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Abstract: Modelling brittle fracture by a phase-field fracture formulation has now been widely
accepted. However, the full-order phase-field fracture model implemented using finite elements
results in a nonlinear coupled system for which simulations are very computationally demanding,
particularly for parametrized problems when the randomness and uncertainty of material properties
are considered. To tackle this issue, we present two reduced-order phase-field models for
parametrized brittle fracture problems in this work. The first one is a mesh-based Proper Orthogonal
Decomposition (POD) method. Both the Discrete Empirical Interpolation Method (DEIM) and the
Matrix Discrete Empirical Interpolation Method ((M)DEIM) are adopted to approximate the nonlinear
vectors and matrices. The second one is a meshfree Krigingmodel. For one-dimensional problem:s,
served as proof-of-concept demonstrations, in which Young’s modulus and the fracture energy vary,
the POD-based model can speed up the online computations eight-times, and for the Kriging model,
the speed-up factor is 1100, albeit with a slightly lower accuracy. Another merit of the Kriging’s
model is its non-intrusive nature, as one does not need to modify the full-order model code.

Keywords: phase-field theory; brittle fracture; Reduced-Order Model (ROM); Kriging model;
Proper Orthogonal Decomposition (POD)

1. Introduction

Fracture is one of the most commonly-encountered failure modes of engineering materials and
structures. Prevention of cracking-induced failure is, therefore, a major constraint in engineering
designs. As with many other physical phenomena, computational modelling of fracture constitutes an
indispensable tool not only to predict the failure of cracked structures, for which full-scale experiments
are either too costly or even impracticable, but also to shed light onto understanding the fracture
processes of many materials such as concrete, rock, ceramics, metals, biological soft tissues, etc.
Within the context of continuum modelling of brittle fracture, this paper presents mesh-based and
mesh-free reduced-order phase-field models. The proposed models can be used for parameter
sensitivity analysis for brittle fracture problems, parameter estimation for phase-field brittle fracture
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models, and fracture constrained optimization problems; that is, all sorts of problems involving the
repeated solution of differential equations that govern the phenomenon of brittle fracture [1].

Brittle fracture is herein modelled using a Phase-Field Model (PFM) [2—-4], which is able
to handle crack initiation, propagation, merging, and branching in two and three dimensions
with a relatively simple implementation. The basic idea is to approximate a sharp crack by a
diffuse band of finite width (characterized by a regularized length scale parameter b) via the
introduction of a scalar damage-like phase-field. The crack patterns are the natural outcome of
a system of two coupled partial differential equations obtained from the minimization of a potential
energy that consists of a stored bulk energy, the work of external forces, and the surface energy.
Furthermore, PFMs combine features of fracture mechanics (when the length scale parameter
b approaches zero, phase-field solutions recover fracture mechanics predictions) and damage
mechanics into one single theory, thus overcoming the aforementioned difficulties of many other
approaches [4,5]. They have been applied to brittle fracture [3,4,6,7], quasi-brittle fracture [8-11],
dynamic fracture [12-16], and multi-physics fracture [17-20]. We refer to the reviews of PFMs in
[21-23] for an intensive list of references.

However, it is widely recognized that PFM simulations are very computationally demanding
as fine meshes are required to resolve the highly-localized deformations within the damage band.
Things can be even worse because of the “curse of dimensionality” when the system is parametrized
and a higher parameter space (i.e., more varying parameters) is considered. The Reduced-Order Model
(ROM) is proposed and applied in such situations. The ROM aims to reduce the dimension of the
state-space system and hence to decrease computational expense, while retaining the characteristic
dynamics of the original system and preserving the input-output relationship.

The general framework for model reduction, either parametric or non-parametric, is based on a
projection technique. More specifically, a reduced-order model is obtained by projecting a large-scale
system onto a low-dimensional subspace for which the basic vectors can be derived from the method
of snapshots and Proper Orthogonal Decomposition (POD) [24,25]. For linear and non-parametric
problems, the reduced-order matrices and vectors are first pre-computed, pre-projected, and remain
constant, and the ROM can thus be efficiently evaluated without further reference to the original
Full-Order Model (FOM) [26]. The situation becomes more complicated for nonlinear, parametric,
and/or coupled systems for which the reduced-order matrices and vectors are parameter-dependent.
The need for re-computing and re-projecting full-order matrices for each new parameter/newest
solutions turns out to be more expensive than solving the FOM itself.

In order to address the above challenges, several approaches have been proposed,
e.g., global-POD [24], POD-Greedy [27], missing point estimation [28], Gauss-Newton with
approximated tensors [29], Empirical Interpolation Method (EIM) [30] and its discrete variants,
the Discrete Empirical Interpolation Method (DEIM) [31,32], the Matrix Discrete Empirical
Interpolation Method ((M)DEIM) [33-35], and matrix interpolation methods [36-40]. Thanks to
these interpolation algorithms, especially the EIM/DEIM /(M)DEIM, model reduction for nonlinear
problems has achieved significant progress in recent years.

Even though model order reduction has been applied in many fields such as fluid
mechanics [24,41,42] and structural dynamics [43-45], there are only a few in fracture mechanics;
see [46] for fatigue crack problems, [47] for softening viscoplasticity, [48,49] for the lattice model-based
nonlinear fracture problems, and [50,51] for multiscale fracture problems. The aim of this paper is to
present reduced-order phase-field models for brittle fracture, which can be used to solve parametrized brittle
fracture problems efficiently, for example parameter sensitivity analysis for brittle fracture problems,
parameter estimation for phase-field brittle fracture models, fracture constrained optimization
problems [52], and when the randomness and uncertainty of material properties are considered. To this
end, we selected the PFM of [2,3] and constructed the corresponding reduced-order models using
POD-(M)DEIM and the Kriging method [53,54]. For large-scale systems, e.g., n = 10° mesh points,
the offline POD-(M)DEIM phase cannot be performed since it is impossible to store 10'°-dimensional
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vectors. The Kriging model, as a promising alternative approach, is a meshfree surrogate model that
adopts statistical methods, which can provide deeper insight into the relationship between some
outputs of interest and input design variables. Compared with POD-(M)DEIM, the advantage of the
Kriging model is its fast online computations and lower computer storage.

