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Abstract: In this paper, a new recycled aggregate concrete (RAC) was produced with composite coarse
aggregate and fine recycled aggregate. The composite coarse aggregate was mixed into continuous
gradation by large particle natural aggregate with small particle recycled aggregate. To explore the
time-dependent developments of the compressive strength and splitting tensile strength of this new
RAC, 320 groups of cubic specimens were tested at different curing ages from 3 days to 360 days
to measure the compressive and splitting tensile strengths. The amount of large particle natural
aggregate varied from zero to 70% in mass of the total coarse aggregate. The water/cement ratio
was taken as 0.60, 0.49, 0.41 and 0.36 to represent four strength grades of the RAC at about C20, C30,
C40 and C50. Based on the tested results, the curves of the compressive and tensile strengths of
the RAC that changed with curing age are plotted, which clearly exhibit that the amount of large
particle natural aggregate had a rational range in different strength grades of the RAC which had
better aging strength. When the RAC was no larger than C30 with a water/cement ratio of 0.60 and
0.49, the amount of large particle natural aggregate should be no more than 30%; when the RAC
was no less than C40 with a water/cement ratio of 0.41 and 0.36, the amount of large particle natural
aggregate should be no less than 50%. Along with the general prediction of the strength development
of all the tested RAC, the optimal predictive formulas are proposed for the strength development of
RAC with a rational amount of natural aggregate. Meanwhile, the strength developments of RAC
with a rational amount of natural aggregate are assessed by the time-dependent models proposed by
the ACI Committee 209 and CEB-FIP MC 2010.

Keywords: recycled aggregate concrete (RAC); large particle natural aggregate; small particle
recycled aggregate; fine recycled aggregate; compressive strength; splitting tensile strength;
development prediction

1. Introduction

With the awareness of sustainable social development and strengthened measures to protect
natural resources and the environment, the usage of recycled aggregate derived from construction and
demolition waste and dismantled concrete structures becomes increasingly important. This leads to a
new research area to reuse recycled aggregate as a substitute for natural aggregate to produce a new
concrete, commonly called recycled aggregate concrete (RAC) [1–3]. In the abundant literature about
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RAC, many researches took conventional concrete as the reference to mainly concern the effect of the
replacement of coarse natural aggregate with coarse recycled aggregate in the same grading, where
the replacement rate was usually taken as an important parameter to reflect the influence of recycled
aggregate on the performance of RAC [4–11]. Due to the difference of the mix proportion design
of RAC, different research results were concluded. For example, Lotfi et al. [4] discovered that the
properties of RAC were less influenced by the replacement rate of recycled aggregate, while they were
directly affected by the grade of cement and the water/cement ratio; Yao et al. [10] revealed that when
the replacement rate of coarse recycled aggregate with a particle size of 19–26.5 mm varied from 0% to
100%, only the cases of 0% and 60% led to the maximized compressive and splitting tensile strengths
of RAC; Liu et al. [11] explained by numerical analyses that the compressive and flexural strengths
of RAC decreased gradually with the increase of the amount of coarse recycled aggregate, and the
flexural strength decreased with the increasing maximum particle size of coarse recycled aggregate.
Therefore, the structural behaviors of RAC members are generally weaker in comparison to those of
structures made of natural aggregate concrete, although RAC can be used through proper design from
the view point of loading capacity behavior. This can be attributed to ignoring the special morphology
of recycled aggregate with a different particle size.

Different from natural aggregate, recycled aggregate has peculiarities characterized by its rough
surface with a certain amount of attached old cement mortar, low density, and a high and quick
rate of water absorption. This happens to be related to the particle size, as large particle recycled
aggregate had a more adverse effect on the performance of RAC compared with small particle recycled
aggregate [2–4,12–15]. That is, with the increase of particle size, the probability of defects increased
gradually in aggregate and the bond properties of the interface between the new cement mortar and
the recycled aggregate were weakened. For example, Seo and Choi [12] revealed that when the size of
the recycled aggregate was around 10 mm, certain angularity and adequate old cement mortar that
attached to the recycled aggregate surface contributed to the bond quality between the aggregate and
cement mortar. Qiao et al. [16] demonstrated that the compressive strength of RAC firstly increased
and then decreased with the increasing particle size of the coarse recycled aggregate, and reached
the highest when the particle size grading was 5~20 mm. Li and Gao [17] discovered that with the
increasing maximum particle size of coarse recycled aggregate, the compressive strength of RAC
decreased; especially in the case of a lower water/cement ratio, the adverse effect of particle size on the
compressive strength became more obvious. Therefore, the recycled aggregate should be reused in
small particle size [18,19]. However, from the perspective of concrete technology, in terms of achieving
the same target compressive strength and workability for structural concrete, adjustments to the mix
proportion should be made within the limit of maximum water/binder ratio considering the concrete
durability [20,21]. With the appropriate mix design [22,23], reasonable mineral admixtures [22,24–26],
pre-soaked recycled aggregate and a proper mixing process [24,25,27–29], or the modification of the
coarse recycled aggregate surface [30,31], the performance of RAC can be improved to equal or greater
than that of the reference concrete with natural aggregates.

