Max


STD{ ‖X1−Xaver‖ ,‖X2−Xaver‖ ,...,‖XNPOP−Xaver‖ }

||Xaver ||
;

STD
{
Ω1, Ω2,..., Ωk ,..., ΩNPOP

}
Ωaver

 ≤ εCONV (25)

where the convergence limit εCONV is set equal to 10−15, smaller than the double precision limit
used in computing technology. Steps 1 to 4 are repeated until the HFHS algorithm converges to the
global optimum.

3.5. Step 5: End Optimization Process

The present HFHS algorithm terminates the optimization process and writes the output data in
the results file.

4. Hybrid Fast Big Bang-Big Crunch

The new HFBBBC algorithm developed in this research is described in detail in this section.
The strength points of the present formulation with respect to state-of-the-art BBBC variants can be
summarized as follows. First, similar to HFSA and HFHS, computation of sensitivities does not entail
new structural analyses. Second, descent directions from which XTR is generated are more accurately
selected. Third, population is dynamically updated so as to simulate an explosion about the center of
mass but with all new trial designs lying on potentially descent directions. The hybrid nature of the
HFBBBC algorithm comes from the combination of the explosion/contraction process with 1-D local
annealing and line search mechanisms. The flow chart of the algorithm is shown in Figure 4.
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Figure 4. Flow chart of the HFBBBC algorithm developed in this research.

Like HFHS, the initial population of NPOP designs used by HFBBBC is generated with Equation (10).
The present algorithm does not require any setting of internal parameters except for the population size
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NPOP. Error functional is evaluated for all candidate solutions. The best design XOPT corresponding to
the lowest value of error functional ΩOPT is determined.

4.1. Step 1: Definition of The Center of Mass

The coordinates of the center of mass of the population XCM(xCM,1,xCM,2, . . . ,xCM,NMP) are
defined as:

xCM,j =

NPOP∑
k=1

xj
k

Ωk

/

NPOP∑
k=1

1

Ωk

(j = 1, . . . , NMP) (26)

where xj,
k is the value of the jth optimization variable stored in the kth trial design, Ωk is error functional

value for the kth trial design. Penalty functions can be used to sort designs. The weighting coefficients
1/Ωk make position of center mass be more sensitive to the best designs stored in the population.

4.2. Step 2: Evaluation of The Center of Mass and Progressive Update of XCM As Current Best Record

Error functional is evaluated at XCM. As mentioned above, BBBC formulations usually converge
to the optimum design by updating the position of XCM. However, there is no guarantee that the new
XCM may be the center of a better population. Since XCM represents a weighted average of candidate
designs, its quality will be somewhere in between the worst and best individuals included in the
population. The present HFBBBC algorithm considers two cases: (i) XCM is better than XOPT; (ii) XCM

is worse than XOPT.
In [164,165,167], XCM was reset as XOPT if case (i) occurred. The worst design included in the

population was replaced by XCM and a new center of mass was defined. The same was done until case
(ii) occurred. That approach allows one to avoid performing a new explosion about each new center of
mass, thus saving NPOP structural analyses with respect to classical BBBC. However, it was replaced
only one design at a time while classical BBBC renews the whole population each time XCM is updated.
In order to overcome this limitation without increasing computational cost, the following strategy has
been implemented in this study.

If XCM is better than XOPT, it is reset as XOPT. The former best record becomes the second best
design. The worst design is removed from the population. Any direction defined as (XOPT − Xk) is
a descent direction with respect to Xk because Ω(Xk) > Ω(XOPT): the design improves as we move
away from Xk. However, (XOPT − Xk) is also opposite to (Xk − XOPT), which is a non-descent direction
with respect to XOPT. If cost functional gradient changes smoothly, a direction which was descent for
Xk may remain descent also for XOPT. In view of this, HFBBBC tentatively updates designs as:

Xk
tentative = Xk + (1 + ξk)(XOPT − Xk) (k = 1, . . . ,NPOP − 1) (27)

where ξk is a random number in the interval (−1,1). If ξk∈(−1,0), Xk
tentative lies between Xk and XOPT;

if ξk∈(0,1), Xk
tentative lies beyond XOPT.

Since the Xk
tentative designs are potentially better than the Xk designs as they have been defined

by moving towards the current best record or trying to improve XOPT itself, a population including
the (NPOP − 1) designs Xk

tentative and the current best record XOPT should be of higher quality than
the current population. Consequently, the new center of mass XCM

tentative should be better than the
former center of mass XCM defined for the original population and further improve XOPT.

In order to reduce computational cost, approximate values of error functional ΩAPP(Xk
tentative)

are determined as: Ω
(
Xk

tentative
)
= Ω(Xk)

||Xk
tentative

−Xk||
||XOPT−Xk ||

i f ξk ∈ (−1, 0)

Ω
(
Xk

tentative
)
= Ω(Xk)

||Xk
tentative

−XOPT||
||XOPT−Xk ||

i f ξk ∈ (0, 1)
, (k = 1, 2, . . . , NPOP − 1) (28)
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The approximate position of the center of mass XCM
tentative is determined with Equation (26) using

the Xk
tentative vectors and the approximate values of error functional ΩAPP(Xk

tentative). The real value
of error functional is evaluated at XCM

tentative. If XCM
tentative is better than XOPT, it is reset as XOPT.

The Xk
tentative designs replace the original designs Xk and a new loop is performed using Equations (27)

and (28). If XCM
tentative does not improve any more the current best record XOPT, a new center of

mass (XCM
tentative)’ is defined by changing only the weights of the designs that lie between Xk and

XOPT: that is, Equation (27) is used only for ξk∈(−1,0). This is done because the Xk
tentative designs lying

beyond XOPT could violate side constraints because of the very large perturbations given to variables.
If (XCM

tentative)’ improves the current best record, it is reset as XOPT. The Xk
tentative designs

generated for ξk∈(−1,0) replace the corresponding Xk designs. A new loop is performed using
Equations (27) and (28). This process is repeated until a new center of mass improves the current
best record.

If both points XCM
tentative and (XCM

tentative)’ do not improve XOPT, the Xk
tentative designs are

moved back to the corresponding Xk designs and Step 3 is executed.
Similar to classical BBBC, population is renewed each time the position of the center of mass is

updated. However, the present algorithm requires only one or two structural analyses to evaluate
XCM

tentative and (XCM
tentative)’ vs. between the rather broad range of 0.1NPOP to NPOP analyses

(often sensitive to the optimization problem at hand) required by state-of-the-art BBBC algorithms
(see for example [169]).

4.3. Step 3: Evaluation of The Center of Mass and Formation of new Trial Designs Different from XCM

The case Ω(XCM) > Ω(XOPT) (i.e., XCM is worse than XOPT) is the most likely to occur because the
center of mass averages the properties of the NPOP designs included in the population and hence it
should rank between XWORST and XOPT. The present algorithm utilizes a computationally inexpensive
approach. A new trial design XTR

mirr is defined with the mirroring strategy. That is:

XTR
mirr = (1 + ηMIRR)·XOPT−ηMIRR × XCM (29)

where ηMIRR is a random number in the interval (0,1). The mirroring strategy attempts to turn the
non-descent direction (XCM − XOPT) into the descent direction (XTR

mirr
− XOPT). Using a random

number smaller than one limits the search in the neighborhood of the current best record.
If Ω (XTR

mirr) < Ω (XOPT), this trial design replaces the current best record which becomes
the second best design of the population. The worst design is removed from the population.
The optimization process is continued with Step 2 to generate (NPOP − 1) Xk

tentative designs,
renew population and update position of XCM; convergence is checked in Step 5.

If Ω(XTR
mirr) > Ω(XOPT), the mirroring strategy (29) is judged not effective and a new trial design

must be generated by combining a set of descent directions. Since Ω(XCM) > Ω(XOPT), the (XCM −XOPT)
vector is a non-descent direction with respect to the current best record. However, the opposite direction
SOPT–CM =−(XCM −XOPT)≡ (XOPT −XCM) may be a descent direction, especially if the gradient of cost
function is smooth. Similar to the HFHS algorithm described in Section 3, the approximate gradient of
Ω(X) is determined also for HFBBBC. All (XOPT −Xk) vectors are opposite to directions (Xk −XOPT) that
were non-descent with respect to XOPT. For each design Xk the approximate gradient ∇Ωk

appr = [Ω(Xk)
− Ω(XOPT)]/||Xk − XOPT|| is calculated. The SBEST = (XOPT − XWORST) direction corresponding to the
largest variation of cost function between two candidate designs, the SFAST = (XOPT − XFAST) direction
corresponding to the largest ∇Ωk

appr, and the S2ndBEST = (XOPT − X2ndBEST) direction corresponding
to the second best design are considered. A new trial design XTR is defined as:

XTR = XOPT + ηOPT−CMSOPT-CM + ηBESTSBEST + η2ndBESTS2ndBEST + ηFASTSFAST (30)

where ηOPT–CM, ηBEST, η2ndBEST and ηFAST are four random numbers generated in the (0,1) interval.
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The generation of a new trial solution XTR with Equation (30) is illustrated in Figure 5 for an
inverse problem with two variables. If the error functional gradient is smooth enough, a descent
direction S will satisfy the condition ST

∇Ω(XOPT) < 0, as it appears to be for SOPT–CM, SBEST, SFAST and
S2ndBEST directions in the figure. By summing up the steps taken on SOPT–CM, SBEST, SFAST and
S2ndBEST, a trial design XTR lying on a descent direction can be obtained.
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Figure 5. Determination of trial points for hybrid HFBBBC when Ω(XCM) > Ω(XOPT). The red dots
represent designs stored in the population.