In order to avoid all the complexities of PEMs so as to focus on the ROM itself, we have selected
a one-dimensional (1D) PEM for quasi-static small strain brittle fracture. In this simple setting,
one does not have to deal with strain energy splits, damage boundedness, irreversibility, and so
on. We emphasize that the aims of this paper are not to solve the 1D parametrized brittle fracture
problem by using a ROM, the solution of which can be found analytically [55], but to demonstrate
how to build ROMs for PEMs and present preliminary 1D results. The proposed ROMs are inherently
multi-dimensional. The fact that we have applied them to a very simple problem of a softening bar is
due to the lack of computing resources to perform the intensive offline calculations (one might need to
carry out 5000 2D /3D fracture simulations). However, we are not clear if ROMs can perform well for
two- and three-dimensional PFMs.

Based on computations of a one-dimensional bar with varying the Young’s modulus and fracture
energy (thus, geometry, loadings, and boundary conditions are fixed even though they can also be
parameters), the POD-(M)DEIM ROM can speed up the online computations eight-times, whereas
for the Kriging model, the speed up factor is 1100, albeit with a slightly lower accuracy. Moreover,
the Kriging model has the extra advantage of its non-intrusive nature in the sense that one does not
need to modify the full-order model code. Needless to say, all these savings in the computational
cost are achieved with extensive offline computations using the full model. These encouraging
one-dimensional results are simply a proof-of-concept demonstration and serve as a platform to build
ROMs for three-dimensional brittle fracture problems.

The remainder of this paper is structured as follows. Section 2 presents the formulation of the
selected phase-field brittle fracture model, which includes the governing equations, the weak form,
and the finite element solver. This is followed by Section 3, which is devoted to the presentation of
the two reduced-order models: the POD-(M)DEIM ROM in Section 3.1 and the Kriging model in
Section 3.2. Numerical examples are provided in Section 4 to assess the performance of these models.
Conclusions and further works required to lift the limitations of the current work are given in Section 5.
The POD algorithm is presented in Appendix A, and the analytical solution of the investigated model
is given in Appendix B.

2. Phase-Field Model for Quasi-Brittle Fracture

This section briefly recalls the one-dimensional phase-field model for brittle fracture. Governing
equations are given in Section 2.1, and the weak form and finite element discretization are presented
in Section 2.2. We refer to [3,6,23] for details on various phase-field models for brittle and
cohesive fracture.

2.1. Governing Equations

Let us consider a bar of length L, which is fixed at the left end (x = 0) and pulled at the right
end (x = L). Without loss of generality, a unit cross-sectional area is assumed. The displacement
and crack phase-field (or damage field) are represented by the functions u := u(x,d; Ey, G, b, u*)
and d := d(x, u; Ey, G, b), respectively. The following governing equations and boundary conditions
hold [23]:
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g—z =0, (equilibrium equation) (1)

Ge | . 2d . .
n + Ege” |d — Gcb@ = Epe’, (damage evolution equation)  (2)
o= (1—d)Ege, (stress-strain equation)  (3)

0

€= %, (kinematics equation)  (4)
u(x=0)=0, u(x=L) =u", (essential boundary condition for )  (5)
d(x=0,L) =0, (essential boundary condition for d)  (6)

where €(x) and o(x) are the strain and stress fields, respectively; Ey and G, denote Young's
modulus and the fracture energy of the material; b is the length scale introduced to approximate
a sharp crack by a diffuse damage band; the loading is described via the imposed displacement
u*. The essential boundary conditions for d are to prevent damage from initiating at either end of
the bar. For this particular phase-field model, the damage boundedness condition 0 < 4 < 1is
automatically satisfied [6]. As only monolithic loadings are herein considered, damage irreversibility
d > 0 is also fulfilled without any special consideration. Note however that, if needed, it can be
enforced quite straightforwardly using various techniques; see [23] for details. As can be seen,
PFM involves the solution of two coupled partial differential equations: the equilibrium equation and
the damage evolution equation. This usually leads to a misunderstanding that PFM is just another
gradient-enhanced damage model developed by [56]. It has been computationally shown in [5,11]
that when the length scale approaches zero, the PEM approaches a fracture mechanics model rather
than a damage model. Note that body forces are omitted for simplicity. As can be seen from the
non-homogeneous Dirichlet boundary condition u(x = L) = u*, we adopt a displacement control to
trace the entire equilibrium path as snap-back does not occur for problems considered in this work.
If needed, arc-length control can be used; see, e.g., [57].

2.2. Weak Forms and Finite Element Implementation

The weak form of the above governing equations is given by:

L ou 5. 00U
LG ., odasd (L ,
/0 (b + Ege >d5d + GCbaW = /0 Ege“éddx ®)

for test functions du and dd.

In order to simplify the notation, let us denote the vector of state variables by x = (u,d) and
the vector of model parameters by u = (L, Eg, G¢, b, u*) € Q. This weak form is discretized by using
standard finite elements, resulting in the following discrete equations (see Remark 1):

K™ (x;p) a(x;u) =0, 9)
K™ (x; ) a(x; ) = £(x; ). (10)

where a(x;u) € RN and a(x;u) € RN are the nodal displacement vector and damage vector,
respectively. K (x;u) € RN*N and K% (x;u) € RN*N are the matrices, and f(x;u) € RN is the
(external) force vector (we admit this terminology is not entirely correct, but as there is only one vector
in the system, we hope that it does not cause any confuse). Here, N is the number of grid points. Note
that one has to solve the displacement equation with the constraint ayy = u* and the damage equation
with @y = @y = 0. The matrices and the force vector in the above are given by:
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L
K — / (VN)TEVNdy, E = (1—d)2E, (11)
0
L
K — / Kiﬁ + E0é2> NN + G.b(VN)TVN |dx, (12)
0
L
f— / Eoe2NTdx, (13)
0

where quantities with a bar indicate fixed values (as a staggered solver is used, which will be shortly
discussed); N is the row vector of the shape functions; and VN denotes the row vector of the first
derivatives of the shape functions. The symbol (' denotes the transpose operator.

