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Abstract: Typical artificial joints for humanoid robots use actual human body joints only as
an inspiration. The load responses of these structures rarely match those of the corresponding
joints, which is important when applying the robots in environments tailored to humans. In this study,
we proposed a novel, automated method for designing substitutes for a human intervertebral joint.
The substitutes were considered as two platforms, connected by a set of flexible links. Their structural
and material parameters were obtained through optimization with a structured Genetic Algorithm,
based on the reference angular stiffnesses. The proposed approach was tested in three numerical
scenarios. In the first test, a mechanism with angular stiffnesses corresponded to the actual L4–L5
intervertebral joint. Scenarios 2 and 3 featured mechanisms with geometry and structure comparable
to the joint, but with custom stiffness profiles. The obtained results proved the effectiveness of the
proposed method. It could be employed in the design of artificial joints for humanoid robots and
orthotic structures for the human spine. As the approach is general, it could also be extended to
different body joints.

Keywords: structure optimization; parameters estimation; material optimization; intervertebral joint

1. Introduction

The spine is one of the most important structures in the human body. It serves as a column
supporting the organs and as a central hub for other skeletal systems of the body. It is formed
by 33 vertebrae, which can be divided into intervertebral joints (IJ) (see Figure 1a). These joints
are composed of a set of ligaments, a disc, and two vertebrae [1,2]. Nine major ligaments can be
distinguished in IJ: The anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL),
supraspinous ligament (SSL), interspinous ligament (ISL), flaval ligament (FL), two intertransverse
ligaments (ITL1, ITL2), and two capsular ligaments (FC1, FC2) [3]. Furthermore, two bony structures
are located on the posterior side of each vertebra. They are called facet joints and mostly constrain
the relative axial rotation of the vertebra. The ligaments resemble nonlinear cables in their behavior.
The disc is a viscoelastic structure, which transfers mostly compressive loads in the IJ.

With the advent of humanoid robotics, an increase in research studies regarding artificial joints for
humanoids can be observed. Since these robots are made to function in environments typically tailored
for humans, the behavior of their joints is of vital importance. Usually, the closer the artificial joint is to
its real counterpart, the better. Nevertheless, considering how complex the actual joints are, this can be
difficult to achieve. In the following section, some of the more popular approaches for artificial joints
for the spine or its segments are presented. Furthermore, the section also contains a description of the
available models for the spine and its segments as they may serve as an inspiration for artificial joints.
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description of the available models for the spine and its segments as they may serve as an inspiration 
for artificial joints. 
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Figure 1. (a) The L4–L5 intervertebral joint (IJ); (b) the ligament system of the IJ (ligaments substituted 
with cables).  

1.1. Literature Review 

The importance and complex nature of the spine and its joints have translated to many models 
of it in literature. These models can be divided into two groups: Finite element models (FEM) and 
multibody models (MBS). The FEM provide very accurate results, useful when assessing the stress–
strain state of the joint [3,4], and can also be used to design artificial discs [5–7]. Nevertheless, due to 
high computational load, the FEM is usually applied to structures with limited mobility. On the other 
hand, the MBS is well suited for systems experiencing large displacements, such as a lumbar spine 
with muscle system [8–10]. However, complex viscoelastic systems are difficult to analyze with this 
method. Therefore, the disc in the IJ has been described with a stiffness matrix [11,12] or with a set of 
flexible and/or damping elements [13,14]. 