The present HFBBBC algorithm directly perturbs variables with respect to the current best record
and hence generates higher quality designs. The effect of the average properties of the population
described by XCM is now taken into account by considering the SOPT–CM direction.

The quality of XTR is evaluated as usual. If Ω(XTR) < Ω(XOPT), the trial design replaces the
current best record and the worst design is removed from the population. Step 2 is performed to
eventually renew population and update position of XCM; convergence check is performed in Step 5.
Otherwise, the 1-D “local” annealing search of Step 4 is executed.

4.4. Step 4: Perform 1-D “Local” Annealing Search

HFBBBC utilizes the same probabilistic search mechanism implemented in HFSA and HFHS.
However, the position of the center of mass is updated each time a trial design improves the current
best record. The new center of mass and its mirror point with respect to the current best record also are
evaluated to check for further improvements in design or to define additional points satisfying the
Metropolis criterion.
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4.5. Step 5: Check for Convergence and Perform A New Explosion If Necessary

HFBBBC checks if the best design of the population has been improved in the current optimization
cycle. Convergence check is performed after operations entailed by Steps 3 and 4. Let be (XOPT)init

and (XOPT)final the best designs at the beginning and at the end of the current optimization cycle.
If (XOPT)final is better than (XOPT)init, HFBBBC checks for convergence using the same criterion,
Equation (25), adopted for HFHS. If convergence is reached, Step 6 is executed. Otherwise, Steps 1 to
4 are repeated until HFBBBC converges to the global optimum.

If (XOPT)init is equal to (XOPT)final, the current optimization cycle did not improve design in spite
of the numerous improvement routines available in HFBBBC. For this reason, a new explosion is
performed about XOPT trying to generate a higher quality population. The following equation is
utilized:

xk
j = xOPT,j − ρj

k (xOPT,j − xCM,j)(k = 1, 2, . . . , NPOP; j = 1, 2, . . . , NMP) (31)

where ρjk is a random number in the interval (0,2) to generate the jth variable of the kth design.
The interval (0,2) is large enough to avoid stagnation near the current best record. If xk

j < xL
j or

xk
j > xU

j , xk
j is reset to xk

j = ( xL
j + xOPT,j)/2 or xk

j = ( xOPT,j + xU
j )/2, respectively. The new population

is generated by perturbing the current best record XOPT along the direction −(XOPT − XCM), opposite to
the non-descent direction (XCM − XOPT). The rationale of Equation (31) is to search for descent
directions with respect to XOPT by decomposing a potentially descent direction in its components.

The new designs are compared with the previous population and only the best NPOP designs
are retained in the new population. This elitist strategy allows to keep the XOPT design in the
population passed into the next optimization iteration should all of the new NPOP designs generated
with Equation (31) be worse than XOPT. The optimization process is reprised from Step 1.

4.6. Step 6: End Optimization Process

The HFBBBC algorithm terminates the optimization process and writes the output data in the
results file.

5. Test Problems and Results

The HFSA, HFHS and HFBBBC algorithms developed in this study for mechanical identification
problems were tested on two composite structures and a hyperelastic biological membrane.
They were compared with other SA/HS/BBBC variants (e.g., [77,81,83,84] and their successive
enhancements [162–166]) including gradient information in the optimization search, as well as with
adaptive harmony search [170,171], big bang-big crunch with upper bound strategy (BBBC-UBS) [172],
JAYA [35], MATLAB Sequential Quadratic Programming (MATLAB-SQP) [173] and ANSYS built-in
optimization routines [174]. The ANSYS built-in optimization routines (e.g., gradient-based, zero
order and response surface approximation) were run in cascade or alternated in order to maximize
their efficiency.

The abovementioned comparison should be considered very indicative for the following reasons:

• Adaptive HS [170,171] and BBBC-UBS [172] represent state-of-the-art formulations of harmony
search and big bang-big crunch, which have been successfully utilized in many optimization
problems. In particular, the adaptive HS algorithm adaptively changes internal parameters
without any intervention by the user: this approach is very similar to what is done by HFHS.
The BBBC-UBS algorithm [172] immediately discharges trial designs that certainly would not
improve the current best design included in the population, thus saving computational cost;
this elitist strategy is somehow consistent with the rationale followed by HFSA, HFHS and
HFBBBC that always try to generate trial designs lying on descent directions.

• JAYA [35] is one of the most recently developed metaheuristic algorithms that has soon emerged
as a very powerful method and gathered great consideration from optimization experts. The basic
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idea of JAYA is very simple yet very effective: search process tries to move toward the best design
and avoid the worst design of the population. Besides this, JAYA is very easy to implement and
does not have internal parameters to be tuned. The basic formulation of JAYA was successfully
used in the damage detection problems solved in [153,154]. In [175,176], JAYA’s computational
efficiency was improved by adding an elitist strategy, which is conceptually similar to that used
by BBBC-UBS. However, such a strategy may become computationally ineffective for inverse
problems as it entails a new finite element analysis each time a design of the population is updated.
Nevertheless, it is interesting to compare HFSA, HFHS and HFBBBC with JAYA also.

• SQP is universally reputed by optimization experts the best gradient-based method available in
the literature. The method is globally convergent, does not require setting of move limits and does
not suffer from premature convergence. The successful use of MATLAB-SQP in highly nonlinear
inverse problems taken from very different fields (e.g., optical super-resolution with evanescent
illumination, visco-hyperelasticity of cell membranes, damage detection etc.) is well documented
in the literature (see, for example, [11,12,14,177–179]).

The structural analyses entailed by the optimization process to evaluate the error functional Ω
were performed with the commercial finite element program ANSYS® [174]. Each metaheuristic
search engine and MATLAB-SQP were properly interfaced with the finite element solver. Since the
gradient of error functional is not explicitly available and evaluating Ω entails structural
analyses, the present algorithms computed approximate gradients as described in Sections 2–4.
Partial derivatives ∂Ω/∂Xi (i = 1, . . . ,NMP) and ∂δFEM

j/∂Xi required by previously developed SA
variants [77,81,83,84] were instead evaluated with centered finite differences (δXi = XOPT,i/10,000).
Consequently, weighting coefficients µi = (∂Ω/∂Xi)/||∇Ω(XOPT)|| were determined as:

NCNT∑
j=1

[∣∣∣∣∣(δFEM
j
− δj

)
/δj

∣∣∣∣∣2 · ∂δj

∂Xi

]
/
√

NCNT ·Ω(XOPT,1, XOPT,2, . . . , XOPT,i, . . . , XOPT,NMP).

SQP-MATLAB computed the ∇Ω(XOPT) gradient with forward finite differences and progressively
updated the [B] matrix involved in the (ST[B]S)/2 term of the quadratic approximation of the error
functional Ω. The search direction S represents the solution of the approximate sub-problem built
in each iteration. The [B] matrix is initially set equal to the unit matrix and finally converges to the
Hessian matrix of the error functional Ω.

Before running optimizations with the new algorithms HFSA, HFHS and HFBBBC, we tried to
simplify the previously developed SA/HS/BBBC formulations [77,81,83,84,162–166] adapting them
to inverse problems. The goal was to drastically reduce the number of structural analyses required
by the identification process. For example, in the case of SA variants used in [77,81,83,84], the global
annealing search equation involving sensitivities ∂Ω/∂Xi is replaced by:

Xi
TR = XOPT,i + (Xi

U
− Xi

L) ρI × ΩOPT,l−1/ΩOPT,l (i = 1, . . . ,NMP) (32)

The new trial design XTR thus obtained is evaluated with respect to the current best record XOPT.
If Ω(XTR) < Ω(XOPT), XTR is reset as the current best record and a new trial point is defined with
Eq. (32). Conversely, if Ω(XTR) > Ω(XOPT), a new trial point XTR

new = 2XOPT − XTR is defined via
mirroring strategy and evaluated with respect to XOPT.

If Ω(XTR
new) < Ω(XOPT), XTR

new is reset as XOPT and a new trial design is generated with
Equation (32). Conversely, if it still holds Ω(XTR

new) > Ω(XOPT), the error functional Ω(X) is
approximated by a 4th order polynomial ΩAPP(X) passing through the five trial points XTR, XINT

’,
XOPT, XINT

” and XTR
new where XINT

’ is a randomly generated trial point between XTR and XOPT while
XINT

” is another randomly generated trial point between XOPT and XTR
new. If there is a point XOPT*

minimizing the approximate error functional in the segment limited by XTR and XTR
new, a new exact

structural analysis is performed to compute Ω(XOPT*). If Ω(XOPT*) > Ω(XOPT), trial designs XTR, XINT
’,
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XOPT*, XINT
” and XTR

new are accepted or rejected based on Metropolis’ criterion. Finally, the trial
design with the smallest value of error functional is reset as XOPT. If ΩAPP(X) does not have any
minima, the 1-D local annealing search is performed until the current best record is updated.