Remark 1. Due to the non-convexity of the energy functional in terms of both displacements and damage,
monolithic solvers are not very robust. That is why staggered solvers or alternating minimization solvers,
where the off-diagonal coupling matrices are not needed, are popular in phase-field fracture [3,6].

The system of Equations (9)-(10) is solved using a staggered solver, also known as the Alternating
Minimization (AM) solver. That is, one fixes the damage in the equilibrium equation and solves for the
displacement. Next, the updated (latest) displacement field is used to calculate the driving force and
substituted into the damage evolution equation to solve for the damage field. The process is repeated
until convergence. These steps are summarized in Algorithm given in Box 1, where the notation a’; 1
signifies the nodal displacement vector at load increment n + 1 and AM iteration k; and a,,1 denotes the

converged displacement vector at step 1 4 1. Basically, there are two computational bottlenecks:

1. the solution of two N X N systems for each AM iteration k and
2. the evaluation of the force vector f and matrices K* and K%.

which render PFM computations time-consuming and may not be feasible in situations where they have
to be repeatedly executed a large number of times. Reduced-Order Models (ROM) can be applied for
such problems to obtain a lower order efficient model. They are introduced subsequently in Section 3.
Note that we do not focus on the cost of the robust-but-slow AM solver and refer to [23] for a discussion
on efficient solvers for phase-field models. We refer to Remark 2 for extension to 2D /3D problems.

Box 1. Quasi-static brittle PEM: AM solver for load step n 4 1.

1. Initializ.ation.: (agﬂ,;gﬂ)k: (an,éng, k=1 .. N
2. Do AM iterations: while &, ,; — &, 7| > 7 (7 = 107> is the precision)
k-1
n+1

(a) Displacement sub-problem: solve for a’;l 41 With fixed a
K™ak, ;=0  subjecttoal ;[N]=u},,

(b) Phase-field sub-problem: solve for aﬁ 41 With fixed aﬁ 1
Kddaﬁ_H =f  subjectto a’,;H 1] = élfl+1[N} =0

(c) Setk=k+1
3. Update nodal unknowns: (a,1,3,4+1) = (a’;lH, ﬁlle)

Remark 2. For hybrid isotropic brittle fracture PEMs (see, e.g., [22]), the displacement and damage sub-problems
are linear. For two- (2D) or three- (3D) dimensional problems, one needs to solve an (N x nsd) x (N x nsd)
system for the displacements and an N x N system for the damage where nsd is the number of spatial dimensions.
Therefore, the proposed ROMs, presented in the next section, can be equally applied to 2D and 3D problems when a
hybrid brittle fracture PEM is used. For tension/compression asymmetric anisotropic PFMs [6,58], the displacement
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sub-problem becomes nonlinear, and thus, one has to slightly modify the POD-(M)DEIM ROM as discussed in
Remark 3.

3. Reduced-Order Modelling

This section presents two reduced-order models, one based on the mesh-based POD method
presented in Section 3.1 and the other based on a meshfree approach (cf. Section 3.2).

3.1. Mesh-Based Approach

Essentially, a ROM is carried out in two phases: a computationally-expensive offline phase and a
computationally-efficient online phase. In the offline phase, a set of samples is collected from a standard
analysis of the full-order model (in this context, the PFM simulation). This information is employed to
construct a reduced-order model that is used in the online phase. In practice, the POD is applied to a
set of samples collected from a full-order PFM analysis to compute a set of basis vectors (Section 3.1.1).
These basis vectors are later used in the POD-DEIM to build the approximation for the force vector f
(cf. Section 3.1.2) and in the POD-(M)DEIM for the matrices K** and K% (Section 3.1.3).

3.1.1. Parameterized and Nonlinear ROM Based on the Projection Framework
Consider the system of equations in Equations (9) and (10). An ROM of this system can be obtained
by approximating the full-state vectors a and a as a linear combination of 1 and 7 basis vectors as follows,

a= Va,, a=Va,, (14)

where a, € R" and a, € R™ are the reduced-order versions of the displacement and damage field,
respectively. V.= [o% 0§ ... v%] € RN*"and V = [vf o4 ... 0%] € RN*" are the orthonormal bases.
Now, at every iteration, step k in Box 1, projecting the system of Equations (9) and (10) onto the reduced
spaces formed by these bases yields the lower order model as follows:

K" (X p) a, = 0, (15)
K/ (<55 p) a = £, p), (16)

where the reduced-order matrices and vector are given by:

K (x5 ) = VIK™ (25 1)V, (17)
K (x5 ) = VIKH (5 1)V, (18)
£, ) = V(XS o). (19)

The ROM task is to find the bases V and V so that m < N and @ < N, then to solve the
system of Equations (15)-(19) using Box 1. How to determine these bases is subsequently discussed
in Box 3. This task is simple and straightforward when the original system is an affine and linear
system; and it would be complex for nonlinear and coupled systems. The construction and solution
of the system (15)—(19) over previous solutions, i.e., (¥* = (Vak,Vat)), and the parameter space
are nontrivial. For instance, at each AM iteration k, the ROM requires firstly the re-construction of
the full-order system matrices K%, K% and vector f corresponding to the parameters and previous
solutions, which still depend on the dimension of the full model, and secondly, the projection of
these matrices/vectors on the reduced spaces to obtain the corresponding reduced-order matrices
and vector. This pure POD model may result in a longer and much more complicated computation
than the original FOM. In this study, we implemented DEIM and (M)DEIM [31,35] in the offline
stage to get rid of the full-dimension dependence of the ROM matrices and vector. Precisely,
DEIM was used to approximate the nonlinear external force, that is the right-hand side of the damage
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sub-problem equation (Section 3.1.2), and (M)DEIM was adopted to approximate the nonlinear matrices
(Section 3.1.3).

