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Abstract: The oblique angle deposition of Ag with different deposition rates and substrates was studied
for surface-enhanced Raman spectroscopy (SERS) efficiency. The deposition rate for the Ag substrate
with maximum SERS efficiency was optimized to 2.4 Å/s. We also analyzed the morphology of
Ag nanorods deposited at the same rate on various substrates and compared their SERS intensities.
Ag deposited on SiO2, sapphire, and tungsten showed straight nanorods shape and showed relatively
high SERS efficiency. However, Ag deposited on graphene or plasma-treated SiO2 substrate was
slightly or more aggregated (due to high surface energy) and showed low SERS efficiency.
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1. Introduction

Surface-enhanced Raman spectroscopy (SERS) has been actively studied due to its ability to detect
the traces of target molecules [1,2]. The nanostructures of materials with the SERS effect are synthesized
and used as substrates to detect the target analyte [3,4]. It is known that the SERS effect is caused by
the following two effects. The first is the electromagnetic effect, localized surface plasmon resonance
(LSPR) [5,6], which refers to the amplification of the analyte signal by plasmon resonance on the surface of
the nanostructured material (especially the metal). The second is the chemical effect [7,8]. Amplification of
the signal occurs by charge transfer between the SERS material and the analyte. The SERS effects of
organic and inorganic semiconductor materials are largely dependent on the chemical effects.

So far, noble metals such as Ag [9,10], Au [11,12], Cu [13], and inorganic semiconductor materials
such as ZnO [7], TiO2 [8], and organic semiconductors [14] have been studied as materials of SERS
substrates. Among them, Ag has been most actively studied due to its wide reactivity in the visible
range [15] and relatively low cost compared to Au and Pt, and relatively high stability from corrosion
compared to Cu [16]. The shape and spacing of the nanostructures, as well as the materials, are very
important for the SERS substrate. Sputtering [17,18], solution method [19,20], and electrochemical
reaction method [21] were studied to control them. The solution method is advantageous for synthesizing
nanostructured SERS substrate, but it takes longer than other methods. Lithography-based sputtering
is convenient for fabricating nanostructured SERS substrate, but it requires a lot of money and time.
In recent years, research has been reported on obtaining a nanorod-structured SERS substrate by simply
tilting the substrate during sputtering [22–24]. In this way, SERS substrates can be fabricated at a lower
cost in a shorter time than other methods.

In this study, we fabricated Ag nanorod arrays for SERS substrates using this oblique angle
deposition method and investigated the effects of various deposition rates and substrates of them.
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The difference in the surface energy depending on the substrate changes the morphology of the Ag film.
Basically, the deposition of Ag by oblique angle deposition first nucleates the Ag on the substrate,
which causes the shadow effect and makes Ag grow into nanorods [25]. However, if the surface energy
is very small or large, Ag will grow to other morphology because the size of Ag changes during
nucleation. The fabricated Ag nanorods arrays were confirmed by a scanning electron microscope (SEM)
and the SERS efficiency of each substrate was analyzed using Rhodamine 6G (R6G) as a target molecule.

2. Materials and Methods

2.1. Oblique Angle Deposition of Ag

Ag nanorod arrays were deposited by oblique angle deposition using an electron beam evaporator
at room temperature. The deposition angle was 88◦. Figure 1 shows the schematic image of the oblique
angle deposition. The deposition rates were 1 Å/s, 1.7 Å/s, 2.4 Å/s, and 3.1 Å/s, and the base pressure
was below 5 × 10−6 Torr. The deposition times were 83 min, 49 min, 34 min, and 26 min, and the final
thickness was 175.32 nm, 197.40 nm, 222.08 nm, and 285.71 nm, respectively. Various substrates
were used to observe the tendency of Ag deposition according to the surface energy of the substrate.
Si/SiO2 which is most commonly used as a substrate and graphene (G) with lower surface energy were
selected. Tungsten (W), sapphire, and O2 plasma-treated Si/SiO2(P-Si/SiO2) were used as substrates
with high surface energy (high wettability). Table 1 summarizes all the samples produced. The Si/SiO2

and sapphire substrates were rinsed sequentially with acetone, isopropyl alcohol, and deionized water
for 3, 3, and 2 min prior to deposition. The tungsten layer was deposited on rinsed Si/SiO2 with
magnetron sputtering. The sputtering was performed at 100 W, 20 sccm of Ar flow, 10−6 Torr of base
pressure, and at room temperature. For the G substrate, the graphene grown on Cu foil through
chemical vapor deposition was transferred to the Si/SiO2 substrate as written in our former articles [26].
Finally, for the P-Si/SiO2 substrate (and O2 plasma etched sapphire), each wafer was treated with
reactive-ion plasma with 50 W, and 50 sccm O2 flow for 5 min.
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Table 1. Sample treatment regarding deposition rates and substrates. Experiment 1 is an experiment
on the morphology of Ag depending on the deposition rate, and Experiment 2 is an experiment on
the morphology of Ag depending on the substrate. They are described in Sections 3.1 and 3.2 respectively.