The above described SA strategy—denoted as SA-NGR in the rest of this article—does not require
any exact gradient evaluation but it includes a rather simple line search strategy, which does not ensure
trial designs to be lying on descent directions. The (Xi

U
− Xi

L) step used in Equation (32) may result
in larger perturbations and hence less optimization cycles. However, the total number of structural
analyses required in the identification process does not change substantially with respect to the SA
variants including gradient evaluations [77,81,83,84].

In the case of HS algorithm, any trial design XTR is defined as:

XTR = XOPT + ρFASTSFAST + ρBESTSBEST (33)

where: SFAST and SBEST, respectively, are the steepest descent and the best directions moving from
population designs towards the current best record XOPT (the same nomenclature used for the derivation
of Equation (22) applies also in this case); ρFAST and ρBEST are two random numbers in the interval
(0,1), respectively, generated for SFAST and SBEST. Unlike HS variants [164,166,167], Equation (33)
directly utilizes approximate line search to define descent directions.

If the new trial design XTR is better than the worst design XWORST included in the harmony
memory matrix [HM], it replaces it and the updated population is re-ordered to determine the new
current best record. Conversely, if Ω(XTR) > Ω(XWORST), a new trial point XTR

new = 2·XOPT − XTR

is defined via mirroring strategy. If it holds again Ω(XTR
new) > Ω (XWORST) (this may be due to

nonlinearity and non-convexity of the inverse problem), the 4th order polynomial approximation of Ω
described above is performed to find a point of minimum X* yielding Ω(X*) < Ω(XWORST). Should this
search be unsuccessful, mirroring strategy and approximate line search are repeated until a trial design
better than the worst design stored in the harmony memory is found.

Similar to SA-NGR, this simplified HS formulation—denoted as HS-NGR in the rest of this
article—does not evaluate the gradient of error functional. However, it considers only two potentially
descent directions (yet defined from approximate line search) and hence it is forced to repeatedly
perform mirroring of trial designs, polynomial approximation of error functional and 1-D annealing
search. While the classical HS strategy of replacing only the worst design is adopted also by HS-NGR
without following any elitist criterion, the main architecture of HS based on the use of HMCR and
bandwidth parameters is not retained. In fact, HS-NGR always uses the same Equation (33) to generate
new trial designs regardless of the fact that the current trend of variation of the error functional would
suggest performing exploitation rather than exploration. Consequently, HS-NGR may be unsuccessful
in global search and it attempts to correct this problem by carrying out a local search, which usually
entails many structural analyses. Furthermore, replacing only the worst design results in an extra
number of FE analyses. This counterbalances the reduction in the number of analyses achieved by not
computing gradients via finite differences.

In the case of the BBBC algorithm, any trial design XTR is always defined as:

XTR = XCM + ρFAST,CM × SFAST,CM + ρBEST,CM × SBEST,CM (34)

where: SFAST,CM and SBEST,CM, respectively, are the steepest descent and the best directions moving
towards the center of mass of the population (definitions are the same as for Equation (22) but XOPT

is replaced by XCM); ρFAST and ρBEST are two random numbers in the interval (0,1), respectively,
generated for SFAST,CM and SBEST,CM. Unlike BBBC variants [165,166] and similar to Equation (33)
used for HS-NGR, Equation (34) directly utilizes approximate line search to define descent directions.

The new trial design XTR is evaluated in the same way as in the SA-NGR algorithm and a new
explosion in the neighborhood of the center of mass is performed only if the current XOPT could not
be improved.
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Since the above described simplified BBBC variant is a gradient free algorithm, it will be denoted
as BBBC-NGR in the rest of the article. At first glance, BBBC-NGR has to deal with two critical aspects:
(i) solution is perturbed with respect to the center of mass of the population rather than with respect to
the current best record; (ii) a limited number of potentially descent directions are considered in the
formation of a new trial solution. Consequently, the reduction of computational cost granted by the
smaller number of explosions may by counterbalanced by the additional structural analyses performed
in the attempt of improving current best record with mirroring strategy and 4th order approximation
of error functional Ω.

5.1. Mathematical Optimization Benchmark: Random Minimum Square Problem

The inverse problem (1) basically is a least square problem. A randomized version of the problem
can be stated in the general form for NMP design variables as: Min Ω =

NMP∑
i=1

(xi − ηi)
2

−1 ≤ xi ≤ 1
(35)

where ηi (i = 1, . . . ,NMP) are random numbers generated in the (−1,1) interval. The cost function of
this problem is unimodal and has a global minimum located at XTRG(η1,η2, . . . ,ηNMP) and leading to
ΩMIN = 0. The random numbers ηi in Equation (35) introduce noise in the least square optimization
process similar to the noise that may be caused by optical measurements. Here, the target vector
XTRG(η1,η2, . . . ,ηNMP) was selected by averaging five randomly generated vectors.

In order to carry out a preliminary comparison between the present algorithms and other
optimizers, the problem (35) was solved with NMP = 100 or NMP = 500 using HFSA, HFHS, HFBBBC,
adaptive HS [170,171], BBBC-UBS [172], JAYA [35,175,176] and SQP-MATLAB. Using NMP = 500
variables allowed to simulate the use of a fairly large number of control points at which the optically
measured displacements are compared with finite element results.

The population size for HFHS, HFBBBC and JAYA was set as 20, 200, 500 and 1000 in order to
analyze sensitivity of convergence behavior to NPOP. Because of the random nature of metaheuristic
search engines, 20 independent optimization runs were carried out for each setting of NPOP and NMP.
HFSA and SQP-MATLAB runs were started from the best point and center of mass of each initial
population defined for HFHS, HFBBBC and JAYA. These points were very far from the target solution:
in fact, initial values of Ω ranged between 26.33 and 34.15 with an average percent error on variables
ranging between 541.4% and 1392.7%.

The present algorithms found very competitive designs with SQP-MATLAB but required up to
three function evaluations to complete the optimization process: on average, 3196 (HFSA), 3562 (HFHS)
and 3813 (HFBBBC) vs. 1650 (SQP-MATLAB). However, the average optimized cost and standard
deviation on optimized cost were significantly smaller for the present algorithms, which converged to
more precise solutions than SQP-MATLAB: in particular, (3.798 ± 1.149) × 10−12, (2.899 ± 2.623) × 10−12

and (7.816 ± 4.241) × 10−13, respectively, for HFSA, HFHS and HFBBBC vs. (1.044 ± 0.948) × 10−10

obtained by SQP-MATLAB. The higher precision of HFSA, HFHS and HFBBBC is confirmed by the
larger deviation of optimized designs from the target solution XTRG seen in the case of SQP-MATLAB.
It should be noted that, since the target optimum XTRG contains some very small values (for example,
of the order of 7 × 10−4), even a small difference between some component of XOPT and XTRG may
make average deviation increase by a large extent.

While convergence behavior of the present SA/HS/BBBC variants was rather insensitive to
population size, the efficiency of the gradient-based optimizer decreased for increasing population size
due to the larger sparsity of design variable values. Adaptive HS variants [170,171] were outperformed
by HFSA, HFHS and HFBBBC as they found some intermediate designs with an average cost of
0.174 after 10000 function evaluations. BBBC-UBS [172] was much more efficient than adaptive HS
and its convergence speed improved with population size. However, cost function evaluated after
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10000 analyses for BBBC-UBS is still 1.467 × 10−9, three orders of magnitude higher than for the present
HS/BBBC/SA algorithms. JAYA [35,175,176] was slightly more efficient than BBBC-UBS and arrived
at the cost function value of 1.297 × 10−9 after 9850 analyses. However, its computational speed
significantly decreased with population size.

Results gathered in this preliminary test confirmed the ability of the present algorithms to solve
least square type problems including random noise. This conclusion will be proven true in the next
sections also for the three identification problems solved in this study.

5.2. Woven Composite Laminate

The first inverse problem solved in this study regards the mechanical characterization of an 8-ply
woven-reinforced fiberglass-epoxy composite laminate used as substrate for printed circuit boards
(see Figure 6a). The error functional Ω to be minimized depends on four unknown elastic constants,
Ex, Ey, Gxy and νxy. The target values of material properties were provided by the industrial partner
involved in the project: Ex = 25000 MPa, Ey = 22000 MPa, Gxy = 5000 MPa and νxy = 0.280.
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Figure 6. (a) Woven composite laminate to be characterized; (b) Schematic of ESPI setup sensitive to
u-displacements; (c) Phase pattern of ESPI fringes; (d) Finite element model simulating the experiment
(control paths are also indicated).