3.1.2. DEIM

The DEIM was applied to approximate the nonlinear function of the external force in Equations (19)
and (13). The idea is to select sampling of the nonlinear terms combined with interpolation among
these samples to recover an approximate nonlinear evaluation, as follows:

£,(xX; ) = VIE(Vak; ) =~ Vo (PTd) 1P f(Vak; ), (20)

where matrix ® is the POD basis vectors of the nonlinear snapshots obtained from the FOM, where ® =

[®@1,...,®n] € RV Matrix P = [ey, ..., en] € R""/ is the ng-indices matrix provided by DEIM,

which we used here as the original proposed in [31], where e; = [0,...,0,1,0,... ,O}T € R" is the

ih column of the identity matrix I, € R"" fori = 1,...,n r- Note that @ is acting as a projector

of the basis on vector f (Equation (21)), while P is acting as a filter matrix that returns the non-zero

components of f (Equation (22)). In other words, it is used to define the reduced mesh (see Section 3.1.3).
Let us define:

D:= Vie((PTe) !t c R™, (21)
F, (a5 u) := PT§(Vak; u) € R, (22)

The POD-DEIM reduced-order of the external force in (19) now has the form:
fr("kr'ﬂ) = DFr(alr‘;y), (23)

The complexity of the evaluation of f, is now reduced to the evaluation of F, and a matrix
multiplication (note that the computation of D was carried out in the offline phase). The POD-DEIM
basis vectors were obtained using the algorithm in Box 2 where N; represents the number of sampling
points (the number of points that discretize the parameter space), and N7, in this paper, denotes the
number of load increments. We refer to Box Al for the algorithm of POD(X¢, €f). Note that the
DEIM was used in the offline phase (see Box 3) to build the reduced matrices and vectors for the
approximation of the FE external force and matrices.

Box 2. DEIM algorithm.

input : X¢ = [[f(xl;yl),...,f(xNT;yl)],. ey [f(xl;yNs),‘.‘,f(xNT;yNE)]} € RN*(NexNr), €f
output: Basis ® € RN*"f set of indices P € R™f
[£1,...,fa,] = POD(Xg, )
[0, P1] = max |f1 ]
U= [fl], P= [eq>1]b, D = [(Dl]
fori=2:n,do
Solve (PTU)c = PTf; for cand res = f; — Uc
[0, ®;] = max |res]
U=[Uf], P=[Pey] @= {;’}
1
end for

This max function returns the maximum value p at location ®;.

b e, is the i column of an identity matrix.
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3.1.3. (M)DEIM

The (M)DEIM was applied to approximate the nonlinear matrices in Equations (17) and (18).
The idea is to express the nonlinear matrices (i.e., K (x¥; 1)) in vector format, then apply the DEIM
to approximate it. Without loss of generality, let us consider K% (%; u) (the matrix of the damage
sub-problem) and define the vector version of it:

k(%5 ) == vec(K¥(%5; 1)) € RV, (24)
that is, k is obtained by stacking the columns of K%. Then, this vector is approximated as:
k(x5 1) ~ k(X5 1) = ™0™ (xK; ). (25)

Here, ®" € RN*m s a nonlinear-parameter-independent basis and 6" (x*;u) € R
is the coefficient vector. Apply DEIM in Box 2 to a set of snapshots Xx =
(x5 ), .. KON ), K(XNT; y )] to obtain the basis @™ and the interpolation indices
T € RN”. The reduced vector is obtained by the following projection:

k(X 1) = vec(VTK (%5, 1) V) 26)
= (VI o V) @™e™(x; u) € R™.
Let us define D' := (VT ® VT)®™, which is a precomputed matrix; the online computation of

the reduced vector becomes:
k(x5 1) = D™ (x; ), (27)

where:

0" (x5 ) = (@) kz(x ). (28)
Then, the (M)DEIM approximation matrix K% (%*; 1) is obtained by reversing the vec(-) operation.
The crucial step in the online evaluation of k, is the computation of k7 (x; u#). Within the framework of
the finite element method, a reduced mesh concept, also called the reduced integration domain, can be
used to evaluate k7 (x; u) efficiently. The basic idea is to loop over only elements belonging to Z that
contribute to the stiffness matrix. For more details of this technique, we refer to [35,59]. The exact same
algorithm applies for K* (%k; ) by defining k(X ) := vec(K*(%*; u)) € RN * and replacing 1 by m
and Vby V.

In summary, the offline POD-(M)DEIM is presented in Box 3. The procedure is as follows.
First, N; sampling points in the parameter space ) are generated, and for every point p’, solve the
corresponding FOM for u* € [0, tmax], i.e., the entire loading path. Snapshots of the nodal displacement
vector, nodal damage vector, external force, and global matrices K** and K% for each load increment
(designated by t;) are stored. These snapshots are next used to build the bases for the POD, i.e., V and
V, and ®/, ®", ®™ for POD-(M)DEIM. Finally, the DEIM (Box 2) is applied to ®/, ®", ®" to obtain
the reduced matrices and vectors and the reduced mesh. Recall that m £, Mg, My are the number of basis
vectors for the force vector, matrices K% and K%, respectively.

Once all the bases are obtained and stored, online simulations of the brittle fracture problem
for any u € Q) can be performed using the procedure given in Box 4. We used a’r‘,n 41 to denote the
reduced-order nodal displacement vector at load increment n + 1 of AM iteration k. This notation also
applies to the reduced nodal damage vector. As can be seen that one has to modify the FOM code to
have a POD-(M)DEIM ROM code. The meshfree Kriging model, presented in the next section, is a
non-intrusive technique where one does not modify the FOM code.

Remark 3. For anisotropic PFMs, the displacement sub-problem is nonlinear and most often solved with
the Newton—Raphson (NR) method. For each NR iteration, one has to solve K35a = ' — i (a) for the
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displacement corrections. Therefore, in the POD-(M)DEIM, one simply applies the DEIM to the internal force
vector £ (a) and MDEIM to the tangent matrix K7'. This constitutes a small modification to our proposed
POD algorithm. Thus, our POD ROM is inherently multi-dimensional. See [47] for an application of POD to

nonlinear finite elements.

Box 3. Offline POD-(M)DEIM calculation.