Meanwhile, compared with natural sand, fine recycled aggregate had very different characteristics
with angular and irregular particles, high mortar content, non-uniform morphology containing a
mixture of C-S-H and CH formations, low density and high water absorption [2,3,32,33]. In some
instances, RAC with fine recycled aggregate presented worse workability, larger shrinkage and lower
mechanical performance than the reference concrete with natural sand [2,3,34–36]. However, by using
partial fine recycled aggregate replacing natural sand, adding the super-plasticisers, the same or
exceeding performances of RAC with fine recycled aggregate was reached [14,19,35–38]. Even though
in the case of RAC only having recycled fine and coarse aggregate, the required basic performances
of RAC can be obtained by comprehensively using the methods of pre-soaking recycled aggregate,
adjusting the mix proportion and admixing super-plasticisers [19,34,38,39].

Based on the review of current studies and the engineering experience of manufacturing recycled
aggregate, an innovative concept was gradually formed in our research procedure. If the particle
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size of recycled aggregate was made less than that of the mother aggregate in the waste concrete,
the defects of the coarse recycled aggregate could be eliminated as much as possible, especially in
the removal of the attached old cement mortar [13,14,18,19]. The grading of the coarse aggregate for
RAC can be perfectly composited by using large particle natural aggregate and small particle recycled
aggregate [38,40]. At the same time, the fine recycled aggregate is still used as the only fine aggregate to
get the best benefits of the engineering application of RAC [19,38,39,41]. Comprehensively, a new RAC
was innovated, in which the continuous grading coarse aggregate was composited by large particle
natural aggregate with small particle recycled aggregate, and only fine recycled aggregate was used as
the fine aggregate [40,42,43].

Due to the fact that the long-term strength of concrete is essential to the reliability of concrete
structures, it is necessary to investigate the strength development of the RAC to be used as a structural
material. In this paper, the experimental study was carried out based on the experience of previous
researches [39,44,45]. Four strength grades of the RAC represented by different water/cement ratios
were prepared, and each of them were made of four groups with different amounts of natural aggregate.
The cubic specimens of RAC were fabricated as 320 groups and tested 10 times at different curing
ages up to 360 days to get the compressive and splitting tensile strengths. Based on the experimental
results, the rational amount of large particle natural aggregate in RAC with different strength grade
was determined and the predictive equations of the strength development can be proposed. Finally,
the strength developments of RAC with a rational amount of natural aggregate will be assessed by the
time-dependent models specified in the codes of ACI and CEB-FIP.

2. Materials and Methods

2.1. Raw Materials

The coarse recycled aggregate was produced from the waste concrete beams tested previously in
the lab and was screened into the series of 5–10 mm, 10–16 mm, 16–20 mm and 20–25 mm according to
the requirements of China code GB/T25177 [46]. For the RAC with large particle natural aggregate,
the coarse aggregate was composited with the small particle recycled aggregate in sizes of 5~10 mm and
10~16 mm and the large particle natural aggregate in sizes of 16–20 mm and 20–25 mm. The amount
in mass of natural aggregate to total aggregate was defined as 30%, 50% and 70%, respectively.
The corresponding RACs were marked as RAC-N30, RAC-N50 and RAC-N70. The amounts were
determined in accordance with the requirement that in the 5–25 mm continuous particle gradation
of coarse aggregate for RAC and conventional concrete [46,47], 30–70% of aggregate should be used
with a particle size no less than 16 mm. Meanwhile, the RAC without natural aggregate was marked
as RAC-N0, which was made of coarse recycled aggregate with 5–25 mm particles. Table 1 presents
the physical and mechanical properties of coarse aggregates. The grading curves of aggregates are
exhibited in Figure 1, which are in the boundaries of grading specified in China standards GB/T 25177
and JGJ52 [46,47]. The water absorption curves of aggregates within 1 h are represented in Figure 2.
With the increasing amount of natural aggregate, the coarse aggregates had an increased density with
lower moisture content, water absorption and crushed index. This is reasonable due to the lower water
absorption of natural aggregate.

The recycled aggregate was produced from the waste concrete specimens tested in the lab.
The particle size of the coarse recycled aggregate was less than the mother aggregate in the waste
concrete. The fine aggregate was the byproducts accompanied with the production of the coarse
recycled aggregate with a particle size less than 5 mm after being severed in grading as the requirements
of GB/T25176 [48]; the properties that were measured are listed in Table 2.
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Table 1. Physical and mechanical properties of coarse aggregates.

Coarse Aggregate RA-N0 RA-N30 RA-N50 RA-N70

Natural aggregate (%) 0 30 50 70
Apparent density (kg/m3) 2634.1 2691.5 2732.8 2735.1

Bulk density (kg/m3) 1345.8 1410.1 1463.2 1469.7
Close-compacted density (kg/m3) 1452.3 1512.4 1600.2 1612.9

Moisture content (%) 3.2 2.1 1.7 0.9
Water absorption of 24 h (%) 5.1 4.7 3.2 1.9

Crushed index (%) 14.7 14.1 13.5 13.2
Silt content (%) 0.42 0.29 0.21 0.19
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Table 2. Physical and mechanical properties of fine recycled aggregate.

