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Abstract: The paper introduces a semi-analytical approach to analyze free vibration characteristics of
stepped functionally graded (FG) paraboloidal shell with general edge conditions. The analytical
model is established based on multi-segment partitioning strategy and first-order shear deformation
theory. The displacement components along axial direction are represented by Jacobi polynomials,
and the Fourier series are utilized to express displacement components in circumferential direction.
Based on penalty method about spring stiffness technique, the general edge conditions of doubly
curved paraboloidal shell can be easily simulated. The solutions about doubly curved paraboloidal
shell were solved by approach of Rayleigh–Ritz. Convergence study about boundary parameters,
Jacobi parameters et al. are carried out, respectively. The comparison with published literatures,
FEM and experiment results show that the present method has good convergence ability and
excellent accuracy.

Keywords: stepped FG paraboloidal shell; general edge conditions; spring stiffness technique; free
vibration characteristics

1. Introduction

The stepped FG paraboloidal shells are very useful in the engineering. The vibration problems
of the structures have always been the concern of the research: Fantuzzi et al. [1] investigated free
vibration behavior of FG cylindrical and spherical shells. On the base of FSDT, Tornabene and Reddy [2]
used the GDQ approach to investigate the vibration behavior of FGM shells and panels. Based
on higher-order finite element method, Pradyumna and Bandyopadhyay [3] studied the vibration
behavior of FG structures. Jouneghani et al. [4] also investigated the characteristics of FG doubly
curved shells. Chen et al. [5] obtained the vibration characteristics of FG sandwich structure based
on shear deformation theory. Wang et al. [6–9] investigated the approach of Improved Fourier to
study vibration phenomenon of various structures. Tornabene et al. [10–12] used the GDQ method
to research four parameter FG composite structures. Fazzolari and Carrera [13] solved the vibration
issues of FG structures based on Ritz minimum energy approach. Kar and Panda [14] studied vibration
characteristics of FG spherical shell by FEM. Tornabene [15] focused on the dynamic behavior of FG
structures. Zghal [16] investigated the vibration characteristics of FG shells. Kulikov et al. [17] dealt
with a recently developed approach to analyze free vibration behavior of FG plates by the formulations
of sampling surfaces. Kapuria et al. [18] developed a four-node quadrilateral element method to
analyze dynamic vibration of FGM shallow shells.
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In field of FG stepped shells, Hosseini-Hashemi et al. [19] proposed an accurate solution to study
vibration characteristics of stepped FG plates. Bambill et al. [20] solved vibrations behavior of axially
FG beams with stepped changes in geometry. Vinyas and Kattimani [21,22] carried out the static
analysis of stepped FG beam and plates with various loads. Su et al. [23] presented an effective method
to study free vibration of stepped FG beams.

From literatures reviewed, we can find that many scholars applied Rayleigh Ritz method, GDQ
method, Improved Fourier series method, FEM and Haar Wavelet Discretization method etc. to study
vibration characteristics of FG doubly curved structures. There are no literatures put attentions on
free vibration problems of stepped FG paraboloidal shell. So, it is very important to propose a unified
formulation to study free vibration behaviors of stepped FG paraboloidal shell subject to general
edge conditions.

2. Fundamental Theory

2.1. The Description of the Model

The model of stepped FG paraboloidal shell is described in Figure 1. hi represents the thickness of
the structure. The stepped structure is obtained by the curve c1c2. The model is established on the basis
of orthogonal coordinate system (ϕ, θ, z), which represent axial, circumferential and normal directions,
respectively. The displacements are represented by u, v and w, respectively.
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The doubly-curved paraboloidal shell is shown in Figure 2. The displacement components
of stepped FG paraboloidal shell are represented by U, V and W. In addition, the doubly curved
paraboloidal shell is divided into H shell segments along axial direction [24,25].Materials 2018, 11, x FOR PEER REVIEW  3 of 22 
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Figure 2. The geometric of doubly curved paraboloidal shell.