Set: m, 11, My, Mg, Mg, we QdXNS, number of load increments Nt
Initialize: Xa = [J; Xa = [|; X¢ = [|; Xiw = [|; Xgae = ]

Step 1: Collect the solution, matrix, vector snapshots

for i=1: N5 do

Solve the FOM (see Box 1), and store the data for every load increment

aéocal = [a(tl' i - (tNT'fl )}

)

Aocq = [a(Hp l)/ a(tn,;p')]
floca = £t 1), o (g )]

K(aa)lom, = [vec(K™)(ty; p'), ..., vec(K™) (tn,; p')]

KAy = [voc (K (1), ., vec (K (tx )]

Compress the local snapshots to the global ones:

Xa = [Xa a;ocal]’ Xa = [Xi a;ocal]’ X¢ = [Xf f?ocal]
XK/M = [XK/IH K(aa);oml], XKdd = [XKdd K(dd);ocal]

end for
Step 2: Extract the global bases using POD given in Box A1:

V = POD(X,,m), V =POD(Xz, )
®/ = POD(X¢,my), ®" =POD(Xgu,my), @™ =POD(Xgar, m3z)

Step 3: Perform the DEIM (Box 2) on ®f, ®", ®™ to obtain the reduced matrices and vectors
and the reduced mesh based on the reduced bases V and V.

Box 4. Phase-field ROM for quasi-static brittle fracture: online phase.

1. Initialization: (a 9n+1, 9n+1) (arm,arn), k=1

2. Do AM iterations’

(a) Displacement sub-problem: solve for ar ni1 With fixed ar N +1
(i) Solve Equation (28) on the reduced mesh to obtain 9”’(

sk—1 .
rn+1’

#) by reversing the vec() operation: K = reverseVec(k{?).

. n+1' u) (replace 1 by m).

(ii)) Reconstruct the reduce matrix k%% (a #) using Equation (27) (replace i1 by m).

(iii) Obtain K% (a¥ o +1 ;
(iv) Solve K#*a fn 1=0
(b) Phase-field sub problem solve for a 1 with fixed ar nil
(i) Solve Equation (28) on the reduced mesh to obtain 8 (ak a1 1)

(i) Reconstruct the reduce matrix k ( a M ) using Equation (27).

(iii) Obtain Kdd( ay, ;H #) by K¥ = reversevVec(ki?).
(iv) Obtain fr( X M) usmg Equation (23).
v) Solve K ak =

© e)tkfk rntl T

. 5 — (ak sk
3. Update nodal unknowns. (a1, arn41) = (ay,41,3; 1)
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3.2. Meshfree Kriging Method

This section presents the Kriging model that we utilized, for which more details can be found
in [53,54,60]. Generally, in order to apply the Kriging prediction model, one follows the algorithm in
Figure 1. Basically, it also consists of two phases: the offline phase where data are collected by running
the FOM and the predictor is built. In the online phase, the predictor is used to get the outputs for
any given input. Note that this phase does not use any phase-field finite element code, resulting in a
non-intrusive model (see Remark 4).

_____________________________________________________

Predictor

FOM y(#') Kriging

Figure 1. The online and offline procedures of the Kriging approach. FOM, Full-Order Model.

Consider an output of interest y = {y(x;u)|p € Q} that varies within a parameter space
Q. Kriging models can be obtained by assuming that output y(x; #) can be described as a linear
combination of a regression model and a stochastic process as follows [60]:

Y(u) =mbop) + Z(x;p), (29)

where m is a regression model known as the deterministic trend, which globally approximates the
parameter space. The regression model is a linear combination of p chosen functions fj,

=

m(x; ) = 1 Bifi(x;m) = £(x; )" B, (30)

]

where B; are regression parameters and f; are regressor functions. The stochastic process Z,
which creates the localized deviation of the parameter space, is assumed to have zero mean and
variance function:

E[Z(xp;) x Z(x; ;)] = P R(6, i, 1), (31)

where 0~ is variance and R () is the correlation model with parameters 6.

We now consider a set of N; design points denoted by p; = {py,...,py } to which the
corresponding output are y = {y(x;p1¢), ...,y (x; ) }. The regressor F with F;; = ]‘j(x;yi) is given by
a vector of p regressor functions:

2

F= [f(x;yl)...f(x;yNs)]T. (32)
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By defining the correlation matrix R(6) as the matrix of the stochastic process correlation between
the i and j design points, we have:

R;j(0) = RO, pi, i), i,j=1,...,Ns. (33)
The vector of correlations between an untried point, y#, and the design points is defined as:

() = [R(6, py ), -, R(O, un, )] (34)

The predicted estimates, §(x; i), of the response y(x; ) at an untried point p, are given by:

A

yO6m) = £0u) "B+ () R() " (y — FB), (35)
where B is estimated from the data, using least squares regression:
B =(F'R(6)'F)'FTR(6)y. (36)

Once the regression model and the covariance function of a stochastic process have been
determined, the prediction of y can be done by using Kriging models. According to the Design
and Analysis of Computer Experiments (DACE) [60], the correlations are restricted in the form:

d
R0, i, 1) = [ [ Ric(6, 1 — 1), (37)
k=1

where d is the dimension of the parameter space. The correlation parameters can be determined by
minimizing the log-likelihood for 0 as:

6 = argmein[n log 0% +1og(|R(0)])], (38)

where |R(0)| is the determinant of the correlation matrix corresponding to the design points.

A

Assuming a Gaussian process, the optimal coefficients f of the correlation function solve:
A 1
6 = min [R(0) |o2. (39)
The corresponding maximum likelihood estimate of the variance, 02, is:

o=y Fp)(y ~ Fp). (40)

The model template in the DACE toolbox (Design and Analysis of Computer Experiments) has
been discussed in [61].

Remark 4. As the Kriging model is non-intrusive in the sense that one can just use a PEM code as a black box
to obtain the training data, it applies to any phase-field models, namely 2D/3D and isotropic/anisotropic models.

3.3. A Posteriori Error Estimations

The relative Lr-norm and Root Mean Squared Error (RMSE) used to evaluate our reduced-order
models are written as:

la—allz,

L =
= al,

(41)
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and:

YNt (3, — a;)?