Properties Values

Fineness modulus 3.5
Apparent density (kg/m3) 2395.7

Bulk density (kg/m3) 1330
Close-compacted density (kg/m3) 1470

Moisture content (%) 5.70
Water absorption of 24 h (%) 9.45

Crush index (%) 9.35

The ordinary silicate cement in strength grades of 42.5 and 52.5 was used as the binder; the physical
and mechanical properties are listed in Table 3. Other raw materials included tap water and the
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commercially available high-performance polycarboxylic acid water-reducer with a water reducing
rate of 15%.

Table 3. Physical and mechanical properties of cement.

Grade
Density
(kg/m3)

Water Requirement of
Standard Consistency (%)

Setting Time (min) Compressive
Strength (MPa)

Flexural
Strength (MPa)

Initial Final 3 days 28 days 3 days 28 days

42.5 3071 26.9 168 269 28.9 45.2 4.00 5.30
52.5 3132 29.2 142 238 37.1 57.9 6.45 8.64

2.2. Mix Proportions of RAC

Due to the difference of properties between recycled aggregate and natural aggregate, the mix
proportion of the RAC was designed based on the absolute volume method [19,49]. The water/cement
ratio and the amount in mass of natural aggregate were considered as the main factors. To obtain
good workability and expected strength of the RAC, the sand ratio of fine recycled aggregate to total
amount of fine and coarse aggregate used in this experiment was determined based on previous
studies [13,19,42] and was adjusted after trial mixing. Considering the higher water absorption of
recycled aggregate, the additional water was added appropriately based on the water absorption test
results, as presented in Figure 2, to get the same condition of surface-drying saturated aggregates as
per the specification of China standard JGJ55 [49]. After adjustment, the mix proportions of the RAC
were determined, as presented in Table 4.

Table 4. Mix proportion of recycled aggregate concrete (RAC).

Mix w/c
Natural

Aggregate (%)
Cement
(kg/m3)

Water
(kg/m3)

Fine RA
(kg/m3)

Coarse Aggregate (kg/m3) Additional
Water (kg/m3)Natural Recycled

RAC-N0A 0.6 0 332 200 651 0 1157 54.9
RAC-N30A 0.6 30 332 200 734 304 710 55.6
RAC-N50A 0.6 50 332 200 736 508 508 50.4
RAC-N70A 0.6 70 332 200 737 712 305 45.3
RAC-N0B 0.49 0 409 200 626 0 1114 52.8

RAC-N30B 0.49 30 409 200 708 293 684 53.6
RAC-N50B 0.49 50 409 200 709 490 490 51.1
RAC-N70B 0.49 70 409 200 711 687 294 43.6
RAC-N0C 0.41 0 435 180 608 0 1119 53.1

RAC-N30C 0.41 30 435 180 688 310 722 53.6
RAC-N50C 0.41 50 435 180 689 517 517 48.3
RAC-N70C 0.41 70 435 180 691 691 311 43.6
RAC-N0D 0.36 0 503 180 612 0 1089 51.2

RAC-N30D 0.36 30 503 180 697 288 674 52.8
RAC-N50D 0.36 50 503 180 698 482 482 47.9
RAC-N70D 0.36 70 503 180 700 676 290 42.9

2.3. Specimen Preparation and Testing

The single-horizontal-shaft forced mixer was used to mix the fresh mixture of the RAC.
The aggregates were firstly pre-soaked by half dosage of water in the mixer for 10 min to basically meet
the requirement of the surface-drying saturated condition, then the cement and the residual water as
well as the super-plasticizer were added and mixed for 3 min.

Cubic specimens with dimension of 100 mm were cast in moulds, compacted on the vibration table
and covered with polyethylene sheet on the casting surface for 24 h. After that, they were demoulded
and cured at the standard curing room temperature of 20 ± 2 ◦C and RH over 95% [50]. Details of
curing age for tests are presented in Table 5.
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Table 5. Details of test and curing age.

Trial No. Groups Designed Curing Age t (days)

A, B, C, D 4 × (4 × 10) for compressive strength
4 × (4 × 10) for splitting tensile strength 3, 7, 28, 60, 90, 150, 180, 240, 300, 360

The tests were carried out on the 1000 kN electric-hydraulic servo-testing machine (Jinan Testing
Machine Co. Ltd., Jinan, China). The loading process was in accordance with the specification of China
code GB/T 50081 [50] and the tested compressive strength and splitting tensile strength were corrected
by multiplying the reduction coefficients 0.95 and 0.85, respectively, as the values of standard cubic
specimen in dimension of 150 mm.