The optimization process entailed by this identification problem attempts to match the in-plane
displacements u generated by a vertical load of 140 N that produces 3-point bending. A 46 mm
long, 13 mm tall and 1.2 mm thick specimen was cut from the laminate and submitted to 3-point
bending. Target displacements u included in the error functional Ω were measured with Phase Shifting
Electronic Speckle Pattern Interferometry (PS-ESPI) [5–7]. The double-illumination interferometer
used in the speckle measurements is schematized in Figure 6b; the symmetric illumination beams
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make the setup be sensitive to u-displacements. Illumination is realized with a 35 mW He-Ne
laser (λ = 632.8 nm). The angle of illumination θ is 20◦. Hence, sensitivity of optical set up
is λ/2sinθ = 925.1 nm. Fringe patterns were processed following guidelines illustrated in [180].
More details on the ESPI measurements carried out for this identification problem can be found
in [76,77].

The ESPI phase pattern containing displacement information is shown in Figure 6c while Figure 6d
shows the finite element model including control paths parallel to the Y-axis of symmetry of the
specimen. The specimen was modelled in ANSYS with 4-nodes plane elements under the assumption
of plane stress. Element size was selected so as to have mesh independent solutions and nodes located
in correspondence of the control points defined on the recorded image. The error functional Ω was built
by comparing FE results and experimental data at 78 control points. The following bounds were taken
for material parameters in the optimization process: 3000 ≤ Ex ≤ 50000 MPa, 2000 ≤ Ey ≤ 50000 MPa,
1000 ≤ Gxy ≤ 50000 MPa and 0.01 ≤ νxy ≤ 0.45. These bounds are large enough not to have any effect
on the results of the identification problem.

The population size of all HS and BBBC variants considered in this study was set equal to
10, hence 2.5 times as large as the number of unknown material parameters. The same was done
for JAYA. Values of Ω corresponding to the best design, worst design and center of mass of the
initial population are 0.180, 0.862 and 0.365, respectively. The corresponding average (maximum)
deviations from target properties are 33.8% (56.1%), 37.4% (61.1%) and 41% (53%), respectively. HFSA,
ANSYS and MATLAB-SQP optimizations were started from each of the three points mentioned above.
Thirty independent optimization runs were carried out starting from different initial populations
(yet keeping NPOP = 10) to statistically evaluate algorithms’ performance.

The results of the identification process are summarized in Table 1. The “SA-Grad” notation
refers to the ISA algorithm developed in [77], which combined global and local annealing search
strategies based on finite difference evaluation of ∇Ω(XOPT), and was successfully applied to this test
case. All HS/BBBC/SA variants determined material properties with a great deal of accuracy. In fact,
the largest error, made on the Poisson’s ratio, never exceeded 0.941%. The optimized solutions of
HFSA, HFHS and HFBBBC correspond to the lowest errors on material properties. SA-Gradient [77]
also was very accurate but required up to 85% more FE analyses than the present algorithms.

Table 1. Results of the identification process carried out for the woven composite laminate.

Material Properties HFSA [Present] SA-NGR SA-Grad
[77]

HFHS
[Present] HS-NGR HFBBBC

[Present] BBBC-NGR

Ex 24953 24838 25043 25034 25074 25047 25051
Ey 22051 22207 22034 21995 21913 21978 21861
νxy 0.280 0.278 0.279 0.279 0.279 0.279 0.279
Gxy 5008 5010 5000 5005 5017 5003 4994

Error on material
properties (%)

Aver: 0.145
Max: 0.232

Aver: 0.626
Max: 0.941

Aver: 0.171
Max: 0.357

Aver:
0.154

Max: 0.357

Aver:
0.347

Max: 0.395

Aver:
0.176

Max: 0.357

Aver:
0.328

Max: 0.632

Residual error on
displacements (%)

Aver: 0.545
Max: 2.532

Aver: 0.591
Max: 2.788

Aver:
0.643

Max: 2.736

Aver:
0.580

Max: 2.689

Aver:
0.622

Max: 2.903

Aver:
0.640

Max: 2.734

Aver:
0.626

Max: 2.899

Optimization
iterations

14
(1-D SA = 1)

17
(1-D SA = 5)

22
(1-D SA =

10)
13 15 12

(Nexp = 1)
13

(Nexp = 4)

FE analyses 257 332 388 210 242 222 274

The maximum residual error on displacements was always lower than 3%, localized near on the
closest control path to the applied load. This happened because the u-displacement field is symmetric
about the Y-axis (i.e., loading direction) and hence u-displacements approach to zero near this axis.
The average error on displacements evaluated for the identified material properties was about 0.6% for
all algorithms.

Table 1 shows that HFHS and HFBBBC were faster than HFSA as they required, respectively,
210 and 222 structural analyses to complete the optimization process vs. 257 analyses required by
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HFSA. The proposed algorithms were between 15% and 23% faster than the simplified algorithms
SA/HS/BBBC-NGR and the number of explosions and 1-D local annealing searches were substantially
reduced by the present formulations. The very small number of optimization variables (only four
unknown parameters) defined for this inverse problem somehow limited the ability of HFHS and
HFBBBC of building a large number of descent directions.

Remarkably, statistical dispersion on identified material properties, residual error on displacements
and required number of finite element analyses evaluated over the thirty independent runs was less
than 0.11% thus proving the robustness of the proposed algorithms.

For the sake of brevity, Table 1 does not report the results obtained by AHS [170,171],
BBBC-UBS [172], JAYA [35,175,176], MATLAB-SQP [173] and ANSYS [174]. The gradient-based
optimizer of ANSYS converged after 48 iterations and about 200 structural analyses to a solution
(Ex = 24898 MPa; Ey = 22306 MPa; Gxy = 5225 MPa; νxy = 0.223) with about 20.3% error on
Poisson’s ratio. MATLAB-SQP was more accurate than ANSYS (Ex = 25006 MPa; Ey = 22026 MPa;
Gxy = 4971 MPa; νxy = 0.288) but yet its solution has a 2.8% error on Poisson’s ratio after 45 iterations
and about 215 structural analyses. Adaptive HS [170,171] was the slowest algorithm overall: in fact,
average error on material properties for the solution Ex = 24767 MPa; Ey = 21777 MPa; Gxy = 5190 MPa;
νxy = 0.279 was still higher than 1.5% after about 400 structural analyses. BBBC-UBS [172] found
the solution Ex = 25045 MPa; Ey = 21991 MPa; Gxy = 4889 MPa; νxy = 0.277 after about 350 structural
analyses: this solution is critical with respect to Poisson’s ratio for which there is a 2.2% error.
Finally, JAYA [35,175,176] obtained the properties Ex = 24991 MPa; Ey = 21979 MPa, Gxy = 5044 MPa;
νxy = 0.257 after 25 iterations and 250 structural analyses; although elastic moduli were identified very
precisely, the Poisson’s ratio error increased to 9.2%.

The above listed data confirm the superiority of the proposed SA/HS/BBBC formulations over
metaheuristic algorithms that do not use line search to generate trial solutions belonging to descent
directions. The elitist strategies of BBBC-UBS and JAYA are more heuristic and do not form descent
directions in a direct way unlike HFHS and HFBBBC.

The convergence curves obtained for the best optimization runs of HS/BBBC/SA variants, JAYA and
gradient-based optimizers are compared in Figure 7. HFBBBC was the fastest algorithm to significantly
reduce the error functional but it then had a fairly long step with little improvements in Ω value.
This allowed HFSA and HFHS to have an average convergence rate similar to HFBBBC. The small
number of design variables made it difficult for HFSA to recover the initial gap in cost function (i.e.,
0.180 vs. 0.365). HS-NGR, BBBC-NGR, SA-NGR and SA-Grad showed oscillatory behavior because
they formed trial designs considering only one or two potentially descent directions at a time. JAYA’s
best run started from a population including better designs than the other algorithms but the search
process of this method clearly suffered from the lack of a direct generation of descent directions. In fact,
JAYA achieved the last 30% of its total reduction in error functional with respect to the best initial value
of Ω = 0.136 over 22 iterations out of a total number of 25 iterations.
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MATLAB-SQP was faster than SA-NGR and SA-Grad, comparable in convergence rate
with HFSA and HS-NGR for some iterations but definitely slower than HFHS and HFBBBC.
Furthermore, its convergence curve became very similar to that of JAYA after 11 iterations. The extra
iterations required by JAYA, ANSYS and MATLAB-SQP for completing optimization process were due
to their difficulty in converging to the correct value of Poisson’s ratio.

5.3. Axially Compressed Composite Panel for Aeronautical Use

The goal of the second inverse problem solved in this study was to identify mechanical properties
and ply orientations of a IM7/977-2 graphite-epoxy composite laminate (43 cm long, 16.5 cm tall and
3 mm thick) for aeronautical use. The panel, subject to axial compression, was not reinforced by
any stiffener. According to the manufacturer, the laminate included 1/3 of the layers oriented at 0◦

(i.e., in the axial direction Y), 1/3 oriented at 90◦ (i.e., in the transverse direction X) and 1/3 oriented
at ±45◦. The error functional Ω to be minimized depends on seven unknown structural parameters:
four elastic constants Ex, Ey, Gxy and νxy and three ply orientations θ0, θ90 and θ45 of the laminate
(corresponding, respectively, to nominal angles 0◦, 90◦ and ±45◦). The target values of elastic constants
indicated by the industrial partner involved in the project are very typical for the IM7/977-2 material:
Ex = 148300 MPa, Ey = 7450 MPa, Gxy = 4140 MPa and νxy = 0.01510.