As pointed out, both the human spine and its IJs are complex in their structure, featuring a 
plethora of elements, including nearly rigid bones, cable-like ligaments, and deformable, nonlinear 
structures. These elements give the IJs their very specific load responses and passive stability [15]. 
Nevertheless, their sheer number and complex behavior make them very difficult to substitute in 
technical solutions for humanoid robots. This problem is a very important one as the closer the 
artificial joints get to the original ones, the more human the response of the robot. In the literature, 
many solutions to this problem were presented for the spine. The simplest one has been to represent 
the spine, or its segments, with a series of 1 to 3 revolute joints or ball joints [16–21]. Other research 
groups have employed more complex parallel structures for this purpose [22–24]. Such parallel 
structures have also been applied in other body joints [25–27]. These kinematic approaches only 
constrain the motion of the mechanism. To give it a passive stiffness response to load, additional 
elements are necessary. In [16], the authors augmented the ball joint with a set of flexible springs and 
a rubber layer. This contrasts with the approach in [28,29]. In these studies, the proposed mechanisms 
have been based on a flexible central element—a beam or a spring. This element has been 
complemented by other rigid links and cables. The discussed structures have a stiffness response. 
Nevertheless, the spine served for them mostly as an inspiration. Its actual responses to load have 
not been employed in the design process. A different approach was presented in [30]. In this study, 
substitute mechanisms for the IJ were obtained based on the ligament system of the IJ through a two-
step optimization with Genetic Algorithm. As the ligament system contained only cable elements, 
the initial search optimized the structure by changing some cables to springs and deactivating 
unnecessary ones. The optimized structure was then subjected to a second search, this time for 
optimal parameters. The method returned a 7-link mechanism with angular stiffnesses mimicking 

Figure 1. (a) The L4–L5 intervertebral joint (IJ); (b) the ligament system of the IJ (ligaments substituted
with cables).

Literature Review

The importance and complex nature of the spine and its joints have translated to many models
of it in literature. These models can be divided into two groups: Finite element models (FEM)
and multibody models (MBS). The FEM provide very accurate results, useful when assessing the
stress-strain state of the joint [3,4], and can also be used to design artificial discs [5–7]. Nevertheless,
due to high computational load, the FEM is usually applied to structures with limited mobility. On the
other hand, the MBS is well suited for systems experiencing large displacements, such as a lumbar
spine with muscle system [8–10]. However, complex viscoelastic systems are difficult to analyze with
this method. Therefore, the disc in the IJ has been described with a stiffness matrix [11,12] or with a set
of flexible and/or damping elements [13,14].

As pointed out, both the human spine and its IJs are complex in their structure, featuring a plethora
of elements, including nearly rigid bones, cable-like ligaments, and deformable, nonlinear structures.
These elements give the IJs their very specific load responses and passive stability [15]. Nevertheless,
their sheer number and complex behavior make them very difficult to substitute in technical solutions
for humanoid robots. This problem is a very important one as the closer the artificial joints get to
the original ones, the more human the response of the robot. In the literature, many solutions to this
problem were presented for the spine. The simplest one has been to represent the spine, or its segments,
with a series of 1 to 3 revolute joints or ball joints [16–21]. Other research groups have employed more
complex parallel structures for this purpose [22–24]. Such parallel structures have also been applied in
other body joints [25–27]. These kinematic approaches only constrain the motion of the mechanism.
To give it a passive stiffness response to load, additional elements are necessary. In [16], the authors
augmented the ball joint with a set of flexible springs and a rubber layer. This contrasts with the
approach in [28,29]. In these studies, the proposed mechanisms have been based on a flexible central
element—a beam or a spring. This element has been complemented by other rigid links and cables.
The discussed structures have a stiffness response. Nevertheless, the spine served for them mostly as
an inspiration. Its actual responses to load have not been employed in the design process. A different
approach was presented in [30]. In this study, substitute mechanisms for the IJ were obtained based
on the ligament system of the IJ through a two-step optimization with Genetic Algorithm. As the
ligament system contained only cable elements, the initial search optimized the structure by changing
some cables to springs and deactivating unnecessary ones. The optimized structure was then subjected
to a second search, this time for optimal parameters. The method returned a 7-link mechanism
with angular stiffnesses mimicking that of the actual IJ. Nevertheless, the separation of structure
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optimization and parameters estimation can be limiting, especially when considering mechanisms
with custom load responses.

