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Abstract: Aluminum profile surface defects can greatly affect the performance, safety, and reliability
of products. Traditional human-based visual inspection has low accuracy and is time consuming, and
machine vision-based methods depend on hand-crafted features that need to be carefully designed
and lack robustness. To recognize the multiple types of defects with various size on aluminum
profiles, a multiscale defect-detection network based on deep learning is proposed. Then, the network
is trained and evaluated using aluminum profile surface defects images. Results show 84.6%, 48.5%,
96.9%, 97.9%, 96.9%, 42.5%, 47.2%, 100%, 100%, and 43.3% average precision (AP) for the 10 defect
categories, respectively, with a mean AP of 75.8%, which illustrate the effectiveness of the network in
aluminum profile surface defects detection. In addition, saliency maps also show the feasibility of the
proposed network.

Keywords: aluminum profile surface defects; multiscale defect-detection network; deep learning;
average precision (AP); saliency maps

1. Introduction

Aluminum alloys have drawn more and more attention in aerospace engineering, automotive,
and electronics industries due to their low density, high specific strength, good corrosion resistance,
and good recycling ability [1,2]. Aluminum profile is an application form of aluminum alloys, and the
demand for it is extremely large because of the massive use of space-frame constructions in high-speed
rail and auto body [3]. Therefore, the surface quality of aluminum profiles has assumed significant
importance. Any surface defects, such as cracks and deformations, will greatly affect the performance,
safety, and reliability of products. Traditionally, human-based visual inspection is a common detection
method in manufacturing engineering. However, due to low sampling rate, low precision, poor
real-time performance, fatigue, greatly influenced by artificial experience, and other adverse factors,
the artificial inspection is not sufficient to guarantee the stability and accuracy of detection. In addition,
the other methods based on various signals, like electrical signal and magnetic signal, were also utilized
to detect the surface defects by many companies. Asea Brown Boveri (ABB) Metallurgy [4] developed
the Decraktor detection unit P1 using the principle of multi-frequency eddy current testing. The device
can suppress the influence of various interference noises, thereby improving the reliability of the steel
plate detection. However, eddy current testing can only detect conductors and needs to be close to the
surface being inspected. Besides, the rough surface affects the detection result and the penetration
depth of eddy current detector is limited.

Machine vision-based method for surface defect detection has an absolute advantage in terms
of its safety, reliability, convenience, and efficiency. It is an effective means to realize the automation
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and intellectualization of the manufacturing processes in the steel and iron industry [5,6]. A typical
machine vision-based defect-detection method consists of light source, Charge Coupled Device (CCD)
camera, and image processing algorithms [7]. Many scholars have conducted significant research on
image processing algorithms. In [8], Chondronasios A et al. used gradient-only co-occurrence matrices
(GOCM) to classify two types of defects in an extruded aluminum profile. Besides, there is not much
literature about aluminum profile defect detection using machine vision technology. Nevertheless,
the problem can be seen as defect detection in metal material, such as steel and iron, which has been
studied for many years in computer vision.

Mathematical morphology is a technique of image analysis based on set theory, topology, and
random functions. Dupont et al. [9] proposed a method using the cost matrix theory based on
mathematical morphology, and the K-nearest neighbor (KNN) [10] classifier to detect eight kinds of
defects on flat steel products. Spatial filtering is an image processing method that directly manipulates
the pixels in an image. The gradient filters, like Sobel, Robert, Canny, and Laplacian filters are popular
tools to detect points, lines, and edges in spatial filtering. Guo et al. [11] used the Sobel gradient
operator and Fisher discriminant to detect defects on the steel surface. Moreover, Wu et al. [12] adopted
a method based on fast Fourier transform (FFT) combined with a local border search algorithm for the
recognition of hot-rolled steel strips. In [13], Yazdchi et al. applied a multifractal-based segmentation
method to detach the region of defects from images, and then extracted ten features from the detected
region for classification. A method in [14] using the Markov random field for texture analysis combined
with a KNN classifier was used for classification of steel surface defects.

Although traditional machine vision-based methods using the CCD camera and image processing
algorithms achieved the automatic detection of surface defects, the hand-designed features [15] used
in the defect detection needed to be carefully designed by a programmer who well understands the
domain of the task, which lacks robustness and is not conducive to the identification, classification,
and detection of surface defects.