_ 42
N; test ( )

rmse, =
where a is the approximate ROM solutions and a represents the true solutions (precisely the FOM
solutions). Note that & = Va,, so both a and a have the same length.

4. Numerical Examples

In this section, the performances of the two proposed ROMs are evaluated for the 1D problem
stated in Section 2. Even though one can, in general, consider the variation of the geometry (L), material
parameters (Eo, G, b), and loadings (u*), we present, for simplicity, results for u = (Ey, G.) € Q C R2,
That is, we consider a traction bar of a fixed length L = 25, b = L/100, unit cross-section (units are
deliberately left out here, given that they can be consistently chosen in any system), and that is
subjected to the maximum load of umax = 37.5. Material constants E and G, are varying parameters.
Previous studies have shown that such a length scale is small enough [23] (see Remark 5). The bar is
uniformly discretized with 1000 linear elements (element size h < b/2), resulting in N = 1001 grid
points, which produce converged results; see Appendix B for a convergence analysis. The load is
applied via prescribed displacement u* € [0, umax| at the right-most node. The entire loading process
is divided into Nt equal steps. The quantities of interests are (i) the displacement field, strain field,
and damage field along the bar at umax and (ii) the stress-strain curve, which is obtained from the
load-displacement curve where load is the reaction force at the right-most node and displacement is
the applied displacement u*. These quantities computed using an FOM serve as the output of interest
y = y(x; #) used to build the Kriging predictor. All simulations were carried out using an in-house
code written in MATLAB.

Concretely, we considered the parameter space Ey x G, = [1,10] x [1,10]. The offline calculation
can face the “curse of dimensionality” if we generate the samples using a full-factorial experiment.
For example, let Ng, = N, = 50 be the sample numbers of each variable; the computations require
NEg, X Ng. = 2500 runs for evaluating the solution for every possible combination of every possible
design value. Therefore, in this paper, we have used the Latin Hypercube Sampling method (LHS) [62]
to generate statistically-optimal sampling points. The typical behaviour of this traction softening bar
is as follows; see Figures 5 and 6. When the load is small, i.e., smaller than 0.8umax, the bar is still in
the elastic regime, albeit with a small damage due to the lack of an elastic domain of the chosen PFM.
A further increment in loading leads to the initiation of a crack (a point in this 1D case) in the centre of
the bar. Note that we have not introduced any imperfections in the bar to trigger damage localization;
see, e.g., [55]. The fact that the point of damage localization is the centre of the bar is due to the perfect
symmetry of the problem. The strain and damage are now localized in a small region centred at this
cracking point.

Remark 5. We note that for the selected phase-field model (Section 2), the solution depends on the length scale
b (see Appendix B), and one should consider its variation. However, if one adopts our length scale-insensitive
PFM presented in [7], the result is independent of b.

Remark 6. In order to make sure the ROMs can capture strain localization (or crack initiation), we have applied
a large displacement of . = 37.5 to make sure that for all considered sampling points (i.e., all pairs of (Eo, G¢)
used in the offline phase), damage localization happens at least once.

We first present the ROM results in Section 4.1. That is, we generated sampling points,
built various ROMs (with different accuracies), and selected the best ROM, by evaluating the ROMs
with the FOM for a given random (E, G ), to be used in online computations. The construction of the
Kriging’s model was discussed in Section 4.2. Finally, Section 4.3 presents the comparison between
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the POD ROM and Kriging model by evaluating them against the FOM for some random values
(Eo, GC) € O.

4.1. ROM Results

To illustrate the performance of the POD-(M)DEIM approach, we generated N; = 60 sample
points in ) using the LHS, and built the ROM using the algorithm given in Box 3. This number
of sampling points was based on our experiences with ROM,; see for instance [42]. Precisely five
ROMs, cf. Table 1, have been built to obtain the (M)DEIM bases of K%, K% and f. Figure 2 shows
the snapshot spectrum and the cut-off lines corresponding to the epop = 10~? of these matrices and
vector. Concretely, we have used Step 1 in the algorithm in Box A1 (Appendix A) to get the snapshot
spectrum and Step 2 to get the number of required basis vectors. Table 1 presents the details of the
(M)DEIM bases of each ROM. The number of M(DEIM) bases varied depending on the captured energy.
More energy required a higher number of bases.

1Ulfihs shapshots spectrum 1I\{I}I@trix shapshots spectrum 1I\(I]I@trix shapshots spectrum

107+ 1 107+ 8 10771
° © ©
L F---4 o r--- Q  ke----
2 2 2
& & &
S10710F S10710F S 10710
S S S
(] (] [
c c c
w w w
10715 1 1 10715 1 1 10715 1
1020 . 102 : 10-% -
10° 10? 10° 10? 10° 10?
Number of POD Number of POD Number of POD

Figure 2. Vector and matrices’ snapshots spectrum. Left is the vector f, middle the matrix K%, and right
the matrix K*.

Table 1. ROM characteristics.

€POD 106 10~7 108 10—° 10—10
(ROM;)  (ROMy) (ROM3) (ROMy) (ROM;5)

Mg —mg—my 17—-6-5 22-12-10 23-12-10 27-15-13 28—-16—14

Now, for each (M)DEIM in ROM;, we built the POD basis of the solution’s snapshot (displacement
and damage fields) with the assumption that the number of POD bases for the displacement and and
that for the damage field were equal, i.e., m = M. A number of cases corresponding to m € {2,100}
were considered. The POD-(M)DEIM was then validated against the FOM and pure POD approach for
a random pair of (Eo, G¢). Figure 3 presents the Ly-norm relative error (L for the reaction force) of
ROM;, withi =1,...,5 and pure POD in comparison with FOM. In terms of accuracy, the pure POD
performed excellently in the range of (20 — 40) POD basis. When more bases were used, the accuracy
was reduced due to the fact that more noise and error were added into the model. Meanwhile,
the accuracy of ROM,; increased when the captured energy increased. However, the accuracy was
not much different when epop was in the range of 102 and 10719, Furthermore, the performance of
ROM; was much faster than the pure POD. We note that the performance (all of the computations
were performed on a PC with Intel(R) Core(TM) i7-6820HQ CPU @ 2.70 GHz 2.7 GHz, RAM 8.0 GB
(64-bit operating system, x64-based processor)), in terms of both accuracy and speed, of ROMy and
ROM;5 was better than ROM7, ROM,, and ROMj3;. The reason here is that the AM solver (cf. Box 3)
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required iterations until convergence was satisfied. For the lower number of POD-(M)DEIM bases
(meaning less accuracy of the model), it required more iterations to get convergence. For this reason,
we selected ROM;5 with m = 20, m = 20, and m, — m; — mg =28—16—14 as the best ROM to be
used in other online calculations.