The aim of this study was to extend and generalize the previously published methodology in [30]
by applying structured Genetic Algorithm (sGA) [31] for simultaneous optimization of structure and
its parameters of mechanisms with flexible links. The approach was then tested in three numerical
scenarios, including mechanisms with custom load responses:

1. A mechanism with angular stiffnesses comparable to the L4–L5 IJ;
2. A mechanism with geometry comparable to the IJ, but increased stiffness in flexion;
3. A mechanism with geometry comparable to the IJ, but significantly reduced range of motion in

lateral bending and axial rotation.

Our main contributions to the existing research were in:

• Successfully applying sGA to simultaneous optimization of structural and material parameters of
flexible parallel structures for use in humanoid robots, based on actual human body joints;

• Obtaining custom mechanisms with geometry close to that of the IJ, but with significantly different
responses to static loads.

2. Materials and Methods

The IJ of the human spine contains flexible elements (ligaments), viscoelastic structures (a disc),
and facet joints (bony constraints). Due to the sheer number of elements, it would be difficult to
reproduce them fully in an artificial joint for use in humanoid robots. Such a structure would be
prone to failures. Therefore, our aim was to obtain a simple substitute, composed only from linear
springs, cables, and two rigid platforms through optimization. This mechanism was to be capable of
reproducing the angular stiffnesses of the IJ. To simplify the search and ensure that the output geometry
was close to that of the reference, the bounds for the optimization were based on the ligament system,
as presented in Figure 1b. The optimization procedure was allowed to deactivate selected ligaments
and change some of them from cables to springs. The following paragraphs describe the methodology
to solve parallel mechanisms with flexible links in statics, formulate an objective function used to rate
the mechanisms, and employ sGA, a global optimizer for structure, geometry, and material parameters
of the mechanism.

2.1. Solving Three-Dimensional, Elastostatic Problems

The problem of solving elastostatic problems numerically has been explored in detail in our
previous work [30]. This section only briefly summarizes the previously published methodology.
We assumed that the considered mechanisms were composed of two rigid platforms and multiple
flexible links connecting them—linear springs and cables. Each platform had its own reference frame
and the lower platform was stationary. As no constraints were applied on the moving platform,
its position and location were defined by 6 geometric variables—three linear displacements forming
the position vector p:

p =
[

px py pz
]T

, (1)

and 3 angular displacements used to obtain the rotation matrix:

R =


cαcγ+ sαsβsγ −sαcγ+ cαsβsγ −cβsγ

sαcβ cαcβ sβ
cαsγ− sαsβcγ −sαsγ− cαsβcγ cβcγ

, (2)

where R = the rotation matrix from the moving to the stationary platform reference frame, sα = sinα,
cα = cosα. The sequence was assumed after [32,33], while the angles α, β, γ corresponded to the flexion,
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the lateral bending, and the axial rotation of the moving platform. The forces and the moments acting
on the moving platform and caused by linear springs were computed using the following equations:

Fs = −ks∆ls, Fo
s = bs−as

‖bs−as‖
,

Fs = Fo
sFs, Ms = bs × Fs,

(3)

where Fs (Ms) = the force (moment) generated by the linear spring, ks = the stiffness parameter for the
spring element, ∆ls = the change of the spring element length, and as (bs) = the position vector of the
spring element attachment to the lower (upper) platform.

The methodology for linear cables was analogous. The obtained loads were then inputted into
the equilibrium equations for the moving platform:

∑n
i = 1 Fci +

∑m
j = 1 Fsj + Fext = 0∑n

i = 1 Mci +
∑m

j = 1 Msj + Mext = 0
, (4)

where Fs (Ms) = the forces (moments) generated by the linear springs, Fc (Mc) = the forces (the moments)
generated by the linear cables, Fext (Mext) = the external force (moment) acting on the upper platform,
and n (m) = the number of the springs (cables).