3. Results and Discussion

3.1. Properties of Fresh RAC

The workability of fresh RAC was measured by using the slump cone test [51]. In this test,
the maximum particle size of the coarse aggregate was 25 mm. In order to meet the flowability of fresh
concrete from plastic to flowing, the slump was designed in a range of 70–150 mm. Each slump value
reported in this paper was the average of three readings obtained from each trial in the same conditions.
The slump of fresh RAC is presented in Figure 3. Generally, the fresh RAC had good cohesiveness
and water retention within the slump measured from 60 mm to 150 mm. The slump of fresh RAC
increased with the increasing amount of natural aggregate. This is due to plenty of cement paste
among the particles of aggregates, as less amount of cement paste was needed to be wrapped on the
natural aggregate with good particle morphology [13,19,42]. Comparatively, fresh RACs with a large
water/cement ratio of 0.6 and 0.49 had higher flowability than those with small water/cement ratios of
0.41 and 0.36. This is mainly due to the higher dosage of water, as presented in Table 4, which was
used as per the water dosage for conventional concrete having only natural aggregate specified in
China standard JGJ55 [49], which related to the large particle size of natural aggregate and the dosage
of water-reducer.   
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3.2. Development of Compressive Strength

Figure 4 presents the changes of compressive strength f cu,t of the RAC with curing age t.
The development of compressive strength went through three periods of rapid growth before t = 28
days, fast increase during t = 28–90 days and steady increase after t = 90 days. This corresponds to
the hydration process of cement in the mixture [44,52–54]. With the reduction of the water/cement
ratio, the first period of rapid growth of compressive strength became obvious. This is due to the
influence of the water/cement ratio, as the cement in a different strength grade had a certain impact on
the hardening procedure. The higher fineness of 52.5 grade cement provides a larger interface area of
the cement particles for rapid hydration, and the higher early strength of 52.5 grade cement benefits
the early strength of the concrete [39,44,45].
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In Figure 4, the amount of natural aggregate had a certain effect on the compressive strength of 
the RAC, which was mainly related to the w/c [19,38–40]. When w/c = 0.6 and 0.49, the RAC with 0% 
and 30% natural aggregate had higher compressive strength, while those with 50% and 70% natural 
aggregate had lower compressive strength. When w/c = 0.41 and 0.36, the RAC with 50% and 70% 
natural aggregate had higher compressive strength, although 30% natural aggregate in the RAC also 
benefited the compressive strength. This reflects the different functions of hydrated cement, coarse 
aggregate and their interfaces in the RAC. For the RAC with w/c = 0.6 and 0.49, the compressive 
strength was lower and mainly relied on the strength of the set cement and the bond strength of the 
interfaces. The rough surface with a large water absorption of recycled aggregate provided a large 
water storage capacity to cement hydration with the gradually released water [16,39,40]. In this case, 
the coarse aggregate had less of an effect on the compressive strength of the RAC as the main failure 
of RAC took place within the hardened set cement and/or along the interfaces with weakened bond 
performance [12,15]. For the RAC with w/c = 0.41 and 0.36, the failure took place due to the peeling 
off and/or splitting of the coarse recycled aggregates. The skeleton strength of the coarse aggregate 
became important in the contribution to the compressive strength of the RAC. With the increasing 
amount of large particle natural aggregate, the crush index of the coarse aggregate decreased from 
14.7% to 13.2% (see Table 1). In this case, combined with good bond property of interfaces with a 
lower water/cement ratio, the benefit of large particle natural aggregate turned up on the 
compressive strength of the RAC. 
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Figure 4. Changes of compressive strength of the RAC with curing age. (a) w/c = 0.60; (b) w/c = 0.49; (c)
w/c = 0.41; (d) w/c = 0.36.

In Figure 4, the amount of natural aggregate had a certain effect on the compressive strength of
the RAC, which was mainly related to the w/c [19,38–40]. When w/c = 0.6 and 0.49, the RAC with 0%
and 30% natural aggregate had higher compressive strength, while those with 50% and 70% natural
aggregate had lower compressive strength. When w/c = 0.41 and 0.36, the RAC with 50% and 70%
natural aggregate had higher compressive strength, although 30% natural aggregate in the RAC also
benefited the compressive strength. This reflects the different functions of hydrated cement, coarse
aggregate and their interfaces in the RAC. For the RAC with w/c = 0.6 and 0.49, the compressive
strength was lower and mainly relied on the strength of the set cement and the bond strength of the
interfaces. The rough surface with a large water absorption of recycled aggregate provided a large
water storage capacity to cement hydration with the gradually released water [16,39,40]. In this case,
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the coarse aggregate had less of an effect on the compressive strength of the RAC as the main failure
of RAC took place within the hardened set cement and/or along the interfaces with weakened bond
performance [12,15]. For the RAC with w/c = 0.41 and 0.36, the failure took place due to the peeling off

and/or splitting of the coarse recycled aggregates. The skeleton strength of the coarse aggregate became
important in the contribution to the compressive strength of the RAC. With the increasing amount of
large particle natural aggregate, the crush index of the coarse aggregate decreased from 14.7% to 13.2%
(see Table 1). In this case, combined with good bond property of interfaces with a lower water/cement
ratio, the benefit of large particle natural aggregate turned up on the compressive strength of the RAC.

Considering the discrete characters of the development of compressive strength, the ratio of
compressive strength of the RAC with/without natural aggregate at curing age t ≥ 28 days was
computed. The average and variation coefficient of the ratios are listed in Table 6. The ratio over 1.0
represents the positive effect of large particle natural aggregate on the compressive strength of the
RAC. It can be concluded that the rational amount of large particle natural aggregate is 30% for the
RAC with w/c = 0.6 and 0.49, and 50–70% for the RAC with w/c = 0.41 and 0.36.

Table 6. Compressive strength ratio of the RAC with/without natural aggregate.