The optimization process entailed by this identification problem attempts to match the fundamental
buckling mode shape of the axially compressed composite panel. Mode shape is normalized with respect
to the maximum out-of-plane displacement wmax occurring at the onset of buckling. Hence, the target
quantity of the optimization process is the normalized out-of-plane displacement wnorm defined as
w/wmax.

Figure 8a shows the experimental set-up used for this test case. The axial load is applied to
the specimen by imposing a given end-shortening to the panel top edge while bottom edge is fixed.
The figure shows the MTS AllianceTM RT/30 testing machine and the grips that realize loading and
constraint conditions. In the experiments, end-shortening was progressively increased to 1.5 mm by
moving downwards the testing machine cross-bar.
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Figure 8. (a) Experimental setup used in the identification problem of the axially compressed composite
panel; (b) Phase pattern at the onset of buckling; (c) Finite element model simulating the experiment
(control path AB is also indicated).

The buckling shape of the panel was measured with a white light double illumination projection
moiré set-up [6,181,182]. The experimental setup included two slide projectors (Kodak Ektalite® 500,
USA) and a standard digital camera (CANON® Eos 350, 8 Mpix CMOS sensor, Japan) mounted on
a tripod; the optical axis of the camera is orthogonal to the panel surface. The illumination angle θ
limited by the optical axis of each projector and the optical axis of the camera (i.e., the angle between
the direction of illumination and the viewing direction) is 18◦ while the nominal pitch of the grating
is 317.5 µm (80 lines/inch). It can be seen from the figure that projectors are placed symmetrically
about the optical axis of the camera. Each projector projects a system of lines and the wave fronts
carrying these lines in the space interfere to form an equivalent grating, which is then modulated by the
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specimen surface. This condition is equivalent to projecting a grating from infinity. The optical set-up
is sensitive to out-of-plane displacements which modulate the projected lines making them curve.

The pitch of the projected grating (pj) measured on the reference plane (i.e., the surface of the
undeformed panel) was 3623.3 µm with a magnification factor of 10.85. Therefore, the sensitivity of
the optical setup, pj/2tanθ, was 5575.7 µm. The double illumination, together with the subtraction of
the phases of the two systems of lines operated via software, produced a phase distribution on both
the reference plane and the observed surface that is equivalent to the case of projection from infinity.
The phase pattern corresponding to the onset of buckling is shown in Figure 8b. Image processing was
done with the HoloStrain software developed by Sciammarella et al. [183].

The experiment was simulated by a finite element model including 8-node shell elements
(Figure 8c): again, the selected mesh size guarantees mesh independent solutions and the
correspondence between control nodes and image pixels. An eigenvalue buckling analysis was
performed in order to determine the critical load of the panel and the corresponding buckled shape.

The error functional Ω was built by comparing finite element results and experimental data at
86 control points along the AB path sketched in Figure 8c. Such a path was chosen in view of the
observed symmetry of buckling mode which resembles a typical Euler mode with one half-wave.
The maximum out-of-plane displacement occurs at the center of the panel where the origin of the
coordinate system X-Y is placed. The following bounds were taken for material parameters in the
optimization process: 10000 ≤ Ex ≤ 1,000,000 MPa, 1000 ≤ Ey ≤ 1,000,000 MPa, 500 ≤ Gxy ≤ 20000 MPa
and 0.001 ≤ νxy ≤ 0.1. Ply orientations were made to vary as follows: −50◦ ≤ θ0 ≤ 50◦, 0◦ ≤ θ90 ≤ 91◦,
10◦ ≤ θ45 ≤ 70◦. Similar to the woven composite laminate problem, the bounds imposed on the
unknown structural properties are large enough not to affect results of identification process.

The population size of all HS and BBBC variants considered in this study was set equal to 15,
slightly more than two times the number of unknown structural parameters. JAYA also was executed
with NPOP = 15. Values of Ω corresponding to the best design, worst design and center of mass of the
initial population are 0.891, 5.149 and 2.303, respectively. The corresponding maximum deviations
from target elastic properties are 130.8%, 521% and 730.6%, respectively. Similar to the previous test
problem, HFSA, ANSYS and MATLAB-SQP optimization runs were started from the best and worst
points as well as from the center of mass of the initial population generated for HS, BBBC and JAYA.
Thirty independent optimization runs (keeping NPOP = 15) were carried out to statistically evaluate
algorithms’ performance.

Table 2 presents the results obtained for this inverse problem. The “SA-Grad” notation now refers
to the SA algorithm of Refs. [83,84], which evaluated gradients of error functional via finite differences
and used up to [(2·NMP + 1) + 2·NMP] descent directions − out of a total of (2NMP

− 1) + 2·NMP
potentially available directions—per iteration to form new trial designs. It can be seen that structural
properties were identified more accurately by HFSA, HFHS and HFBBBC, that obtained an average
error on properties ranging between 0.197 (HFSA) and 0.266% (HFBBBC). The maximum residual
error on buckling mode shape evaluated for the identified structural properties never exceeded 2.75%
for the present algorithms while was about 3.5% for SA/HS/BBBC-NGR and SA-Grad. Average error
on mode shape was always lower than 1.9% for the present algorithms vs. about 2.1% for the other
algorithms. The largest errors on w-displacements were localized near control path boundaries A and
B, that is where displacements tend to zero and numerical noises may occur.
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Table 2. Results of the identification process carried out for the axially compressed composite panel.

Material Properties HFSA [Present] SA-NGR SA-Grad [77] HFHS
[Present] HS-NGR HFBBBC

[Present] BBBC-NGR

Ex 148708 149626 148730 147928 146831 148343 147406
Ey 7479 7403 7516 7491 7464 7499 7523
νxy 0.01508 0.01502 0.01520 0.01510 0.01527 0.01509 0.01517
Gxy 4140 4107 4107 4145 4160 4160 4163
θ0 0.001021 0.001022 0.0009930 0.003492 0.003599 0.003243 0.0009077
θ90 90.223 89.347 90.800 89.904 89.720 90.274 90.685
θ45 44.938 45.055 44.975 45.113 45.359 44.975 44.905

Error (%) on
parameters

Aver: 0.197
Max: 0.389

Aver: 0.617
Max: 0.894

Aver: 0.597
Max: 0.889

Aver:
0.213

Max: 0.550

Aver:
0.649

Max: 1.126

Aver:
0.266

Max: 0.658

Aver:
0.596

Max: 0.980

Error on mode
shape (%)

Aver: 1.554
Max: 2.281

Aver: 2.088
Max: 3.453

Aver: 2.107
Max: 3.580

Aver:
1.680

Max: 2.504

Aver:
2.072

Max: 3.426

Aver:
1.889

Max: 2.735

Aver:
2.103

Max: 3.497
Optimization

iterations
13

(1-D SA = 2)
16

(1-D SA = 5)
20

(1-D SA = 6) 14 18 15
(Nexp = 2)

20
(Nexp = 11)

FE analyses 596 863 935 478 672 431 660

HFHS and HFBBBC were again faster than HFSA as they required, respectively, 478 and
431 structural analyses to complete the optimization process vs. 596 analyses required by HFSA.
The proposed algorithms were between 23% and 36% faster than SA/HS/BBBC-NGR variants and
even up to 117% faster than SA-Grad. Furthermore, they required much less explosions and 1-D local
annealing searches. The fact that HFHS, hybrid HFBBBC and HFSA could reduce the number of
finite element analyses with respect to HS/BBBC/SA-NGR and SA-Grad more significantly than for
the woven composite problem confirms that increasing the number of design variables may allow
the present algorithms to generate more descent directions and speed up the optimization search.
Interestingly, the number of structural analyses required in the axially compressed panel identification
problem was on average about two times as large as that required in the woven composite laminate
identification problem, hence close to the ratio 7 to 4 existing between unknown parameters.

Statistical dispersion on identified properties, residual error on displacements and required number
of FE analyses evaluated over the thirty independent runs remained below 0.17% thus confirming the
robustness of HFSA, HFHS and HFBBBC. For the sake of brevity, Table 2 does not report the results
obtained for AHS [170,171], BBBC-UBS [172], JAYA [35,175,176], MATLAB-SQP and ANSYS also
for this problem. MATLAB-SQP and ANSYS converged to solutions (respectively, Ex = 148960 MPa;
Ey = 7594 MPa; Gxy = 4189 MPa; νxy = 0.01488; θ0 = 0.07150◦; θ90 = 86.328; θ45 = 43.931◦ and
Ex = 146550 MPa; Ey = 7255 MPa; Gxy = 4146 MPa; νxy = 0.01558; θ0 = 0.1205◦; θ90 = 88.172;
θ45 = 41.681◦) that still have, respectively, 4.1% and 7.4% errors on ply orientations. This happened
after about 600 structural analyses, hence for a higher computational cost than that required by HFSA,
HFH and HFBBBC.