In recent years, due to the advances of artificial intelligence and deep learning, more concretely
the convolutional neural network (CNN) [15,16], the quality of image classification, object detection,
and face recognition have been rapidly developed. Deep learning which is based on artificial neural
network discovers the distributed representation of its input data by transforming the data and
low-level features into a more abstract and composite representation; the CNN can learn highly abstract
and invariable features from large training datasets automatically, rather than constructing low-level
features artificially; therefore, it can be robustly adapted to various computer vision tasks.

In 2012, as the winner of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [17,18],
Krizhevsky et al. [15] rekindled interests in CNN by firstly using deeper and wider networks in
computer vison tasks. In [19], Girshick et al. proposed region-based CNN (R-CNN) which uses
selective search [20] to generate around 2000 region proposals and “AlexNet” [15] to extract features,
and a set of Support Vector Machines (SVMs) [21] and a regression model to classify and localize
objects. However, the Region-CNN (R-CNN) is computationally expensive and slow, and not widely
used in actual applications because it requires thousands of forward computations from the CNN to
perform object detection for a single image. To address the drawbacks of R-CNN, Fast R-CNN [22]
was developed by Girshick et al. Fast R-CNN only performs CNN forward computation on the image
as a whole, so it shows higher speed and accuracy than R-CNN. Despite the better performance, Fast
R-CNN generates many proposed regions through an external method like selective search which is
time consuming. In 2016, a region proposal network (RPN) was presented to generate nearly cost-free
region proposals in [23], and Ren et al. introduced the Faster R-CNN by combining the RPN and
Fast R-CNN for object detection. The Faster R-CNN reduces the computational cost through sharing
convolutional features between RPN and Fast R-CNN. Moreover, the novel RPN also improves the
overall precision of object detection.

In computer vision, the objects of deep learning are often natural images, including pedestrians,
vehicles, animals, and human faces, etc., but there are few studies on aluminum profile surface defects
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detection using the deep learning. Therefore, in this paper, we propose a multiscale defect-detection
network for detecting the aluminum profile surface defects, which was based on the use of CNNs. The
network is based on Faster R-CNN and the feature pyramid network (FPN) [24], and can effectively
detect surface defects with various scales.

The rest of this paper is organized as follows. In Section 2, the dataset for training and evaluating
the network is described. The multiscale defect-detection network is presented in Section 3, including
the architecture of the network and how to train the network. Section 4 gives an experiment for
training the network, including the implementation details of the experiment and the loss in the
training process. In Section 5, the evaluation results of the network are presented. The paper ends with
a summary of the major findings in Section 6.

2. Dataset

2.1. Dataset of the Network

Figure 1 shows the images of aluminum profile surface defects for training and evaluating the
multiscale defect-detection network, and the resolution of each image was 2560 × 1920 pixels. The
aluminum profile surface defects dataset was from [25]. There were ten types of defects on the
aluminum profile: Non-Conductive (NC), Scratch, Corner Leak (CL), Orange Peel (OP), Leakage, Jet,
Paint Bubble (PB), Crater, Parti-color (PC), Dirty Point (DP), and the defects were marked with a ground
truth box which is like the red rectangle in Figure 1. The total number of images with defects was
3005, including 2776 images with a single type of defect and 229 images with multiple types of defects.
To obtain the training dataset, images were randomly chosen from the overall dataset so that the
training dataset contained about 90% of images of each defect type. Thus, there were 2705 images for
training and 300 images for testing. Figure 2 shows the number of images with defects in each category.
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As can be seen in Figure 1, some defects were particularly small, such as PB and DP, and some
defects were extremely narrow and long, like Crater. The defects with abnormal size increased the
difficulty of defect detection.

2.2. Data Augmentation

Convolutional neural networks (CNNs), especially deep ones, are likely to be prone to overfitting
when the training dataset is small. The aluminum profile surface defects dataset we used comprised
only several thousand samples, which may not fully sustain the training of deep CNNs. Moreover, it
is time-consuming and laborious to make large training dataset with defect location annotations by
professional annotators.