The 6 variables defining the location of the moving platform were the unknown quantities in the
equilibrium equation (Equation (4)). These equations were solved numerically using fsolve from Matlab
under external moment loads of magnitudes up to 10 Nm, acting along all 3 axes of the stationary
reference frame.

2.2. The Objective Function

In general, every optimization problem requires the decision variable vector x, also referred to as
a solution, and an objective function, which takes in the vector x and rates it. In this study, the vector x
contained the full information required to describe a mechanism (see the next section). To rate the
mechanisms, based on their static behavior, the following objective function was used in minimization:

min
x

h(x) = w1di f fα + w2di f fβ + w3di f fγ + w4not_passed, (5)

where h = the objective function, wi = the weight i (here, wi = 1 (i = 1.3), w4 = 2), not_passed = the
number of loads, for which the solver did not converge to a solution in 200 iterations, and:

di f fu =

11∑
i = 1

∣∣∣∆u(Mxi) − ∆ure f (Mxi)
∣∣∣

max(∆ure f ) −min(∆ure f )
, (6)

where u ∈ {α = flexion, β = lateral bending, γ = axial rotation}, thus, diffα = the flexion displacement
indicator; ∆α = the angular displacement obtained from the mechanism at flexion moment, Mαi from
0 Nm to 10 Nm (∆Mαi = 1 Nm), and ∆αref = the reference angular displacement measured on the
actual joint or obtained from a verified joint model at flexion moment, Mαi from 0 Nm to 10 Nm
(∆Mαi = 1 Nm).

The objective function computed the difference between the angular displacements of the
mechanism and the reference under the specified moment loads. Furthermore, it favored mechanisms,
which presented no difficulties when solving for their elastostatic behavior. Low values of the objective
corresponded to mechanisms with angular stiffnesses close to that of the reference IJ. Since multiple
loading conditions were considered, the undertaken problem could be seen as a multi-objective one.
In this study, we opted for one of the simpler strategies for multi-objective optimization, which was to
sum up the objectives with appropriate weights, as seen in Equation (5). There were several reasons
behind our choice. Firstly, this type of strategy—weighted summation—was successfully employed
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in many applications for the mechanism’s optimization [30,32,34–37]. Secondly, 3 out of 4 of the
objectives considered in our study were of the same type. They represented the angular displacements
in three planes, scaled by their typical ranges found in the IJ. The fourth objective allowed us to
consider mechanisms that did not solve for all the loads with a penalty, instead of excluding them
from the solution pool. These specimens had a small chance to reproduce during the optimization,
which increased the diversity within the solutions.

2.3. Obtaining the Bounds for the Optimization Procedure

Before addressing the methodology from an algorithmic side, it was necessary to make initial
assumptions regarding the mechanisms. As mentioned previously, the bounds for the optimization
procedure were generated based on the actual ligament system of the L4–L5 IJ. In reality, the ligaments
are geometrically complex and of nonlinear material response. Furthermore, they transfer mostly
tensile loads. To use them as bounds for the procedure, it was necessary to assume simplified models.
In the literature, many approaches to this problem can be found. In FEM modelling, the ligaments
are substituted with multiple finite elements, often described with nonlinear constitutive laws. In the
MBS models, the ligaments are usually replaced with cables with two point attachments. The behavior
of these cables is defined not by a constitutive law, which relates stresses to strains, but by stiffness,
which relates the forces acting on the ends of the cable to its elongation. Stiffness can be seen as
a parameter, which encapsulates selected aspects of the geometry of the ligament (cross-section,
free length) and its material properties, such as Young’s modulus for linear materials.