As expected, adaptive HS [170,171] and BBBC-UBS [172] were outperformed by HFSA, HFHS and
HFBBBC. In particular, adaptive HS converged to the solution Ex = 146760 MPa; Ey = 7266 MPa;
Gxy = 4092 MPa; νxy = 0.01534; θ0 = 0.08884◦; θ90 = 87.632◦; θ45 = 45.808◦ after about 1650 structural
analyses, about 3.5 times slower than HFHS. Furthermore, BBBC-UBS found the solution Ex = 147275
MPa; Ey = 7562 MPa; Gxy = 3996 MPa; νxy = 0.01540; θ0 = 0.03891◦; θ90 = 88.513◦; θ45 = 46.002◦

after about 1250 structural analyses, about three times slower than HFBBBC. In spite of such a large
computational cost, residual errors on structural properties still ranged between 2.6 and 3.5%.

JAYA [35,175,176] converged to the following solution: Ex = 149703 MPa; Ey = 7451 MPa;
Gxy = 4999 MPa; νxy = 0.01525; θ0 = 0.01586◦; θ90 = 85.102◦; θ45 = 46.171◦ after 65 iterations and
975 structural analyses. Elastic moduli and Poisson’s ratio were identified very precisely (less than 1%
error) but the largest error on layup angles was about 5.8%.

The convergence curves relative to the best optimization runs of SA/HS/BBBC variants, JAYA,
ANSYS and MATLAB-SQP optimizers are compared in Figure 9. The present algorithms were definitely
faster than SA/HS/BBBC-NGR and SA-Grad. In particular, HFSA and HFHS reduced significantly
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the error functional in the very first iterations but then conducted a fairly long exploitation phase.
HFBBBC showed the most regular rate of reduction of Ω and finally required the lowest number
of structural analyses overall. Although HFSA optimization was started from an initial design
corresponding to a much higher value of Ω than the best design included in the initial population of
HFHS and HFBBBC (i.e., Ω = 2.303 vs. Ω = 0.891), it immediately recovered the gap in cost function
and the optimization histories of the present SA/HS/BBBC variants became very similar after about
12 iterations. Similar to the previous test problem, JAYA’s best optimization run started from a better
population than those generated for the other algorithms: in fact, the best value of error functional
was only 0.361. HFHS, HSFA and HFBBBC recovered the initial gap from JAYA within only 3, 6 and
8 iterations, respectively. Furthermore, after the 7th iteration, JAYA’s solutions improved slowly.
The higher computational complexity of this test case made hence more evident the inherent limitation
of JAYA’s formulation: the absence of a mechanism for directly defining descent directions.
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identification problem.

MATLAB-SQP and ANSYS had the slowest converge rate with a marked oscillatory behavior
in the latter case. The response surface approximation strategy implemented by ANSYS to build
sub-problems (this includes a random selection of the response surface base points) was more efficient
than the first-order method used in the woven composite laminate problem. However, it suffered from
the noise introduced in the response surface fitting by the very different scales of ply orientations and
Poisson’s ratio with respect to elastic moduli.

5.4. Bovine Pericardium Patch

The last identification problem solved in this study regarded the mechanical characterization
of a glutaraldehyde treated bovine pericardium (GTBP) patch subject to inflation. The intensive
experimental campaign conducted in [83,84] confirmed the indications of the industrial partner
involved in the project that the GTBP patch behaves as a transversely isotropic hyperelastic material.
The same conclusion was achieved from both in-plane equibiaxial tension [83] and 3D inflation [84]
tests. Since the bovine pericardium patch can be considered a fibrous hyperplastic material, the error
functional Ω to be minimized depends on 17 unknown material parameters: 16 hyperelastic constants
(a1, a2, a3 and b1, b2, b3 for the “isotropic” deviatoric term associated to matrix properties; c2, c3, c4,
c5, c6 and d2, d3, d4, d5, d6 for the “anisotropic” deviatoric term associated to fiber properties) and
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the fiber orientation direction cosine cosθ. More details on the transversely isotropic hyperelastic
constitutive model are given in [174].

The average values of material parameters and their corresponding standard deviations
found in [83,84] were: a1 = 199.255 ± 0.111, a2 = 126.110 ± 0.341, a3 = 135.758 ± 1.216,
b1 = 388.077 ± 1.978, b2 = 169.234 ± 2.276, b3 = 187.116± 1.704, c2 = 197.506± 1.750, c3 = 89.359 ± 0.633,
c4 = 174.382 ± 0.732, c5 = 169.645 ± 0.115, c6 = 148.225 ± 0.936, d2 = 158.541 ± 0.629, d3 = 21.608 ± 0.514,
d4 = 69.229 ± 0.508, d5 = 168.032 ± 2.462, d6 = 102.076 ± 0.302 kPa and cosθ = 0.6837 ± 0.000751.
Since standard deviations are very small, average values of material properties can be taken as the
target result of the identification process. A further proof of the validity of the assumption made above
is that cosθ = 0.6837 matches well with the angle of rotation of the iso-displacement contours seen
experimentally with respect to the coordinate axes X and Y.

The optimization process entailed by the identification problem attempts to match the total
displacements utot =

√
u2 + v2 + w2 of a circular membrane of diameter 40 mm and thickness

0.5 mm progressively inflated up to the maximum pressure of 12.22 kPa. An assembly view of
the experimental set-up used in the inflation test is shown in Figure 10a. 3D displacement components
were simultaneously measured by combining intrinsic moiré (IM) and projection moiré (PM) [5–7]:
IM is sensitive to in-plane displacements while PM is sensitive to out-of-plane displacements.
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Figure 10. (a) Experimental setup used in the identification problem of the bovine pericardium patch;
(b) Modulation of printed and projected gratings from specimen deformation; (c) Finite element model
simulating the experiments (control paths hc and vc are also indicated).



Materials 2019, 12, 2133 33 of 46

Figure 10b shows a typical image of the inflated membrane illuminated by white light with the two
modulated gratings by the deformed specimen: the printed square-dots grating (1 mm pitch) follows
the evolution of the in-plane displacements u and v while the projected vertical lines grating (2 mm
pitch) follows the evolution of the out-of-plane displacement w. The origin of the reference system X-Y
is put in the center of the tested membrane. Images were processed with the HoloStrain software [181].
The largest in-plane displacement measured in the experiments was about 0.5 mm while the largest
out-of-plane displacement was about 5.3 mm. Each displacement component was extracted from
the FFT pattern of the recorded image by properly selecting spatial frequencies. More details on the
experimental tests performed for this identification problem are given in [83,84].

The inflation test was simulated by the finite element model shown in Figure 10c,
including 1200 quadratic solid hyperelastic elements and 8603 nodes. The FE model shows the
zero-displacement boundary condition imposed at the circular edge of the membrane as well as the
uniformly distributed inflation pressure acting on the membrane. Mesh size was determined via
convergence analysis again taking care to match control nodes and pixels of the recorded images.
In the FE analysis, the NLGEOM geometric nonlinearity option was activated in order to account for
the large deformations experienced by the hyperelastic membrane.

The error functional Ω of this test problem was built by comparing ANSYS results and moiré data
at 81 control points located on the horizontal control path hc along the X-axis and the vertical control
path vc along the Y-axis. All hyperelastic constants were made to vary between 10 kPa and 1 MPa while
cosθ could range between 0.65 and 0.75. As for the previous two test problems, the bounds imposed
on material properties were large enough not to affect the solution of the identification process.

The population size of all HS and BBBC variants considered in this study was set equal to 30,
hence about two times the number of unknown material parameters. JAYA’s optimization also was
run with NPOP = 30. The values of Ω functional corresponding to the best design, worst design and
center of mass of the initial population are 0.125, 0.570 and 0.340, respectively. The corresponding
average deviation from target properties ranges between 223% and 566%. The high nonlinearity of this
identification problem is confirmed by the fact that the best four designs of the population present
a larger deviation from target properties than the worst design: respectively, 417%, 345%, 350% and
432% vs. 282%. HFSA, ANSYS and MATLAB-SQP optimization runs were started from the best
and worst points as well as from the center of mass of the initial population generated for HS and
BBBC. Thirty independent runs were executed with different initial populations (keeping NPOP = 30)
to statistically evaluate performance of different optimizers.

Table 3 presents the results obtained for this inverse problem. The “SA-Grad” notation again
refers to the SA algorithm derived from [83,84]. The present SA/HS/BBBC variants were once again
more accurate than SA/HS/BBBC-NGR algorithms. In fact, average and maximum errors on identified
material properties, respectively, ranged between 0.196 (HFHS) and 0.256% (HFSA), and between
0.594% (HFBBBC) and 0.692% (HFHS) vs. about 0.49% (average) and 1.24% (maximum) errors seen for
SA/HS/BBBC-NGR. The largest residual error on utot-displacements evaluated for the present algorithms
never exceed 2.9% and average residual errors were about 30% lower than for SA/HS/BBBC-NGR.
The analysis of error maps revealed that largest errors are localized at X = ± 11.5 mm and Y = ± 8.5 mm,
that is where the three displacement components become comparable in magnitude.
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Table 3. Results of the identification process carried out for the bovine pericardium patch.