RAC 30A/0A 50A/0A 70A/0A 30B/0B 50B/0B 70B/0B 30C/0C 50C/0C 70C/0C 30D/0D 50D/0D 70D/0D

Number 8 8 8 8 8 8 8 8 8 8 8 8
Mean ratio 1.063 0.949 0.954 1.036 0.945 0.944 1.044 1.129 1.158 1.014 1.119 1.146

Variation coefficient 0.044 0.035 0.037 0.042 0.030 0.055 0.036 0.031 0.044 0.025 0.034 0.031

3.3. Development of the Splitting Tensile Strength

Figure 5 shows the changes of splitting tensile strength f st.t of the RAC with curing age t.
The splitting tensile strength had a similar development to the compressive strength as discussed above,
except there was no obvious influence of the amount of natural aggregate when w/c = 0.6 and 0.49.
The main reason for this difference was the different failure mechanism of the RAC under compression
and splitting tension. The failure under splitting tension of the RAC mainly depended on the bond
of the interface between the coarse aggregate and set cement. Due to the beneficial effect of recycled
aggregate with old cement mortar and a rough surface, the bond performance could be equivalent
to that natural aggregate in the condition of the RAC with a larger water/cement ratio [12–15,39,44].
This results in the independence of tensile strength of the RAC to the composite of coarse recycled
and natural aggregates. In the case of the RAC with w/c = 0.41 and 0.36, the tensile strength of the
RAC tends to increase with the increasing amount of large particle natural aggregate. This results from
the relative perfect surface of the natural coarse aggregate, which provides good bond performance
between set cement and aggregates [15–17].

Considering the discrete characters of the development of splitting tensile strength, the ratio of
splitting tensile strength of the RAC with/without natural aggregate at curing age t ≥ 28 days was
computed. The average and variation coefficient of the ratios are listed in Table 7. The ratio over
1.0 represents the positive effect of large particle natural aggregate on tensile strength of the RAC.
The tensile strength of the RAC with w/c = 0.6 and 0.49 increases slightly with the increasing amount of
large particle natural aggregate, while that of the RAC with w/c = 0.41 and 0.36 increases clearly with
the increasing amount of large particle natural aggregate.

Table 7. Splitting tensile strength ratio of RAC with/without natural aggregate.

RAC 30A/0A 50A/0A 70A/0A 30B/0B 50B/0B 70B/0B 30C/0C 50C/0C 70C/0C 30D/0D 50D/0D 70D/0D

Number 8 8 8 8 8 8 8 8 8 8 8 8
Mean ratio 0.998 0.979 1.010 0.993 1.008 1.017 1.007 1.111 1.112 1.029 1.094 1.125

Variation coefficient 0.029 0.046 0.031 0.017 0.031 0.031 0.016 0.029 0.031 0.018 0.034 0.034
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4. Prediction of Strength Development

4.1. Compressive Strength

In the meso-level, concrete can be regarded as the composites of inert aggregates with various
sized particles scattered in a homogeneous matrix of hardened cement gel. With the optimal design of
the types and composite of aggregates, the compressive strength of the concrete is related to the volume
fraction of the cement gel and the compressive property of the cement. The compressive property of the
set cement can be represented as the cement compressive strength f ce at 28 days. The volume fraction
of the cement gel is positively related with the cement slurry density in fresh concrete. Referring to the
cement compressive strength model [42], the cement slurry density in fresh concrete can be expressed
as Vc/(Vc + Vw + Va), where Vc, Vw and Va are the volumes of cement, water and air, respectively.
Meanwhile, the kinetics term (d(t)) should be inserted in the compressive strength equation to express
the effects of the aggregate bond effect and ceiling effect with curing age. Therefore, the concrete
compressive strength model at t days was built as,

fcu.t = a fce
(
d(t) + (Vc/(Vc + Vw + Va))

b
)

(1)

where a and b are regression coefficients determined by the test’s data.
As mass is commonly used in engineering, taking water density as 1000 kg/m3 and cement density

as ρc, ignoring the volume of air and translating volume density Vc/ (Vc + Vw) to mass ratio (i.e.,
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water/cement ratio) w/c [44]. Due to the logarithmic development of compressive strength, replacing
d(t) by klg(t/28). Equation (2) can be transformed as,

fcu.t = a fce
(
klg(t/28) + (1 + 0.001ρcw/c)−b

)
(2)

After being fitted with test data of compressive strength at 28 days of this study, a = 2.83 and b = 1.60.
To get the general development regulation of the RAC, taking the tested values of each trials as

f cu.t, and using lg(t/28) as the x-axis and (f cu.t/(af ce))−(1 + 0.001ρcw/c)−b as the y-axis, the coefficient k
can be obtained by the fitting analysis exhibited in Figure 6, and the values are presented in Table 8.
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Figure 6. Analysis of the tested data about compressive strength. (a) w/c = 0.60; (b) w/c = 0.49; (c)
w/c = 0.41; (d) w/c = 0.36.

Table 8. Statistical results of tested data.