The force-elongation curve, used to obtain the stiffness, for a typical ligament reveals a nonlinear
load response [38,39], as seen in Figure 2. This nonlinearity can be captured by nonlinear cable models
for the ligaments. Nevertheless, in this study, the load responses were linearized, based on the force
corresponding to the physiological range. This allowed us to describe the ligaments as linear and elastic.
There were two reasons behind the linearization. Firstly, it reduced the computational complexity of
the optimization procedure. Secondly, typical engineering materials exhibit a linear load response in
the initial phase of the tensile test.
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Figure 2. The force-elongation curves for an actual ligament, a linearized cable used in generating
bounds for the optimization procedure, and a cable after optimization.

The upper bound for the material parameters of the mechanism links was obtained by multiplying
the highest linearized ligament stiffness—from ALL—by 3. The multiplication was required for
mechanisms with custom stiffness responses (see Results). The lower bound for stiffness was arbitrarily
set to 20 N/mm. Regarding the geometry of the links, the optimization procedure was allowed to
modify each coordinate of the link attachments by ±15 mm.

2.4. The Optimization Procedure

Given the equations presented in the previous sections, a mechanism with a defined structure
and parameters could be solved in statics and rated on how well it reproduced the angular stiffnesses
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of the actual IJ. To continually improve the mechanism, by modifying its structure and parameters,
we employed sGA. Genetic Algorithms in various implementations have been successfully applied in
a variety of problems [40–46]. In order to explain the working principle of sGA, it is first necessary to
introduce Real-Coded Genetic Algorithm (RC-GA)—a global optimization procedure, which works
on real-valued decision variable vectors. A basic version of RC-GA takes in a set of randomly
generated solutions. It then rates them using the assumed objective function. From the initial set of
solutions, a group of parent solutions is selected using a selection procedure. Usually, the better fit
solutions (with lower value of the objective) have a higher chance to be included in the parent group.
From each two parents in the parent group, a child solution is created using a crossover function.
Some initial solutions mutate through a mutation procedure. Finally, the obtained child solutions,
mutated solutions, and the best solutions from the initial set are transferred to a new set of solutions
and the whole process is repeated. A more detailed explanation of the algorithm, along with different
types of selection, crossover, and mutation, is given in [47]. In RC-GA, a solution is always represented
by an n-dimensional vector of floating point numbers. These numbers correspond to the parameters of
the solution. For instance, in this study, they could represent the geometry of the mechanism. RC-GA
is a versatile global optimizer, however, it can only be used for problems in which the solutions have
a fixed or predefined structure. Therefore, to employ it for mechanism optimization, the number of
links and their type (spring/cable) would have to be set before the optimization. While this approach
can return good results, as seen in [30], it is also limiting. Fortunately, extending RC-GA to problems
with variable structure can be very simple. In sGA, the structure of the solution is encoded within
a single vector of decision variables, along with its parameters. As opposed to RC-GA, this vector
actually contains two interdependent sections within it. The first one is composed of n binary values.
It controls which ones of the n subsections appearing after it is active in the final solution. This simple
division of the vector creates a hierarchical structure within it, which can be applied to optimization of
two-platform mechanisms with flexible links.

As the mechanisms obtained in this study were bound by the ligament system of an actual IJ,
they could have a maximum of 9 flexible links (see Figure 1b). Out of them, only 7 were independent,
assuming the symmetry in the xy plane. Each link could either be active or inactive and their activity
was controlled by the first 7 binary parameters in the decision variable vector. After the structure,
the vector contained 7 subsections specifying the geometry, material parameters, and type for each
link. The following parameters were contained in every subsection:

• The type (a binary value; 1 corresponded to a spring, while 0 to a cable);
• The stiffness (N/mm);
• The coordinates of the attachment to the lower platform (mm) (2 if the link was in the xy plane or

3 if not);
• The coordinates of the attachment to the upper platform (mm) (2 if the link was in the xy plane or

3 if not);
• The free length (mm).