Therefore, a data augmentation technique [26] is performed over the original defect dataset with
the aim of dataset expansion. To do so, each image and corresponding ground truth boxes are passed
through some transformations: vertical flip, horizontal flip, and horizontal vertical flip (shown in
Figure 3).
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3. Method

To classify and localize defects on the aluminum profile surface, the multiscale defect-detection
network based on Faster R-CNN was proposed. The overall schematic architecture of the network
is presented in Figure 4. The Faster R-CNN system was composed of Feature Extraction Network
(FEN), Region Proposal Network (RPN), Region-of-Interesting (ROI) Pooling, and Classification
and Regression Layer. Considering the characteristics of surface defects of aluminum profiles, the
idea of feature fusion from FPN was added to the basic Faster R-CNN to improve defect detection
performances. The details of the multiscale defect detection are explained in this section.

Materials 2019, 12, x FOR PEER REVIEW 4 of 15 

 

As can be seen in Figure 1, some defects were particularly small, such as PB and DP, and some 
defects were extremely narrow and long, like Crater. The defects with abnormal size increased the 
difficulty of defect detection. 

2.2. Data Augmentation 

Convolutional neural networks (CNNs), especially deep ones, are likely to be prone to 
overfitting when the training dataset is small. The aluminum profile surface defects dataset we used 
comprised only several thousand samples, which may not fully sustain the training of deep CNNs. 
Moreover, it is time-consuming and laborious to make large training dataset with defect location 
annotations by professional annotators. 

Therefore, a data augmentation technique [26] is performed over the original defect dataset with 
the aim of dataset expansion. To do so, each image and corresponding ground truth boxes are passed 
through some transformations: vertical flip, horizontal flip, and horizontal vertical flip (shown in 
Figure 3). 

Original 
image

Horizontal 
flip

Vertical 
flip

Horizontal
vertical
flip

 
Figure 3. Data augmentation. 

3. Method 

To classify and localize defects on the aluminum profile surface, the multiscale defect-detection 
network based on Faster R-CNN was proposed. The overall schematic architecture of the network is 
presented in Figure 4. The Faster R-CNN system was composed of Feature Extraction Network 
(FEN), Region Proposal Network (RPN), Region-of-Interesting (ROI) Pooling, and Classification and 
Regression Layer. Considering the characteristics of surface defects of aluminum profiles, the idea of 
feature fusion from FPN was added to the basic Faster R-CNN to improve defect detection 
performances. The details of the multiscale defect detection are explained in this section. 

RPN

FEN

Roi Pooling

4096 4096

1*1 1*1 1*1
*2 *2 *2&1*1

3*3 3*3 3*3 1*1
+ + +

conv5_x

conv2_x
conv3_x

conv4_x

P5P4P3P2 P6

conv1

1*1：1*1 conv
3*3：3*3 conv

*2：2 times upsampling
lateral connections+

Fully-connected layer

Classification Layer

Regression Layer

 

Figure 4. Architecture of the multiscale defect-detection network. Figure 4. Architecture of the multiscale defect-detection network.



Materials 2019, 12, 1681 5 of 14

3.1. Feature Extraction Network

FEN is a large CNN that can automatically extract high-level features from input images. In this
study, we used ResNet101 [27] to obtain high-level and semantically strong features. The basic structure
of the ResNet101 is a bottleneck which solves the network performance degradation problem and leads
the CNN model deeper than ever. As depicted in Figure 5, the bottleneck contains three convolutional
layers: 1× 1, 3× 3, and 1× 1 convolutional layers, which is followed by a “Relu” activation function [28],
respectively, and “shortcut connections,” which are those skipping one or more layers and map input
directly to output without adding extra parameters.
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The detailed architecture of the ResNet101 for ImageNet is summarized in Table 1. The network
was composed of conv1, pool, conv2_x, conv3_x, conv4_x, conv5_x, average pool, 1000 d full-connected
layer (1000 d fc). The output of the fully connected layer was fed to a 1000-way softmax which could
produce a probability distribution over 1000 classes. When applied to extract feature maps, we only
use the conv1, pool, conv2_x, conv3_x, conv4_x, and conv5_x. The conv2_x, conv3_x, conv4_x, and conv5_x
were constructed by bottlenecks stacked upon each other, and the number of bottlenecks of each section
is shown in Table 1. Because of the “very deep” network, high-level semantic features that facilitate
subsequent recognition could be obtained from the conv5_x.

Table 1. Architecture of the ResNet101.