RAC trials A B C D

k 0.068 0.071 0.074 0.076
Correlation
coefficient 0.954 0.952 0.838 0.830

Standard error 0.005 0.006 0.002 0.005

The relationship between k and w/c can be fitted as linear as presented in Figure 7.
Therefore, Equation (2) can be rewritten as,

fcu.t = 2.83 fce
(
(0 .086− 0.032w/c)lg(t/28) + (1 + 0.001ρcw/c)−1.60

)
(3)
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The comparison of the experimental data to curves of Equation (3) are exhibited in Figure 8,
and the statistical results for each group of RAC are listed in Table 9. Safe prediction of strength
development is given out when the ratio of tested to calculated values is larger than 1.0. It can be
seen from Table 10 that Equation (3) was safe for the RAC with 0–30% natural aggregate in the case
of w/c = 0.60 and 0.49, and for RAC with 50–70% natural aggregate in the case of w/c = 0.41 and 0.36.
In other cases, the calculated values were greater than the tested data from 1.89% to 7.24%.
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Figure 8. Comparison of calculated values and tested values by Equations (4), (5) and (6). (a) w/c = 
0.60; (b) w/c = 0.49; (c) w/c = 0.41; (d) w/c = 0.36.  

Table 9. General statistical result of the ratios of tested to calculated values.  

RAC-N 0A 30A 50A 70B 0B 30B 50B 70B 
Number 10 10 10 10 10 10 10 10 

Mean ratio 1.02 1.07 0.96 0.97 1.01 1.04 0.94 0.95 
Variation coefficient 2.01% 3.32% 4.52% 3.91% 5.24% 2.05% 4.21% 1.89% 

Correlation coefficient  0.991 0.987 0.972 0.981 0.982 0.991 0.985 0.993 
RAC-N 0C 30C 50C 70C 0D 30D 50D 70D 
Number 10 10 10 10 10 10 10 10 

Mean ratio 0.88 0.90 1.02 1.06 0.90 0.91 1.02 1.08 
Variation coefficient 5.02% 7.24% 4.60% 5.83% 5.69% 6.14% 5.21% 4.47% 

Correlation coefficient  0.985 0.971 0.992 0.981 0.961 0.963 0.981 0.985 

In order to accurately predict the compressive strength of the RAC with a rational amount of 
large particle natural aggregate, as exhibited in Figure 6, the coefficient k was fitted separately for the 
RAC of N0A and N30A, N0B and N30B, N50C and N70C, N50D and N70D. The value was 0.075, 
0.077, 0.083 and 0.090, successively. Therefore, it takes 0.076 for the RAC with w/c = 0.60 and 0.49, 
and 0.086 for the RAC with w/c = 0.41 and 0.36. Equation (2) can be rewritten as Equations (4) and (5), 
respectively. 

Figure 8. Comparison of calculated values and tested values by Equations (4), (5) and (6). (a) w/c = 0.60;
(b) w/c = 0.49; (c) w/c = 0.41; (d) w/c = 0.36.
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Table 9. General statistical result of the ratios of tested to calculated values.

RAC-N 0A 30A 50A 70B 0B 30B 50B 70B

Number 10 10 10 10 10 10 10 10
Mean ratio 1.02 1.07 0.96 0.97 1.01 1.04 0.94 0.95

Variation coefficient 2.01% 3.32% 4.52% 3.91% 5.24% 2.05% 4.21% 1.89%
Correlation coefficient 0.991 0.987 0.972 0.981 0.982 0.991 0.985 0.993

RAC-N 0C 30C 50C 70C 0D 30D 50D 70D

Number 10 10 10 10 10 10 10 10
Mean ratio 0.88 0.90 1.02 1.06 0.90 0.91 1.02 1.08

Variation coefficient 5.02% 7.24% 4.60% 5.83% 5.69% 6.14% 5.21% 4.47%
Correlation coefficient 0.985 0.971 0.992 0.981 0.961 0.963 0.981 0.985

Table 10. Separate statistical result of the ratios of tested to calculated values.

RAC-N 0A 30A 0B 30B 50C 70C 50D 70D

Number 10 10 10 10 10 10 10 10
Mean ratio 0.98 1.02 0.97 1.01 0.97 1.01 0.98 1.02

Variation coefficient 4.21% 3.72% 4.94% 3.11% 3.51% 6.18% 4.66% 5.62%
Correlation coefficient 0.941 0.961 0.972 0.985 0.992 0.972 0.979 0.982

In order to accurately predict the compressive strength of the RAC with a rational amount of
large particle natural aggregate, as exhibited in Figure 6, the coefficient k was fitted separately for
the RAC of N0A and N30A, N0B and N30B, N50C and N70C, N50D and N70D. The value was 0.075,
0.077, 0.083 and 0.090, successively. Therefore, it takes 0.076 for the RAC with w/c = 0.60 and 0.49,
and 0.086 for the RAC with w/c = 0.41 and 0.36. Equation (2) can be rewritten as Equations (4) and
(5), respectively.

fcu.t = 2.83 fce
(
0.076lg(t/28) + (1 + 0.001ρcw/c)−1.60

)
(4)

fcu.t = 2.83 fce
(
0.086lg(t/28) + (1 + 0.001ρcw/c)−1.60

)
(5)

The comparison of experimental data to curves of Equations (4) and (5) are also exhibited in
Figure 8, and the statistical results for each group of the RAC are listed in Table 10. These represent
that more reliable predictions are provided for the compressive strength development of the RAC.