An example of the vector with its corresponding mechanism is shown in Figure 3.
The proposed single-vector representation of the mechanism allowed us to employ sGA for

simultaneous optimization of structure and its parameters. The algorithm was implemented using
Matlab’s Global Optimization Toolbox as mixed-integer Genetic Algorithm. The settings for it were as
follows: The max generations set to 500, the population size set to 60, elite count at 5% of the population
size, and the crossover fraction at 82%. The selection function, crossover function, and mutation
function remained at their default values (rank, scattered, and adaptive_feasible).



Materials 2019, 12, 1982 7 of 13

Materials 2019, 12, x FOR PEER REVIEW 6 of 14 

 

to introduce Real-Coded Genetic Algorithm (RC-GA)—a global optimization procedure, which 
works on real-valued decision variable vectors. A basic version of RC-GA takes in a set of randomly 
generated solutions. It then rates them using the assumed objective function. From the initial set of 
solutions, a group of parent solutions is selected using a selection procedure. Usually, the better fit 
solutions (with lower value of the objective) have a higher chance to be included in the parent group. 
From each two parents in the parent group, a child solution is created using a crossover function. 
Some initial solutions mutate through a mutation procedure. Finally, the obtained child solutions, 
mutated solutions, and the best solutions from the initial set are transferred to a new set of solutions 
and the whole process is repeated. A more detailed explanation of the algorithm, along with different 
types of selection, crossover, and mutation, is given in [47]. In RC-GA, a solution is always 
represented by an n-dimensional vector of floating point numbers. These numbers correspond to the 
parameters of the solution. For instance, in this study, they could represent the geometry of the 
mechanism. RC-GA is a versatile global optimizer, however, it can only be used for problems in 
which the solutions have a fixed or predefined structure. Therefore, to employ it for mechanism 
optimization, the number of links and their type (spring/cable) would have to be set before the 
optimization. While this approach can return good results, as seen in [30], it is also limiting. 
Fortunately, extending RC-GA to problems with variable structure can be very simple. In sGA, the 
structure of the solution is encoded within a single vector of decision variables, along with its 
parameters. As opposed to RC-GA, this vector actually contains two interdependent sections within 
it. The first one is composed of n binary values. It controls which ones of the n subsections appearing 
after it is active in the final solution. This simple division of the vector creates a hierarchical structure 
within it, which can be applied to optimization of two-platform mechanisms with flexible links.  

As the mechanisms obtained in this study were bound by the ligament system of an actual IJ, 
they could have a maximum of 9 flexible links (see Figure 1b). Out of them, only 7 were independent, 
assuming the symmetry in the xy plane. Each link could either be active or inactive and their activity 
was controlled by the first 7 binary parameters in the decision variable vector. After the structure, the 
vector contained 7 subsections specifying the geometry, material parameters, and type for each link. 
The following parameters were contained in every subsection: 

• The type (a binary value; 1 corresponded to a spring, while 0 to a cable); 
• The stiffness (N/mm); 
• The coordinates of the attachment to the lower platform (mm) (2 if the link was in the xy plane 

or 3 if not); 
• The coordinates of the attachment to the upper platform (mm) (2 if the link was in the xy plane 

or 3 if not); 
• The free length (mm). 

An example of the vector with its corresponding mechanism is shown in Figure 3.   

 
Figure 3. A sample structure with its corresponding decision variable vector in structured Genetic
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3. Results

3.1. The Reference Angular Stiffnesses for the Optimization

The proposed procedure was tested in three different synthesis examples. In the first one,
a mechanism with angular stiffnesses based on the actual L4–L5 FSU was obtained. In the second
test, the flexion stiffness was significantly increased. For this example, the angular displacement
of the mechanism under 10 Nm flexion moment load was to be under 2.00 degrees (deg). This is
a significant decrease when compared to an actual IJ, which experiences an angular displacement of
about 6.50 degrees under this load. The third case featured a mechanism with significantly reduced
ranges of lateral bending and external rotation. The third example featured significantly increased
stiffnesses in both lateral bending and external rotation. A typical human IJ experiences an angular
displacement of 6.14 degrees and 2.50 degrees under 10 Nm lateral bending and axial rotation under
respective moment loads. For this simulation, the displacement was set to 0.50 degrees for both lateral
bending and axial rotation under 10 Nm moment loads. The reference angular displacements used in
the objective function were specified in Table 1.