100 Accuracy Performance
-o- ROM, -o- ROM,
—A- ROM, —A- ROM,
101 |1 —o— ROM;5|| —46— ROM;
ROM, ROM, 1
X —o— ROM; —o— ROM;
102 L u_-___‘“___'!__—o—P()D ——POD
—= FOM
5 1073 @
o 2 10!
M10 =
1075* n———-u——“"'-_"—___-_‘
R Gt Gl Gt F==c
f»»«/;::_—;e:::_.,::: ===
106 L ,’ Vs
[
10-7 ‘ ‘ ‘ ‘ 4 ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
Number of POD Number of POD

Figure 3. Performance of the POD-Matrix Discrete Empirical Interpolation Method ((M)DEIM) vs.
pure POD. The number of POD indicates the POD of the solution vectors (m and ).

4.2. Kriging Results

In order to verify the Kriging model against the sampling numbers, we generated several samples
using LHS with N from 10-5000, ran the FOM, and collected the output of interest, then built the
Kriging model as discussed in Section 3.2; see also Figure 1. The second-order polynomial was chosen
as a regression model, while the Gaussian function served as a correlation model. After that, a random
pair of (Eg, G.) was selected to test the Kriging’s predictor. Figure 4 shows the relative Ly-norm
and RMSE of the reaction force, the construction, and the prediction time, respectively. The relative
error reduced when the number of samples increased (see Remark 7 for an elaboration on this error
behaviour). We note here that the Ly-norm error and the RMSE produced similar values. The prediction
time was generally relatively constant; however, the model’s construction time was increased when the
sampling number increased, for example, t;,,;;; = 0.1025 s for Ny = 50 samples; however, it increased
rapidly to ty,;jq = 1.17 x 10% s for Ny = 4000. From here, to avoid over-fitting, we can use N5 = 4000
(instead of N; = 1000) as our Kriging model to compare with ROM. Please note here that although
tpuilg was considered large for N; = 4000, it was computed one time at the offline phase, so it did not
affect the performance of the prediction.

Remark 7. Actually, the relative error in Figure 4 reduced significantly in the interval [1,1000] of samples,
and then, it fluctuated, but did not go down to zero. From the data analysis viewpoint, the more data, the greater
the accuracy of the model. However, it seemed to not be the case here. This was probably due to the discontinuity
of the data (damage localization), and the Kriging model could not improve the accuracy around the discontinuity,
although more data were introduced.
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Figure 4. Relative errors and computational time of the Kriging model for different sampling numbers.
4.3. ROM vs. Kriging

A random sample test with Ni.s; = 10 was generated to compute the relative errors of the ROM
and Kriging prediction in comparison with the FOM. The averaged errors and computational time of
each model are recorded and given in Table 2. Although the ROM provided more accurate solutions
than Kriging (for example, relative error Ly of 10~* vs. 103), the ROM online phase was much slower
than the Kriging model. Concretely, ROM’s speedup factor, compared with FOM, was approximately
eight-times, while the Kriging’s was approximately 1100.

Table 2. FOM, ROM, and KRI (Kriging) comparisons. The designation 20-20-28-16-14refers to the
ROM;5 with m = m = 20 and m, — mz — mp = 28 — 16 — 14. Notations sz, Ly, Lyy represent the Ly
error for the reaction force at the right-most node, the nodal displacement, and nodal damage vector,
respectively. The time in this table indicates the online computation time.

Parameter FOM ROM KRI
N 1001 20-20-28-16-14 1
tepu (s) 64.1 8.1 5.61 x 10 ~3
Lof 1.74 x 10 % 9.63 x 10 3
Loy, 445 x 103 641 %103
Loy 201 x10 3 821 x103

We now present the mechanical behaviour of this traction bar for the case (Ey, G.) = (3.705,4.332).
The response of the bar, obtained using the FOM, in terms of the load-displacement curve is given
in Figure 5, where F is the reaction force at the right-most node. As this phase-field model lacked an
elastic domain, the pre-peak behaviour was not linear, as damage was non-zero immediately upon
load application. When the peak was reached, the bar was suddenly broken into two parts reflected
by a sharp drop in the load-displacement curve. The evolution in time of the displacement, damage,
and strain field is shown in Figure 6 for three time instances: 0.41max, 0.8%max, and 0.9umax as marked
in Figure 5. Evidently, there was a strong localization of damage and strain at the middle of the bar.
It is interesting to see whether ROM solutions can capture this strain localization phenomenon.
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Load-Displacement
0.8umax

21 0.4umax

0.9umax

Figure 5. Load-displacement response of the bar for (Eg, G¢) = (3.705,4.332).

Figures 7-10 present the output of interest: (i) the displacement field, strain field, and damage
field along the bar at umax and (ii) the stress-strain curve for two sets of y = (Eo, G¢). Here,
u; = (3.705,4.332) and p, = (3.535,9.639). In general, the mesh-based and meshfree approaches
provided solutions in very good agreement with the full-order model. For p,, the bar was completely
broken, and thus, there was a jump in the displacement field (Figure 7a), as well as strain localizations;
see Figures 8a and 9a. The reason that the ROMs can capture strain localization is explained in
Remark 6. For u,, the damage was small, and the bar was still in the elastic regime. It can be seen that
the Kriging model can capture the displacement jump (Figure 7a) and damage localization (Figure 8a),
but not strain localizations, cf. Figure 9a, which involves a sudden jump of a very large magnitude.