Experiment Series Deposition Rate
(Å/s) Substrate

Experiment 1

1.0 Si/SiO2
1.7 Si/SiO2
2.4 Si/SiO2
3.1 Si/SiO2

Experiment 2

2.4 Sapphire
2.4 Si/SiO2/W
2.4 Si/SiO2/G
2.4 P-Si/SiO2

2.2. Characterization

The Ag nanorods arrays deposited by oblique angle deposition were characterized by SEM,
and XRD with respect to the deposition rates and the substrates. The morphology of the Ag nanorods
arrays was observed by the FE-SEM (Hitachi S-4800) with top view and a cross-sectional view,
and XRD patterns were obtained with Rigaku MiniFlex spectrometer (3 kW, Cu-Kα, HD307172).
The contact angle measurement was conducted with 100 µL of pure water drop and calculated with
a half-angle method. The SERS measurement was carried out with 100 ppm (2.1 × 10−4 M) R6G
solution and the Raman spectra were obtained by high-resolution Raman spectrometer (HORIBA,
Jobin Yvon, LabRam HR Evolution) with 633 nm He-Ne laser as the excitation source, 1% of laser
power, and the illuminating spot size was about 0.89 µm in a diameter through a 100× objective.
The acquisition time is 1 s with 2 accumulation times. Five spectra of each sample were obtained
and averaged.

3. Results

3.1. Differences in Ag Nanorods According to Deposition Rate

Differences of the Ag nanorods arrays for different deposition rates were analyzed, shown in
Figure 2. SEM images in Figure 2a show the morphology of deposited Ag layer. When deposited
normally (without tilting), the Ag film showed a flat surface as shown in Figure 2a (1), while the Ag layers
deposited with oblique angle deposition grew as nanorod-like structures. The tilted angles of
the Ag nanorods shown in Figure 2a (2–5) were 23◦, 26◦, 33◦, and 38◦, respectively. As the deposition
rate increases, the tilted angle of the Ag nanorods increase. When the deposition rates were 1 Å/s
and 1.7 Å/s, it can be confirmed that the rods are connected to the other rods. When the deposition rate
was higher than 2.4 Å/s, the rods were not connected but stood alone. However, when the deposition rate
became 3.1 Å/s, the number of rods per unit area increased and became relatively dense. The densities
of the nanorods at 2.4 Å/s and 3.1 Å/s are 1.28 × 10−4 nm−2 and 2.8 × 10−4 nm−2, respectively. As shown
in Figure 2b, SERS spectra of R6G on the Ag substrates which are deposited with each rate were
observed. Peaks corresponding to the spectrum of R6G were observed, which are shown in Table 2.
For the quantitative analysis, the SERS spectra of R6G adsorbed on the normally deposited Ag was
obtained and the SERS intensities of the oblique angle-deposited Ag at 612 cm−1 were divided by
the spectrum of it. As shown in Figure 2c, the SERS efficiency of Ag substrate with the deposition rate
of 1 Å/s and 1.7 Å/s (compared to the normally deposited Ag) were about 300 times. When the deposition
rate was 2.4 Å/s, the SERS efficiency increased to about 850 times. It is reasonable to assume that
R6G can be detected at lower concentrations because the intensity of R6G decreases linearly as R6G
concentration decreases [27]. However, when the deposition rate increased to 3.1 Å/s, the SERS
efficiency is significantly reduced to about 70. At lower deposition rates, the light of the R6G molecule
is scattered by the LSPR effect of one Ag rod that the R6G molecule was absorbed on because of
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the relatively large spacing between Ag nanorods and the low surface area due to the connection of
rods. When the spacing between nanorods narrows to a certain interval, a nanogap (called hot spot)
is created in which the R6G molecule is affected by several nanorods. Therefore, the highest SERS
efficiency was obtained when the deposition rate was 2.4 Å/s. Finally, at 3.1 Å/s, the density of nanorods
is so high that the surface area that R6G can be absorbed on reduced, resulting in a reduction in
SERS efficiency.
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Figure 2. (a) Top view(upper) and cross-section(below) SEM images of (1) normally deposited Ag film
and (2–5) Ag nanorods arrays deposited at different rates of 1, 1.7, 2.4, and 3.1 Å/s, respectively. Si/SiO2

was used for the substrate. (b) SERS spectra of R6G absorbed on Ag in (a). (c) SERS efficiency of each
Ag substrate.

Table 2. Assignment of Raman bands in spectra of R6G.