Table 1. The target angular displacements under the moment loads (“as in reference [3]” refers to the
displacements based on an actual verified model of the IJ presented in [3]).

Case Number ∆α [deg] ∆β [deg] ∆γ [deg]

Case #1 as in Reference [3] as in Reference [3] as in Reference [3]
Case #2 log( Mα

5.40 +1)
0.34

as in Reference [3] as in Reference [3]

Case #3 as in Reference [3] log(
Mβ

101.70 +1)
0.19

log(
Mγ

36.11 +1)
0.49

3.2. Case #1—A Mechanism to Substitute the L4–L5 IJ

As mentioned before, in the first application, a mechanism with stiffnesses based on the actual
L4–L5 IJ was obtained. The sGA deactivated two links and incorporated three springs in the structure
(see Figure 4). This gave the model the ability to transfer moment loads along all three axes of the L5
reference frame with no disc-like structure.

The procedure also finetuned the material and geometrical parameters of the links. Nevertheless,
thanks to the bounds set on the algorithm, the mechanism still resembled the original ligament
system, as seen in Figures 4 and 5. The angular displacements of the obtained mechanism were in
fair agreement with those of the IJ, as presented in Figure 6. The best results were observed for axial
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rotation, where the mean difference between the obtained and reference [3] was at 4.21%. The mean
differences for flexion and lateral bending were at 7.46% and 5.42%, respectively.Materials 2019, 12, x FOR PEER REVIEW 8 of 14 
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3.3. Cases #2 and #3—Mechanisms with Custom Stiffness Profiles

The remaining cases were focused on mechanisms with custom stiffness profiles. In the second
case, the target stiffness in flexion was increased, compared to [3], while in the third, the range of lateral
bending and the axial rotation were significantly reduced. The obtained mechanisms for both cases are
presented in Figure 7.
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The mechanism in Case #2 contained only six links with one symmetrical pair. In total, three of
the links were linear springs. In Case #3, the structure was composed of seven elements with two
symmetrical pairs of links and three springs.

In both cases, the obtained angular displacements were in accordance with the target ones
(see Figure 8). For Case #2, the best agreement was observed in flexion, with a mean difference of
only 0.82%. The mean differences for lateral bending and axial rotation were at 5.71% and 5.74%,
respectively. The results obtained for Case #3 were even more promising, with mean differences at
1.45%, 0.74%, and 1.42 for flexion, lateral bending, and axial rotation, respectively.Materials 2019, 12, x FOR PEER REVIEW 10 of 14 
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4. Discussion

In this study, an automated method for designing substitute mechanisms for a human intervertebral
joint was proposed. The mechanisms were obtained through optimization with structured Genetic
Algorithm, with the objective based on the reference angular displacements under specified moment
loads. The algorithm simultaneously optimized the structural and material parameters of mechanisms
with two rigid platforms, connected by flexible links. The approach was tested in three numerical
scenarios. In the first test, a mechanism with angular stiffnesses corresponding to the actual L4–L5
intervertebral joint was obtained. Scenarios 2 and 3 featured mechanisms with geometry and structure
comparable to the joint, but with custom stiffness profiles. In all cases, the obtained results proved the
effectiveness of the method.

As mentioned in the introduction, the proposed approach was an extension of a previously
published one [30], where the structure optimization and the parameter estimation were two
independent procedures. When comparing the IJ substitute obtained in [30] to the current one
(Case #1), it is notable that both had seven links with three springs. Furthermore, the quality of their
responses to loads was comparable. Nevertheless, some interesting differences in their structures could
be observed. The current one contained two pairs of symmetrical links and only one spring in the xy
plane, as opposed to one symmetrical pair and three springs in the xy plane of the substitute from [30].