4.2. Splitting Tensile Strength

The splitting tensile strength f st.28 is usually predicted by cubic compressive strength f cu.28 with
the expression of Equation (6),

fst.28 = c fcu.28
d (6)

where c and d are coefficients dependent on test data.
Based on previous studies [39,45,52], Equation (6) can also be applied to the prediction of splitting

tensile strength of concrete at any curing age of t days. Therefore, the general development regulation
of tensile strength of the RAC is statistically analyzed by all of the test data. The unified values are
c = 0.329, d = 0.548 and R = 0.945. Equation (6) can be rewritten as Equation (7), and good fitness of test
data with predicted values can be calculated, as exhibited in Figure 9.

fst.t = 0.329 fcu.t
0.548 (7)
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Therefore, the tensile strength development of all tested RAC can be predicted by Equation (7) 
combined with Equation (3). Figure 11 exhibits the fitness of test data with predicted curves. Table 
11 presents the statistical results of the ratios of tested to computed values for each group of RAC. 
The ratio, on average, of no less than 1.0 means a safe prediction. Except for the safe prediction, 
others have the bigger prediction from 3.81% to 5.55%. 

The tensile strength development of the RAC with 0–30% natural aggregate in the case of w/c = 
0.60 and 0.49 can be predicted by Equation (8) combined with Equation (4), and that of the RAC with 
50–70% natural aggregate in the case of w/c = 0.41 and 0.36 can be predicted by Equation (9) 
combined with Equation (5). The comparisons of predicted curves to test data are also exhibited in 
Figure 11, and the statistical results of the ratios of tested to computed values are presented in Table 
12. These represent that the rational predictions for tensile strength development of the RAC are 
given out with these equations.  
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Figure 10. Fitness of splitting tensile strength f st.t with compressive strength f cu.t: (a) N0A, N30A,
N0B and N30B; (b) N50C, N70C, N50D and N70D.

Therefore, the tensile strength development of all tested RAC can be predicted by Equation (7)
combined with Equation (3). Figure 11 exhibits the fitness of test data with predicted curves. Table 11
presents the statistical results of the ratios of tested to computed values for each group of RAC. The ratio,
on average, of no less than 1.0 means a safe prediction. Except for the safe prediction, others have the
bigger prediction from 3.81% to 5.55%.
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Figure 11. Comparison of test data to curves of equations. (a) w/c = 0.60; (b) w/c = 0.49; (c) w/c = 0.41; 
(d) w/c = 0.36.  
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Correlation coefficient 0.942 0.944 0.959 0.951 0.893 0.933 0.954 0.933 

Table 12. Statistical results of the accurate prediction of the splitting tensile strength of RAC. 

RAC-N 0A 30A 0B 30B 50C 70C 50D 70D 
Number 10 10 10 10 10 10 10 10 

Mean ratio 1.04 1.02 0.96 0.98 0.96 1.03 0.97 1.02 
Variation coefficient 8.35% 9.41% 6.89% 3.69% 8.79% 9.19% 9.33% 7.21% 

Correlation coefficient 0.921 0.935 0.951 0.974 0.961 0.955 0.947 0.940 
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time-dependent models. For the convenience of description and comparison, the symbols with the 
same meaning are unified and the parameter values are taken as those corresponding to the 
condition of this study. 

The equations proposed by the ACI Committee 209 [55] are,  
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Figure 11. Comparison of test data to curves of equations. (a) w/c = 0.60; (b) w/c = 0.49; (c) w/c = 0.41;
(d) w/c = 0.36.

Table 11. Statistical results of the general prediction of the splitting tensile strength of RAC.

RAC-N 0A 30A 50A 70B 0B 30B 50B 70B

Number 10 10 10 10 10 10 10 10
Mean ratio 1.08 1.06 1.05 1.06 1.0 1.02 1.01 0.99

Variation coefficient 9.17% 10.38% 6.79% 9.72% 7.87% 3.16% 8.43% 4.89%
Correlation coefficient 0.989 0.978 0.975 0.978 0.975 0.978 0.924 0.966

RAC-N 0C 30C 50C 70C 0D 30D 50D 70D

Number 10 10 10 10 10 10 10 10
Mean ratio 0.89 0.92 1.02 1.04 0.96 0.95 1.05 1.06

Variation coefficient 3.81% 4.87% 9.31% 8.34% 5.06% 5.55% 5.71% 6.21%
Correlation coefficient 0.942 0.944 0.959 0.951 0.893 0.933 0.954 0.933

The tensile strength development of the RAC with 0–30% natural aggregate in the case of
w/c = 0.60 and 0.49 can be predicted by Equation (8) combined with Equation (4), and that of the RAC
with 50–70% natural aggregate in the case of w/c = 0.41 and 0.36 can be predicted by Equation (9)
combined with Equation (5). The comparisons of predicted curves to test data are also exhibited in
Figure 11, and the statistical results of the ratios of tested to computed values are presented in Table 12.
These represent that the rational predictions for tensile strength development of the RAC are given out
with these equations.
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Table 12. Statistical results of the accurate prediction of the splitting tensile strength of RAC.