Layer Name Output Size 101-Layer

conv1 112× 112 7 × 7, 64, stride 2
pool 56× 56 3 × 3 max pool, stride 2

conv2_x 56× 56

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

conv3_x 28× 28

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

conv4_x 14× 14

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23

conv5_x 7× 7

 1× 1, 512
3× 3, 512

1× 1, 2048

× 3

1× 1 average pool, 1000 d fc, softmax

However, the high-level feature maps are usually low-resolution; so when small scale defects
on the aluminum profile were mapped into high-level features, the representational capacity for the
detection of these defects was weakened. The idea of feature fusion is to combine low-resolution,
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semantically-strong features with high-resolution, low-level features. As shown in Figure 6, the
architecture of feature fusion in the multiscale defect-detection network adopted a top-down pathway
and lateral connections. The top-down pathway produced higher resolution and semantically stronger
features by up-sampling semantically stronger, but lower resolution feature maps to nearest lower
level features’ scale, and then these features were added to the nearby low-level features via lateral
connections. Therefore, a set of multiscale feature maps: {P2, P3, P4, P5} in which all levels are
semantically strong were generated. In addition, an extra feature map P6, which is a simple two-stride
subsampling of P5, was added to the output feature maps. It is worth noting that the feature maps
{P2, P3, P4, P5, P6} would be transmitted to RPN and only {P2, P3, P4, P5} would be input into
ROI pooling.
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3.2. Region Proposal Network

After feature fusing, RPN can generate region proposals or regions of interest (ROI), which are
rectangular regions surrounding defects, including the probability of being foreground (containing
defects) in each proposal. The schematic structure of an improved RPN is presented in Figure 7.
The improved RPN is a fully convolutional network, which is naturally implemented with a
3 × 3 convolutional (conv) layer followed by two sibling 1 × 1 convolutional (conv) layers for
classification and regression. Concretely, we attach the fully convolutional network (3 × 3 conv and
two 1 × 1 convs) to each feature map output by FEN, and then several vectors containing estimate
probability of defect/not-defect for each anchor and prediction coordinate transformation from anchors
to region proposals are generated.
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Anchors play an important role in the improved RPN. An anchor is a reference box, determined
by upper left and lower right coordinates: (x1, y1) and (x2, y2), as shown in Figure 8a. The anchor
which is previously assigned on the input image transforms the defect detection problem into whether
the anchor surrounds any defects and how far away the defect is from the anchor (shown in Figure 8b).
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Based on the work of Lin et al. [24], we defined the anchors to have areas of {322, 642, 1282, 2562, 5122}
pixels corresponding to {P2, P3, P4, P5, P6} in the improved RPN. Moreover, the anchor in each feature
map has three aspect ratios: {1:2, 1:1, 2:1}. In the improved RPN, there are 15 kinds of anchors, and
approximately 306,900 anchors set on the input image.
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Figure 8. (a) Fifteen kinds of anchors; (b) anchors set on the input image.

Although the improved RPN could create a large number of anchors, some of which may be
close to defects, these anchors provide coarse localization and need to be refined. The regression layer
is a simple, inexpensive technique which can compensate for the anchors’ weakness at localization.
Concretely, it attempts to learn a transformation d × (A) that maps the anchors to the region proposal.
As described in Figure 9a, A is the anchor, G is the ground truth box, and G’ is the predicting region
proposal, which are specified as a set of center coordinates and a width and height in pixels, where
A = (Ax, Ay, Aw, Ah). Thus, the transformation d × (A) could transform A into G’ which is closer to G
and better captures the defect:

G′x = Awdx(A) + Ax

G′y = Ahdy(A) + Ay

G′w = Aw exp(dw(A))

G′y = Ah exp(dh(A))

(1)
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3.3. ROI Pooling

The region proposals output from the improved RPN have different dimensions, and the input
of final classification and regression layer need to be the same size, so the purpose of ROI pooling is
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to perform max pooling to convert the features inside any proposals into vectors with a fixed size
(e.g., 7 × 7). The specific operation of ROI pooling is shown in Figure 9b. Firstly, the region proposals
with different sizes are divided into equal-sized sections, such as 7 × 7; then, the max value in each
section is output, and fixed-size vectors can be obtained.