Displacement Displacement Displacement

15 30 40
10 20
3 3 = 20
5 10
0 0 0
0 5 10 15 20 25 0 10 20 0 5 10 15 20 25
X X X
1 Damage 1 Damage 1 Damage
= 0.5 < 0.5 < 0.5

0 0 0
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

x X x
Strain Strain 600 Strain
4 4
400
w w w
2 2 200
'z N\

0 0 0
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
T T T

Figure 6. Evolution of the displacement, damage, and strain field for p;: 40%umax (left), 80%umax
(middle), 90%umax (right).
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Figure 7. Displacement fields: for p; (corresponding to a completely broken bar) and p,.

1 Damage 0.2 Damage
—FOM '
- —-ROM
—-=KRI 0.15
—FOM
= 0.5 < 0.1 - —ROM
—-—KRI
0.05
0 0
0 10 15 20 25 0 10 15 20 25
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Figure 8. Damage fields: y#; (corresponding to a completely broken bar) and p,.
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Figure 9. Strain field. Note that the Kriging model provided a maximum strain of only around 750

for y,.
1
3 Stress-strain A Stress-strain
A
) 3
2 2 g
(0] o2
Iz —FOM| @ —FOM
- -ROM 1 - -ROM
) —-—KRI —-—KRI
/"/ n exact / exact
0 i i i 0 / | | T |
0 0.5 1 1.5 0 5 1 1.5 2
strain strain
@m (b) u,

Figure 10. Stress-strain curve. We note the oscillations around the localization point for the Kriging
model (a). The exact homogeneous stress-strain (valid up to crack initiation at a strain of 1.25) is given
in Appendix B.



Materials 2019, 12, 1858 18 of 22

5. Conclusions

Within the context of parametrized brittle fracture mechanics, we have presented two classes of
reduced-order phase-field models. They can be used to carry out a very large number of computations
required in different situations efficiently, ranging from parameter sensitivity analysis for brittle
fracture problems, parameter estimation for phase-field brittle fracture models, to fracture constrained
optimization problems. Our first ROM was a Proper Orthogonal Decomposition (POD)-based
projection method that utilized the Discrete Empirical Interpolation Method (DEIM) and the Matrix
Discrete Empirical Interpolation Method ((M)DEIM) to approximate the nonlinear vectors and
matrices. The second was a meshfree Kriging model. For one-dimensional problems where Young’s
modulus and fracture energy vary, the POD-(M)DEIM ROM can speed up the online computations
eight-times, whereas the Kriging model’s speed up factor was 1100, albeit with a slightly lower
accuracy. The greatest difference between the POD-(M)DEIM and Kriging model was the non-intrusive
nature of the latter in the sense that one does not have to modify the full-order model code. Needless
to say, all these computational savings were obtained with extensive offline computations using the
full model.

Even though our reduced-order models were applied for a one-dimensional bar, we have shown
that they are inherently multi-dimensional in nature. However, further works are required for 2D/3D
fracture problems. It is possible that one might need to use more sampling points to capture different
crack patterns. Additionally, the proposed models suffered from the following limitations

° They cannot be used for extrapolation, i.e., when the parameters are out of the bounds of the
considered parameter space;
The load has not been parametrized. That is, the maximum prescribed displacement umax is fixed.
e  The Kriging model resulted in oscillations around the damage localization point.

We note that the first limitation is inherent to any interpolation-based methods and might be
tackled using machine learning methods. It is straightforward to overcome the second issue by just
building a POD for umax. It is, however, very difficult to parametrize loadings in 2D and 3D. As far as
the third issue is concerned, we anticipate that deep learning techniques might be helpful. For higher
dimensional problems, it can become difficult. We are pursuing these paths and hope to publish them
in the near future.
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Appendix A. Proper Orthogonal Decomposition Algorithm

For completeness, the POD algorithm to find the basis vectors directly from the snapshot matrix
X € R™"s is given in Box Al. One can input either the desired number of basic vectors (1) or the
tolerance epop. Note that n can be N for the displacement/damage/force snapshot or N2 for the
matrix snapshots (K, K%). 1, is the number of snapshots. The total energy and capturing energy are
denoted by a and b, respectively.
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Box Al. POD algorithm.

input :Snapshots X € R"*", m, or epop
output:Orthogonal basis V € R"*"
1. [V, 2] = svd(X)", 2 = [09,...,0n,]
2. Extract POD
if epop then
a=Y"r, 0% b=0; i=1
while ( (b/a)*100 < epop ) do
b=b+ (71.2
i=i+1;
end while
m=i
V=V(1:m)b
E=%(1:m)°
end if
if m then
Basis matrix V.= V(:,1: m)
Y =3%(1:m)
end if

?  Here, svd is the MATLAB function for singular value decomposition; o1 > 05 ...0,, > 0.
b This is MATLAB syntax to get the first m columns of the matrix V.
¢ This is to get the first m eigenvalues of Z.

Appendix B. Exact Solutions

For the model given in Section 2, one can derive the exact solution for the homogeneous stress
state, which is given by [23,55]:

B Ge z 3 [3EGe
7= (GC+bEOe2> Foe, e =15\ 7 (A1)

where 0, denotes the maximum stress, which depends on b. Note that the homogeneous solution is
valid up to the point of damage localization or the peak load in the load-displacement curve.

We present mesh convergence analysis to justify the utilization of 1000 elements (or 1001 nodes)
in all of our analyses. Three meshes consisting of 100, 500, and 1000 elements corresponding to the
casesh =b,h =b/5,and h = b/10 were considered, where h denotes the element size. The results for
the stress-strain are given in Figure Ala and the results for the damage profile in Figure Alb. As can
be seen, 500 elements and 1000 elements yielded identical stress-strain data (thus, the same peak load),
and 1000 elements were required to capture the cusp of the damage profile d(x) = exp(—|x|/b) [6].
Therefore, we denote the results obtained with 1000 elements’ converged solutions and using this
mesh to build the ROMs. Doing so, the error is due to ROM only, and thus, it is easier to understand
the ROM behaviour.
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