Material
Properties HFSA [Present] SA-NGR SA-Grad Derived

from [83,84]
HFHS

[Present] HS-NGR HFBBBC
[Present] BBBC-NGR

a1 198.961 198.787 199.255 198.837 200.989 199.246 199.362
a2 126.885 127.046 126.110 125.858 127.761 125.361 127.680
a3 135.601 134.819 135.758 135.587 135.349 136.194 136.205
b1 386.003 385.440 388.077 388.455 390.833 388.284 387.069
b2 169.684 170.439 169.234 169.245 169.568 168.627 170.263
b3 187.298 185.346 187.116 187.383 188.867 187.568 187.567
c2 197.367 197.407 197.506 197.783 197.959 197.896 198.615
c3 89.111 89.568 89.359 89.192 89.594 89.064 89.661
c4 173.820 173.634 174.382 174.239 174.382 173.938 174.938
c5 169.835 171.097 169.645 170.031 170.209 169.607 169.833
c6 147.876 149.953 148.225 148.261 147.013 148.060 148.043
d2 159.260 159.449 158.541 158.699 158.268 158.595 158.417
d3 21.692 21.794 21.608 21.705 21.599 21.525 21.512
d4 69.112 69.275 69.229 69.063 69.682 69.041 69.280
d5 167.501 166.533 168.032 169.194 168.956 168.035 166.372
d6 102.293 102.551 102.076 101.687 101.573 102.410 102.654

cosθf 0.6838 0.6837 0.6837 0.6839 0.6776 0.6837 0.6834

Errors on
properties (%)

Aver: 0.256
Max: 0.615

Aver: 0.565
Max: 1.166 N/A

Aver:
0.196

Max: 0.692

Aver:
0.516

Max: 1.309

Aver:
0.206

Max: 0.594

Aver:
0.376

Max: 1.245

Residual errors
on utot (%)

Aver: 1.141
Max: 2.845

Aver: 1.666
Max: 3.254

Aver: 1.560
Max: 3.167

Aver:
1.070

Max: 2.903

Aver:
1.533

Max: 3.089

Aver:
1.097

Max: 2.904

Aver:
1.658

Max: 3.226
Optimization

iterations
25

(1-D SA = 2)
27

(1-D SA = 8)
34

(1-D SA = 12) 24 31 25
(Nexp = 2)

33
(Nexp = 9)

FE analyses 1373 1829 1972 1223 1807 1294 1668

HFHS, HFBBBC and HFSA required, respectively, 1223, 1294 and 1373 structural analyses to
complete the optimization process. Hence, the proposed algorithms were between 22.4% and 32.3%
faster than the other algorithms and reduced the number of explosions and 1-D local annealing searches
on average by a factor 5 with respect to the previous formulations. The average number of FE analyses
required by HFSA, HFHS and HFBBBC for this identification problem was about 2.5 times as large as
its counterpart in the axially compressed panel problem. Hence, computational cost again changed
almost linearly with the number of unknown parameters.

The HFSA, HFHS and HFBBBC algorithms were very robust also for this test problem. In fact,
statistical dispersion on identified properties, residual error on displacements and required number of
FE analyses evaluated over the thirty independent runs remained below 0.058%. The higher amount of
design freedom introduced by the larger number of unknown parameters with respect to the first two
test problems allowed to generate high quality trial solutions more easily regardless of the composition
of the initial population.

AHS [170,171], BBBC-UBS [172], MATLAB-SQP and ANSYS were outperformed by HFSA,
HFHS and HFBBBC also in this identification problem. In particular, the MATLAB-SQP solution
(a1 = 196.6, a2 = 126.8, a3 = 130.58, b1 = 392.17, b2 = 169.72, b3 = 186.97, c2 = 196.52, c3 = 89.768,
c4 = 173.46, c5 = 168.98, c6 = 148.79, d2 = 159.12, d3 = 21.173, d4 = 69.507, d5 = 165.86, d6 = 98.219 kPa
and cosθ = 0.6882) was obtained after about 80 optimization iterations and 1550 structural analyses
(i.e., 1.13 times the computational cost of HFSA) but still had a 3.8% error on hyperelastic constants a3

and d6. ANSYS converged to a slightly worse solution than MATLAB-SQP even though it required
about 100 optimization iterations and 1700 finite element analyses.

BBBC-UBS [172] converged to the solution a1 = 199.368, a2 = 123.056, a3 = 135.963,
b1=386.842, b2 = 170.251, b3 = 186.915, c2 = 198.753, c3 = 89.669, c4=175.105, c5 = 169.838, c6 = 147.961,
d2 = 158.403, d3 = 21.681, d4 = 69.146, d5 = 166.405, d6 = 102.738 kPa and cosθ = 0.6833 after about
2800 finite element analyses, about 2.2 times slower than HFBBBC. However, the residual error
made on the a2 hyperelastic constant was still 2.4% in spite of such a large computational cost.
Adaptive HS [170,171] was again the worst optimizer overall as its solution (a1 = 197.213, a2 = 125.214,
a3 = 130.744, b1 = 388.321, b2 = 174.278, b3 = 186.831, c2 = 197.451, c3 = 88.118, c4 = 172.409, c5 = 168.746,
c6 = 151.330, d2 = 158.462, d3 = 20.845, d4 = 69.298, d5 = 168.764, d6 = 100.741 kPa and cosθ = 0.6776)
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yield a residual error of 3.5% on hyperelastic constants a3 and d3, in spite of having performed about
3500 finite element analyses, about 2.9 times more than HFHS.

JAYA [35,175,176] obtained a very close solution to BBBC-UBS [172] (i.e., less than 0.25% difference
on hyperelastic constants; same value of cosθ) completing the optimization process in 2380 finite
element analyses (i.e., 140 iterations), still very slowly with respect to the present SA/HS/BBBC variants.
The detail of the JAYA’s solution is as follows: a1 = 199.325, a2 = 122.987, a3 = 136.094, b1 = 386.915,
b2 = 170.351, b3 = 187.240, c2 = 198.259, c3 = 89.655, c4 = 174.948, c5 = 170.087, c6 = 148.022, d2 = 158.558,
d3 = 21.634, d4 = 69.093, d5 = 166.083, d6 = 102.753 kPa and cosθ = 0.6833.

The convergence curves obtained for the best optimization runs of HS/BBBC/SA variants,
MATLAB-SQP and ANSYS optimizers are compared in Figure 11. The JAYA’s best run curve is
not shown in the figure as values of Ω recorded in the first 30 iterations are off-scale. Because of the
high nonlinearity of this problem, intermediate designs were sorted also in terms of deviation from
target properties. This explains why convergence curves of BBBC and HS variants start from higher
values of Ω than those of SA variants, ANSYS and SQP optimizers which start from the Ω = 0.340 value
corresponding to the center of mass of the population. HFBBBC was definitely the fastest algorithm
throughout optimization process, followed by HFSA and HFHS. However, convergence curve of HFHS
was almost monotonic and this explains why HFHS finally required less finite element analyses than
HFBBBC and HFSA, which instead showed fairly long steps with small improvements in solution.
The optimization histories of HFSA, HFHS and HFBBBC practically coincided after 20 iterations.Materials 2019, 12, x FOR PEER REVIEW 34 of 45 
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patch identification problem.

The present algorithms were definitely faster than SA/HS/BBBC-NGR variants and SA-Grad.
The “NGR” algorithms showed steps and oscillatory behavior in the optimization history because
the number of descent directions (i.e., one or two) involved in the formation of new trial solutions
was not large enough to deal with the high nonlinearity of the GTBP patch identification problem.
Interestingly, SA-Grad considered a set of 69 (i.e., 4·NMP + 1) descent directions in each iteration to
update design. This allowed oscillatory behavior to be limited but about one half of these 69 directions
were formed by perturbing one material parameter at a time and hence yield little improvements in
the error functional.

ANSYS again showed the slowest converge rate and a marked oscillatory behavior. That happened
because the high nonlinearity of this identification problem reduced the efficiency of the response
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surface approach used by ANSYS for building the approximate sub-problem in each optimization
iteration. MATLAB-SQP was competitive with SA-Grad for about 20 iterations but it then started
to cycle between intermediate designs characterized by Ω = 0.01 trying to find proper values for
hyperelastic constants a3 and d6. Conversely, SA-Grad used its inherent exploitation capability to
improve solution in the final part of optimization history.