In addition, the region proposal with (x1, y1) and (x2, y2) need to be mapped to the feature maps
before the operation ROI pooling. There are four feature maps {P2, P3, P4, P5} input into ROI pooling,
so it is important to determine which feature map the region proposal belongs to. As per Lin [24], we
assigned a region proposal of width (w) and height (h) (on the input image) to the feature map Pk by:

k = 4 + log2(
√

wh/224) (2)

Intuitively, if the region proposal’s scale is 512 × 512, it should be mapped to P5. The mapping
method is to reduce coordinates of the anchor to the down-sampling multiple of the input image
to the feature map. For example, we defined the anchor with area of 5122 pixels on the P5 feature
map. Therefore, one anchor which is center at the input image with scale {−256, 256, 256, −256 } is
{−8, 8, 8, −8} when mapped to P5.

3.4. Classification and Regression Layers

The classification and regression layers are composed of fully-connected layers. For the
classification layer, it outputs a vector with the predicting probability of 11 classes (10 defects
plus 1 background class); the regression layer outputs four parameters for each class to refine the region
proposals again. Before the final classification and regression layer, there are two hidden, 1024 d fully
connected layers which map the learned features to the sample space for classification and regression.

3.5. Network Training

The multiscale defect-detection network is composed of the architecture of the network and
weights of the convolutional layers. When the design of the network structure was completed, we
needed to obtain the optimal weights of the convolutional layers. Network training is a process that
realizes the optimization of weights and leads the prediction of the network approximating to the truth
of inputs, and it consists of forward propagation and backward propagation. Forward propagation
is the calculation and storage of intermediate variables (including outputs) for the network in the
order from input to output. Backward propagation refers to the method of calculating the losses
(the difference between outputs and the truth of inputs) of the network and updating the weights
using the gradient from the losses. The losses of the multiscale defect-detection network are from the
improved RPN and the Classification and Regression layers. In the training, the selection of the losses
is extremely significant.

The improved RPN is trained end-to-end, for both the classification and regression layers. We
used the multitask loss L in Fast R-CNN [22] to train the improved RPN:

L(pi, ti) =
1

Ncls

∑
Lcls(pi, pi

∗) + λ
1

Nreg

∑
i

pi
∗
× Lreg(ti, ti

∗) (3)

where i is the index of an anchor in a mini-batch, and in the classification loss p* and p are the ground
truth label and predicted probability of being defects in the anchor, respectively. In the regression loss,
ti and ti* are vectors representing the geometrical difference between the anchor and the predicting
region proposal, as well as the anchor and the ground truth box, respectively, and ti* is calculated as:

tx
∗ = (Gx −Ax)/Aw

ty
∗ = (Gy −Ay)/Ah

tw
∗ = log(Gw/Aw)

th
∗ = log(Gh/Ah)

(4)
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Additionally, the classification loss is calculated as:

Lcls =
∑

i

−pi
∗
× log(pi) − (1− pi

∗) × log(1− pi) (5)

The regression loss is calculated as:

Lreg =
∑
i

smoothL1(ti
∗
− ti)(

smoothL1(x) =
{

0.5x2 if |x| < 1
|x| − 0.5 otherwise

) (6)

Moreover, we use the same loss as the improved RPN to train the Classification and Regression
layers, which are also trained end-to-end.

4. Experiments

4.1. Implementation Details

In the research on recognition of aluminum profile surface defects, all experiments were performed
using Python 3.5, PyTorch as the deep learning library, cuda 9.1 and cudnn 5.1 on Google Cloud
Platform with a 8 GB memory NVIDA Tesla K80 graphics processing unit (GPU). While training the
multiscale defect-detection network, we applied scaling of 960 on the shorter side of input images
(with the resolution of 2560 × 1280), and then normalized each image by making it have fixed means
and variances. When calculating the losses of the network, λ = 1 was used both in RPN’s and in the
Classification and Regression layers’ loss function. In addition, weights of the network were improved
by stochastic gradient descent (SGD), including a learning rate of 0.001, momentum of 0.9, and weight
decay of 0.0005. In the training of the network, we proposed the use of one in batch size (batch means
the number of input images), and 50 epochs to improve the performance (epoch means the number of
the network is trained).

When evaluating the performance of an object detection network, average precision (AP) is often
used. Detailed descriptions of AP can be seen in the paper by Everingham et al. [29]. In the multiscale
defect detection, we used mean AP (mAP) which is defined as the average of calculated APs for ten
types of defects to evaluate.