The IJ substitute obtained with our approach (Case #1) distinguished itself from the currently
available substitutes [16,28,29], with its angular stiffnesses closely mimicking the IJ. In comparison to
the actual IJ and its models [3,8–10], the mechanism retained a simple structure of only seven flexible
links. Despite having no elements corresponding to the disc and the facets, it offered the desired load
responses in three dimensions. As mentioned in the introduction, typical spine-segment substitutes
feature some form of a central element—a spring or a beam, which mostly corresponds to the disc.
In this case, the behavior of the disc was incorporated into the springs in the system. While this has been
done previously [30], in this study, the structure and the parameters were optimized simultaneously.
This allowed us to obtain structures based on the IJ, but with drastically different stiffness responses.

In some cases, the overall similarity to the IJ may be necessary, but with some parts of the static
behavior altered for a specific task. To test if the proposed procedure could be employed in cases
where some aspects of the static behavior were drastically different from the IJ, we performed two
extra simulations (Cases #2 and #3). Case #2 featured a significantly increased angular stiffness in
flexion, while Case #3 had a reduced range of motion in lateral bending and axial rotation. In both
of them, the optimization procedure returned structures resembling the IJ, with the mean difference
between the custom and the obtained displacements under the same moment loads never exceeding
6%. It is also worth mentioning that the procedure reduced the number of links in the system in all the
considered cases. The bounds for the mechanisms were generated based on the ligament system of
the IJ, composed of nine linear cables. The optimized mechanisms contained between 6 and 7 links.
This suggests some possible future extensions of the method—the number of links could be included
in the objective function so that the procedure would favor simpler structures.

Regarding the choice of the optimization algorithm, we initially considered different optimization
methods. Our first choice was the local methods, such as Nelder-Mead. Nevertheless, due to very
limited success, we quickly gave up on them. The mechanisms obtained with these methods were
often unable to transfer all of the assumed loading conditions. In the area of global optimization,
we considered some alternatives to sGA. Our first idea was to utilize RC-GA with vectors of variable
length. Nevertheless, we were discouraged by the difficulties in implementing genetic operators for
it—mainly crossover. This was also pointed out by other research groups [48]. Our next approach was
to employ Genetic Programming. In Genetic Programming, the solution is represented by a tree rather
than a vector. All of the genetic operators are made to work on the tree and its branches. Nevertheless,
in this study, the structure only has one level—the links connect two platforms, one of which is
stationary. Representing these structures with trees would needlessly complicate the implementation
and slow down the computation, especially in high-level languages. We believe that this approach
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would be very promising, but for multi-level structures. On the other hand, sGA does not require new
definitions for crossover, as with variable-vectors RC-GA, and the structure is fully described with one
vector, as opposed to a more complex tree in genetic programming. Furthermore, it is also very simple
to implement sGA in high-level languages, such as Matlab, which makes the study easier to reproduce
and reuse.

The limitations of the approach in its current form are mainly in the considered objectives. While the
obtained mechanisms reproduce the target angular stiffnesses, it is also necessary to considered other
parts of their behavior. In this regard, the two major objectives to include would be: An objective that
rates the stress-strain state in the mechanism and an objective that considers the interelement collisions
in the mechanism. These two objectives are different in nature to the considered ones. Therefore,
it would also be advisable to consider more advanced formulations for multi-objective optimization,
using a Pareto concept or a Pareto concept combined with a weighted summation strategy [49,50].

Considering the results obtained for the IJ substitute (Case #1) and the custom mechanisms
(Cases #2 and #3), the proposed approach was proven to be effective. It could be employed in the
design of artificial joints for humanoid robots and orthotic structures for the human spine. As the
approach is general, it could also be transferred to different body joints.
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