Raman Shift (cm−1) Assignment Reference

612 C–C–C ring in-plane bending [28–30]
776 C–H out-of-plane bending [28–30]
1189 [28–30]
1314 Aromatic C–C stretching [28–31]
1363 Aromatic C–C stretching [28–31]
1511 Aromatic C–C stretching [28–30]
1599 Aromatic C–C stretching [28–31]
1647 Aromatic C–C stretching [28–30]

3.2. Differences in Ag Nanorods According to Substrate

The growth characteristics of Ag nanorods on each substrate were observed. Si/SiO2, Sapphire, W,
G, and P-Si/SiO2 were used for the substrates. In Figure 3a, SEM images of Ag nanorods arrays for
each substrate are shown. In the case of Si/SiO2 and W, Ag nanorods of similar shape were observed.
On the sapphire substrate, Ag was deposited like film at first and then grew like nanorods similar
to Si/SiO2 and W. In the case of Ag deposited on G, several nanorods were connected in one line



Materials 2019, 12, 1581 5 of 9

and seem to have a wave-like structure rather than nanorod arrays. Ag deposited on P-Si/SiO2 was
clumped to such an extent that it was difficult to identify the shape of the rod. The SERS intensities
for each substrate are shown in Figure 3b, and the relative SERS efficiencies are plotted in Figure 3c,
the same way as in Figure 2c. Ag nanorods on Si/SiO2, sapphire, and W which had similar shapes
showed similar SERS efficiencies. In the case of Ag nanorods substrate deposited on G, SERS efficiency
decreased due to surface area decrease due to rod clustering. The Ag nanorods deposited on P-Si/SiO2

showed the lowest SERS efficiency, which is because of the large decrease of the surface area that
the R6G can be affected. This difference in efficiency can be explained by assuming that the surface
of P-Si/SiO2 is flat. If the same degree of surface plasmon resonance occurs on all surfaces of Ag,
the increase in SERS effect can be explained by an increase in the surface area of Ag. When the average
diameter and length of Ag nanorods exposed to light are 100 nm and 200 nm, the surface area per
Ag nanorod is 20,000π × 10−6 µm2, and the number of nanorods per 1 µm2 is 1.28 × 102. The surface
area corresponding to 1 µm2 in flat Ag surface is 8.042 µm2 in Ag nanorods arrays. This 8-fold
increase in surface area corresponds to an increase in SERS efficiency of about 8 times as shown
in Figure 3c. This can also be explained by the UV-vis spectra of Ag deposited on the sapphire
and O2 plasma etched sapphire shown in Figure 4. Ag on O2 plasma etched sapphire has lower
absorbance of light corresponding to 633 nm. Less absorption of light indicates a lower degree of
surface plasmon resonance.
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3.3. Contact Angle Differences According to Substrate

The contact angle of each substrate was measured to find out the cause of the change in growth
characteristics of the Ag rods according to the substrate. Figure 5a is the contact angle images of
water droplets on each substrate. The contact angle was 46◦ for Si/SiO2, 24◦ for sapphire, 12◦ for
tungsten, 61◦ for graphene and 18◦ for P-Si/SiO2. Figure 5b are SEM images of Ag deposited in
a thickness of 30 nm with oblique angle-deposition. For Si/SiO2, Ag was deposited like a nanodot.
For W, although it showed the lowest contact angle, Ag was deposited in a nanodot shape similar to
that of Si/SiO2. This is because when Ag nuclei are formed on W, Ag atoms are preferentially adsorbed
on Ag nuclei rather than W surface [32]. In sapphire and P-Si/SiO2 which have lower contact angles
than Si/SiO2, Ag was deposited as wide as a film. In the case of sapphire, since a complete Ag film
is formed, when Ag is deposited thereon, Ag nuclei are formed and undergo nanorod-like growth
when deposited on a new substrate. On the other hand, on P-Si/SiO2, which has a high coverage
but not a complete film, the adsorption of Ag occurs only on the Ag islands because the shadow
regions are formed due to the already deposited Ag islands. Since the coverage of these islands is very
high at this time, Ag is eventually deposited closer to the film than the nanorods arrays. In the case
of G, which has the highest contact angle, Ag islands are deposited in very low coverage. Because of
the low wettability of graphene, Ag nuclei are not produced much, and growth of the generated nuclei
mainly occurs. The nuclei grow to become islands and Ag deposited on the island eventually form
a wave-like structure.
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4. Conclusions

In this study, Ag nano-columns were deposited with electron beam evaporator using oblique
angle deposition. The optimized deposition rate was 2.4 Å/s, which showed a SERS efficiency of
about 850 times compared to a normally deposited Ag film. When the difference in Ag growth
between the various substrates was compared, it was observed that when the wettability was very
low (P/Si/SiO2) or very high (G), Ag did not grow like nanorods but grew like clumpy structure,
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