4.2. Loss in Network Training

During the process of network training, it is necessary to visualize the loss on the training dataset
in time. Whether the defect-detection network is effective can be judged by the trend of the loss
curve. Moreover, the loss can guide the adjustment of parameters in the network, including training
epoch, learning rate, weight decay, and structural optimization. The total losses of the multiscale
defect-detection network consist of the classification loss and regression loss in RPN, and classification
loss and location loss in the Classification and Regression layers. In the training, the various losses can
be represented by total_loss, rpn_cls_loss, rpn_box_loss, cls_loss, and loc_loss, respectively.

The loss curves during the training are shown in Figure 10. In this study, the network is trained
on all training dataset in each epoch, and the various losses of the network are recorded every 50 steps
(one step equals one image), so there are 2700 iterations totally in all loss curves (one iteration equals
50 steps). As shown in Figure 10, all kinds of loss curves display a downward trend, and the loss
decreases greatly at the beginning of training, indicating that the learning rate is appropriate and the
gradient descent is carried out. Then, the loss curves tend to be stable after training to a certain epoch,
which indicates that the network starts to converge. Thus, the parameters we selected in Section 4.1
are appropriate.
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Figure 10. (a) The total_loss curve during the process of network training; and (b) the roi_cls_loss,
roi_loc_loss, rpn_cls_loss, and rpn_loc_loss curves during the training.

5. Results and Discussion

After finishing the training of the network, we used 300 test images over 10 defect categories,
randomly chosen from the overall dataset, to evaluate the multiscale defect-detection network. We
recorded the AP for the ten types of defects and the mAP. Then, aluminum surface defect detection
results output from the network were displayed. Lastly, we computed several saliency maps [30],
specific to given images and classes, to represent the importance to the network at every location on
input images.

5.1. mAP

Table 2 shows the mAP of Faster R-CNN and the multiscale defect-detection network at test
images. For Faster R-CNN, mAP was 63.3%, and the detection time was 0.73 s per image. For the
multiscale defect-detection network, we achieved a mAP of 75.8%, and the large improvement of the
network over Faster R-CNN illustrates that the idea of feature fusion promotes recognition accuracy
on aluminum profile surface defects. Additionally, the detection time of the network was a little more
than Faster R-CNN, but the increase was not obvious and did not influence the defect detection.

Table 2. Performance comparison with different networks.

Network mAP (%) Time (s/image)

Faster Region- CNN (R-CNN) 63.3 0.73
Multiscale Defect-Detection Network 75.8 0.84

The APs for ten types of defects of the Faster R-CNN and multiscale defect-detection network are
shown in Figure 11. For Corner Leak (CL), Orange Peel (OP), Leakage, Crater, and Parti-Color (PC),
both networks achieved high APs, nearly at 100%. For Paint Bubble (PB) and Dirty Point (DP), the
scales of which were small, APs of the multiscale defect-detection network was greatly higher than
Faster R-CNN, which illustrates the improvement of the network in the detection of small size defects.
As can be seen in Table 2 and Figure 11, the mAP of the multiscale defect-detection network and the
APs for several types of defects were still low, so there were many defects that were not detected. These
missed detections may have been caused by the small training dataset. Therefore, in future studies, a
larger dataset in each category will be generated to improve the network’s detection capacity.

5.2. Aluminum Surface Defect Detection Results

Figure 12 shows the detection results of aluminum surface defect images using the multiscale
defect-detection network. The position of the defects is marked by a green rectangular box, and the
defect category and the confidence of the category are given in the upper left corner of the box.



Materials 2019, 12, 1681 11 of 14

Materials 2019, 12, x FOR PEER REVIEW 11 of 15 

 

 

Figure 11. Average precisions (APs) for ten types of defects of Faster R-CNN and the multiscale 

defect-detection network. 

5.2. Aluminum Surface Defect Detection Results 

Figure 12 shows the detection results of aluminum surface defect images using the multiscale 

defect-detection network. The position of the defects is marked by a green rectangular box, and the 

defect category and the confidence of the category are given in the upper left corner of the box. 