JAYA (the convergence curve is not shown in the figure) started its best optimization run from
a population with Ω OPT = 0.476 and could not reduce the error functional value below 0.35 for the
first 30 iterations. Such a behavior confirms that as problem size increases it becomes more important
to update population according to the rank held in the population by the currently perturbed design.
This requirement is certainly satisfied by HFHS and HFBBBC, which generate search directions SFAST,
SBEST, S2ndBEST, SOPT−CM etc. (or perform low cost evaluations of sensitivities of error functional)
while JAYA simply perturbs designs following the initial order assigned to the NPOP individuals.
For a given design, it is also important to tailor perturbations of each variable to sensitivities of error
functional. Whilst this is intrinsically done by 1D probabilistic search utilized by the present algorithms,
JAYA updates variables just following the classical 1st to NMPth variable sequence. The latter may
result in missing “good” values of “some” variable that potentially improve a given solution more
than other values of other variables selected instead. The probability of missing good variable values
clearly increases with the problem dimension as it becomes more difficult to reconstruct in the search
space the path leading to the global optimum. This explains the “inertia” effect observed for JAYA,
which became slower as test problem size increased. Since the ratio between population and number
of optimization variables was very similar for all test cases, the “inertia” effect logically occurred also
for larger population sizes (see discussion on JAYA’s results developed in Section 5.1).

In order to evaluate sensitivity of convergence behavior of HFSA, HFHS and HFBBBC algorithms
to initial population and initial design, the bovine pericardium patch identification problem was
also solved with a population including 90 candidate solutions. The new population of HS and
BBBC included 60 additional “low quality” candidate solutions characterized by higher values
of the error functional: the new worst design has Ω = 1.352 while the new center of mass has
Ω = 0.709. Consequently, the average deviation from target properties varied between 223% and 1030%.
The candidate solutions yielding the lowest values of Ω again did not show the smallest deviations
from target properties.

Results of sensitivity analysis to population size and initial solutions are presented in Table 4.
All of the present algorithms practically converged to the same material properties regardless of
population size/initial design. Deviations from target material properties were slightly higher for
NPOP = 90 but remained below 0.27% (average error) and 0.78% (maximum error). Residual errors
on displacements also changed marginally with respect to those evaluated for NPOP = 30. HFHS and
HFBBBC performed one more iteration than in the case NPOP = 30 while HFSA could eliminate one
optimization cycle. The number of explosions and 1-D local annealing searches remained the same
for the two populations. The number of finite element analyses required in the optimization process
changed at most by 15%. This increase was due to the fact that the 90-designs population included
lower quality solutions. The robustness of the present algorithms is confirmed by the convergence
curves shown in Figure 12. It appears that each pair of optimization histories relative to a given
algorithm practically coincided in the last 4–5 iterations.



Materials 2019, 12, 2133 37 of 46

Table 4. Bovine pericardium patch identification problem: sensitivity of HFHS, HFBBBC and HFSA
algorithms to initial design/population.

Material Properties HFSA
(NPOP = 30)

HFSA
(NPOP = 90)

HFHS
(NPOP = 30)

HFHS
(NPOP = 90)

HFBBBC
(NPOP = 30)

HFBBBC
(NPOP = 90)

a1 198.961 198.493 198.837 199.408 199.246 198.978
a2 126.885 126.010 125.858 126.093 125.361 125.888
a3 135.601 136.301 135.587 135.970 136.194 135.857
b1 386.003 387.236 388.455 388.961 388.284 390.563
b2 169.684 169.151 169.245 168.943 168.627 168.873
b3 187.298 186.850 187.383 186.345 187.568 185.810
c2 197.367 197.909 197.783 197.181 197.896 197.948
c3 89.111 89.247 89.192 89.809 89.064 89.264
c4 173.820 174.274 174.239 174.325 173.938 174.047
c5 169.835 169.719 170.031 169.600 169.607 169.458
c6 147.876 149.097 148.261 148.307 148.060 148.189
d2 159.260 157.591 158.699 157.380 158.595 158.459
d3 21.692 21.697 21.705 21.725 21.525 21.714
d4 69.112 69.182 69.063 69.354 69.041 69.287
d5 167.501 168.849 169.194 168.994 168.035 169.337
d6 102.293 102.550 101.687 102.141 102.410 102.204

cosθf 0.6838 0.6851 0.6839 0.6837 0.6837 0.6846

Errors on properties (%) Aver: 0.256
Max: 0.615

Aver: 0.266
Max: 0.599

Aver: 0.196
Max: 0.692

Aver: 0.231
Max: 0.732

Aver: 0.206
Max: 0.594

Aver: 0.250
Max: 0.777

Residual errors on utot (%) Aver: 1.141
Max: 2.845

Aver: 1.257
Max: 2.896

Aver: 1.070
Max: 2.903

Aver: 1.188
Max: 2.907

Aver: 1.097
Max: 2.904

Aver: 1.201
Max: 2.962

Optimization iterations 25
(1-D SA = 2)

24
(1-D SA = 2) 24 25 25

(Nexp = 2)
26

(Nexp = 2)
FE analyses 1373 1396 1223 1414 1294 1377
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6. Discussion and Conclusions

This study presented a hybrid framework for mechanical identification of materials and structures.
The framework combined full-field measurements done with optical methods and global optimization
based on metaheuristic algorithms. Such a choice was motivated by the fact that metaheuristic
algorithms allow to efficiently deal with the inherent non-linearity and non-convexity of inverse
problems. From the experimental point of view, using optical methods is the best approach to
identification problems because these techniques provide full-field information, do not alter the state
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of the investigated specimen, and can precisely detect material anisotropy, presence of local defects
and/or damage.

However, the “no free lunch” theorem states that no metaheuristic algorithm can outperform
all other algorithms in all optimization problems. Unlike gradient-based optimizers that are still
implemented in commercial software although their formulations did not change much in the last
25–30 years, most of the newly developed metaheuristic algorithms added very little to the optimization
practice and their appeal quickly vanished after a very few years. This suggests that rather than
proposing a new metaheuristic algorithm that improves available methods just marginally it is
better to significantly improve the most powerful algorithms. For this reason, we developed three
advanced versions of simulated annealing (SA), harmony search (HS) and big bang-big crunch (BBBC).
These algorithms were selected as they are very well established metaheuristic optimization methods
for which many successful applications to inverse problems have been documented in technical
literature. Furthermore, these algorithms possess important features, which are very desirable in
global optimization. In fact, SA is inherently able to bypass local optima, HS has a memory where
good solutions may be stored, BBBC employs the concept of center of mass including information on
the average quality of the population of trial solutions.

The rationale behind the new algorithms developed in this study—denoted as Hybrid Fast
Simulated Annealing (HFSA), Hybrid Fast Harmony Search (HFHS) and Hybrid Fast Big Bang-Big
Crunch (HFBBBC)—was to generate high quality trial designs lying on a properly selected set of
descent directions. For that purpose, enhanced approximate line search and computationally cheap
gradient evaluation strategies were developed. Besides hybridizing SA/HS/BBBC metaheuristic search
engines with gradient information and approximate line search, HS and BBBC were hybridized with
an enhanced 1-D probabilistic search derived from SA.

The optimization framework was tested in three inverse elasticity problems: (i) mechanical
characterization of a composite laminate used as substrate in electronic boards; (ii) mechanical
characterization and layup identification of an axially compressed composite panel for aeronautical use;
(iii) mechanical characterization of bovine pericardium patches used in biomedical applications.
The largest test case (iii) included 17 unknown parameters. Sensitivity of inverse problem
solutions and convergence behavior to population size and initial design/population was statistically
evaluated. A preliminary mathematical optimization problem was solved in order to train algorithms.
Remarkably, HFSA, HFHS and HFBBBC were very efficient and outperformed other SA, HS and
BBBC formulations, the JAYA algorithm as well as a state-of-the-art gradient-based optimizer like
MATLAB-SQP. Furthermore, the present algorithms always were very robust.

An interesting fact observed from Tables 1–4 is that the maximum residual error on displacements
was about 3% for all identification problems. In order to check if this is an inherent limitation of
HFSA, HFHS and HFBBBC algorithms, an in silico identification was carried out by computing
displacement fields for the target material/structural properties provided by manufacturers (first two
identification problems) or determined by averaging results of [83,84] (last identification problem).
Optimizations were hence run to reconstruct the target displacement fields generated numerically.
Remarkably, the present algorithms were always able to converge to the target material/structural
properties reproducing the displacement field with zero residual errors. The observed 3% maximum
error hence falls within the level of uncertainty normally entailed by a FEMU-based characterization
process, a very complicated task which attempts to match experimental data and finite element results.
Optically measured displacements certainly are a good target because the accuracy of speckle and
moiré techniques may go down to a very small fraction of the sensitivity of experimental setup.
However, in this study, control points were selected right at critical locations (i.e., near boundaries
where displacements tend to zero or in transition regions where all displacement components are
comparable in magnitude) where even small drifts on measured quantities may have an impact on the
success of the identification process. Furthermore, a rather small set of control points was selected for
building the error functional Ω. This was done in order to make the matching of experimental data
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and numerical results more difficult, thus testing the real ability of HFSA, HFHS and HFBBBC to find
the global optimum or get very close to the global optimum. In view of this, the results presented in
this article should be considered very satisfactory.

Based on the arguments discussed above, it can be concluded that the proposed hybrid framework
is a powerful tool for solving inverse mechanical problems.
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