RAC-N 0A 30A 0B 30B 50C 70C 50D 70D

Number 10 10 10 10 10 10 10 10
Mean ratio 1.04 1.02 0.96 0.98 0.96 1.03 0.97 1.02

Variation coefficient 8.35% 9.41% 6.89% 3.69% 8.79% 9.19% 9.33% 7.21%
Correlation coefficient 0.921 0.935 0.951 0.974 0.961 0.955 0.947 0.940

5. Assessment by Commonly Used Models

For engineering applications, the test results of this study were assessed by commonly used
time-dependent models. For the convenience of description and comparison, the symbols with the
same meaning are unified and the parameter values are taken as those corresponding to the condition
of this study.

The equations proposed by the ACI Committee 209 [55] are,

fcu.t =
t

4 + 0.85t
fcu,28 (10)

fst.t = 0.0069[w fcu,t]
0.5 (11)

In Equation (11), w is the unit weight of the concrete. In this paper, it takes 2500 kg/m3.
The equations proposed by Eurocode 2 and CEB-FIP MC 2010 [56,57] are,

fcu.t = βcc(t) fcu,28 (12)

fst.t = fst.28[βcc(t)]
2/3 (13)

βcc(t) = exp
{

s
[
1−

(28
t

)0.5]}
(14)

In Equation (14), s = 0.25 for 42.5 strength grade of cement and 0.20 for 52.5 strength grade
of cement.

The experimental data of the RAC with a rational amount of large particle natural aggregate are
assessed by the above equations; the comparison is exhibited in Figures 12 and 13. For the compressive
strength of the RAC, almost the same predictions are provided by Equations (10) and (12), and the
predictions are conservative, especially after the curing age of 90 days. Relatively, Equation (10) is
too conservative with the predicted strength lower than the tested of 24.0–30.3% at 3 days. With the
increase of curing age from 28 days to 360 days, the conservative predicted deviations of Equation
(10) increase to the maximum of 11.2–16.8%. When the curing age is less than 180 days, Equation (12)
provides a good prediction with the conservative predicted deviations within 10%. The predicted
deviation increases with the curing age and reaches the maximum of 11.7–14.6% at the curing age of
360 days.

For the tensile strength of the RAC, Equation (11) gives relatively good predictions at the curing
age within 28 days. Due to the accumulation of conservative deviation of compressive strength
predicted by Equation (10), Equation (11) provides quite a conservative predicted tensile strength of the
RAC after the curing age of 90 days. The maximum conservative predicted deviations are 19.6–25.1%
at the curing age of 360 days. Comparatively, Equation (13) gives a better prediction than Equation
(11) with the maximum predicted deviation of 15.6% at the curing age of 360 days for the RAC with
w/c = 0.60, 0.49 and 0.41, and the best prediction with the maximum predicted deviation within ± 5%
for the RAC with w/c = 0.36. However, it should be noted that the predicted value is 14.1–18.2% higher
than the tested one at the curing age of 3 days. This is unsafe when the early strength was used to
determine the construction process of the RAC structures.
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6. Conclusions 

The main conclusions of this study are as follows: 
(1) The compressive and tensile strength of the new RAC with large particle natural aggregate 

grew in trends as rapid, fast to steady with an increase of curing age. This was affected by 
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6. Conclusions

The main conclusions of this study are as follows:

(1) The compressive and tensile strength of the new RAC with large particle natural aggregate grew in
trends as rapid, fast to steady with an increase of curing age. This was affected by the water/cement
ratio and strength grade of the cement. When w/c = 0.6 and 0.49, the compressive strength was
higher for the RAC with 30% natural aggregate, while the tensile strength was not obviously
influenced by the amount of natural aggregate. When w/c = 0.41 and 0.36, the compressive and
splitting tensile strengths were higher for the RAC with 50% and 70% natural aggregate, while the
strengths benefited from 30% natural aggregate. This indicates that the rational amount of large
particle natural aggregate existed in the RAC with a different water/cement ratio.

(2) Based on the modification to a predictive model of compressive strength of conventional concrete,
the predictive equation of compressive strength of the RAC at any curing age is proposed,
in which the main influence factors are the strength and density of cement, the water/cement
ratio and the curing age. By introducing the relationship between splitting tensile strength and
compressive strength of the RAC at any curing age, the splitting tensile strength can be predicted
from the compressive strength at the same curing age. After the fitness analyses, the large
prediction can be controlled within 10% over test results. This provides a convenient method for
engineering applications.
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(3) A rational amount of large particle natural aggregate can be determined to get good strength
development. It should be no more than 30% for the RAC in a strength grade no larger than C30
with w/c = 0.60 and 0.49, and no less than 50% for the RAC in a strength grade no less than C40
with w/c = 0.41 and 0.36. Along with the general prediction of the strength development of all
tested RAC, the optimal predictive formulas are proposed for the strength development of the
RAC with a rational amount of natural aggregate.

(4) The test results of the RAC with a rational amount of natural aggregate are assessed by the
commonly used time-dependent models proposed by ACI and CEB-FIP. These models are
conservative to predict the strength development of the RAC, except that the CEB-FIP model
provides a higher tensile strength at 3 days.

(5) Due to the lack of studies on the safe prediction of the strength development of RAC with different
amounts of large particle natural aggregate, the modern design experimental method needs to be
used to estimate numerical mechanical characteristics without the need for real tests.
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