Images with a single type of defect are shown in Figure 12a, DP, PB, CL, and OP are successfully 

detected. Besides, although DP scatters on the aluminum profile surface in Figure 12a, almost all of 

them are detected, which indicates that the network has a strong detection capability in small size 

defects. In Figure 12b, we display the images with multiple types of defects. Despite all defects being 

successfully recognized, the location of the rectangular boxes had some minor errors; for example, 

the box surrounding Non-Conducting (NC) was too large, and the box positioning the scratch did 

not completely surround the scratch. These problems are related to incorrect location annotations of 

aluminum surface defect images.  

  

84.6

48.5

96.9 97.9 96.9

42.5

47.2

100.0 100.0

43.3

74.5

28.4

97.4

91.8

97.0

14.1 12.9

100.0 100.0

17.2

0

20

40

60

80

100

A
P

(%
)

 Multiscale Defect Detection Network

 Faster R-CNN

NC Scratch CL OP Leakage Jet PB Crater PC DP

Figure 11. Average precisions (APs) for ten types of defects of Faster R-CNN and the multiscale
defect-detection network.
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Images with a single type of defect are shown in Figure 12a, DP, PB, CL, and OP are successfully
detected. Besides, although DP scatters on the aluminum profile surface in Figure 12a, almost all of
them are detected, which indicates that the network has a strong detection capability in small size
defects. In Figure 12b, we display the images with multiple types of defects. Despite all defects being
successfully recognized, the location of the rectangular boxes had some minor errors; for example,
the box surrounding Non-Conducting (NC) was too large, and the box positioning the scratch did
not completely surround the scratch. These problems are related to incorrect location annotations of
aluminum surface defect images.

5.3. Saliency Maps

A saliency map is an image that shows which pixels in the input image should be changed to affect
the class score the most. Such pixels also are related to the defect location in the input image. Therefore,
through the saliency map, it can intuitively analyze which part of the aluminum profile defect image
that the multiscale defect-detection network is interested in and thus can verify the effectiveness of the
network. The saliency map is computed by the derivative of the loss of the classification layer with
respect to the input image in the backward propagation. Detailed calculation of the saliency map can
be seen in the paper by Simonyan et al. [30].

Figure 13 includes aluminum profile defect images and corresponding saliency maps. The defect
images are shown in Figure 13a, and red rectangular boxes roughly indicate the location of the defects.
In Figure 13b, we show the saliency maps in which the relatively bright place is the area where the
multiscale defect-detection network focuses on. As can be seen in the figure, the focus of the network is
on the aluminum profile, and the image background is selectively ignored. In addition, the brightness
of the defect on the aluminum profile is particularly high in the saliency maps, indicating that the
network mainly pays attention to the defects, which also confirms the effectiveness of the network.
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Figure 13. (a) Aluminum profile defect images; (b) saliency maps.

6. Conclusions

Defects on aluminum profile surfaces will significantly influence the performance, reliability,
and safety of products. Artificial inspection has low precision and is time consuming. Moreover,
traditional machine vision-based defect detection methods overly rely on hand-crafted features, which
lack robustness and need to be carefully designed by experienced programmers. Therefore, in this
paper, we propose a defect-detection network based on deep learning which can automatically extract
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abstract invariable features from a large dataset, rather than designing low-level features artificially.
The major findings of this paper can be summarized as follows:

(1) A multiscale defect-detection network based on Faster R-CNN is proposed to recognize aluminum
profile surface defects. Considering the characteristics of defects on the aluminum profile surface,
we add the idea of feature fusion to the basic Faster R-CNN to improve detection performances.

(2) The training images of aluminum profile surface defects are used to train the network. We adopt
a data augmentation technique to expand the dataset. In the training process, we utilize the
various losses to adjust parameters of the network.

(3) The performance of the trained multiscale defect-detection network is evaluated on 300 test
images. Compared with Faster R-CNN, the multiscale defect-detection network achieves a higher
mAP, which is 75.8%. For the small size defects (e.g., Paint Bubble and Dirty Point), the network
gets higher APs, which illustrates the effectiveness of the feature fusion. In addition, we display
the detection results of aluminum profile surface defects images and the saliency maps, which
can verify the effectiveness of the network architecture.

In the future, more aluminum profile surface defects images in each category will be provided to
train the network. In-depth analysis for the poor performance of the detection network in some types
of defects will be performed, and the architecture will be improved.
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