The Young’s modulus E, Poisson’s ratios ν and mass density ρ of two typical FG models are
shown as follow [26–32]:

E(z) = (Ec − Em)Vc + Em (1a)

ρ(z) = (ρc − ρm)Vc + ρm (1b)

ν(z) = (νc − νm)Vc + νm (1c)

where c and m denote the ceramic and metallic constituents, respectively. The volume fractions Vc are
shown as follow [33]:

FGMI(a/b/c/p) : Vc =

[
1− a

(
1
2
+

z
h

)
+ b
(

1
2
+

z
h

)c]p

(2a)

FGMII(a/b/c/p) : Vc =

[
1− a

(
1
2
− z

h

)
+ b
(

1
2
− z

h

)c]p

(2b)

where z and p represent the thickness and power law exponent of the structure, respectively. We should
note that the value of parameter p takes only positive values. The symbols a, b and c are the key
parameters which affect the property of FG material largely. As the volume fraction, the total value
of which should be the one. From Equations (1) and (2), we can easily get that the functionally
graded material will be the isotropic material when the power law exponent equal to infinity or
zero. The variations Vc about various values of a, b, c and p are showed in Figure 3. In addition,
we should note that the distributions of volume fraction (2a) and (2b) are mirror reflections. Thus,
the Variations Vc of FGMII are ignored in Figure 3. The detailed descriptions of FG material are
reported in Refs. [34–36].
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Figure 3. The variations Vc about various values of a, b, c and p: (a) FGMI (a = 0; b = 0.5; c = 2; p);
(b) FGMI (a = 1; b = 0.5; c = 0.8; p); (c) FGMI (a = 0; b = −0.5; c = 1; p).

2.2. Energy Equations of Stepped FG Paraboloidal Shell

The displacements of ith segment in stepped FG paraboloidal shell are shown as below:

Ui
(ϕ, θ, z, t) = ui(ϕ, θ, t) + zψi

ϕ(ϕ, θ, t) (3a)
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Vi
(ϕ, θ, z, t) = vi(ϕ, θ, t) + zψi

θ(ϕ, θ, t) (3b)

Wi
(ϕ, θ, z, t) = wi(ϕ, θ, t) (3c)

The strains of stepped FG paraboloidal shell are shown as follow

εi
ϕ = ε0,i

ϕ + zκ0,i
ϕ εi

θ = ε0,i
θ + zκ0,i

θ (4a)

γi
ϕθ = γ0,i

ϕθ + zκ0,i
ϕθγi

ϕz = γ0,i
ϕzγi

θz = γ0,i
θz (4b)

where εi
ϕ, εi

θ , εi
ϕθ , γ0,i

ϕz, γ0,i
θz , ki

ϕ, ki
θ and ki

ϕθ are given as:

ε0,i
ϕ =

1
A

∂ui

∂ϕ
+

vi

AB
∂A
∂θ

+
wi

Rϕ
(5a)

ε0,i
θ =

1
B

∂vi

∂θ
+

ui

AB
∂B
∂ϕ

+
wi

Rθ
(5b)

γ0,i
ϕθ =

A
B

∂

∂θ

(
ui

A

)
+

B
A

∂

∂ϕ

(
vi

B

)
(5c)

κi
ϕ =

1
A

∂ψi
ϕ

∂ϕ
+

ψi
θ

AB
∂A
∂θ

(5d)

κi
θ =

1
B

∂ψi
θ

∂θ
+

ψi
ϕ

AB
∂B
∂ϕ

(5e)

κi
ϕθ =

A
B

∂

∂θ

(
ψi

ϕ

A

)
+

B
A

∂

∂ϕ

(
ψi

θ

B

)
(5f)

γ0,i
ϕz =

1
A

∂wi

∂ϕ
− ui

Rϕ
+ ψi

ϕ (5g)

γ0,i
θz =

1
B

∂wi

∂θ
− vi

Rθ
+ ψi

θ (5h)

For doubly curved paraboloidal shell, the symbols A and B are shown as below [37,38]:

A = Rϕ, B = Rθ sin ϕ (6)

Based on Hooke’s law, the stresses corresponding to strains can be expressed as:

σi
ϕ

σi
θ

τi
ϕθ

τi
ϕz

τi
θz


=


Q11(z) Q12(z) 0 0 0
Q12(z) Q11(z) 0 0 0

0 0 Q66(z) 0 0
0 0 0 Q66(z) 0
0 0 0 0 Q66(z)





εi
ϕ

εi
θ

γi
ϕθ

γi
ϕz

γi
θz


(7)

where σi
ϕ and σi

θ are normal stresses; τi
ϕθ , τi

ϕz and τi
θz are shear stresses. The Qij(z) are defined as follows:

Q11(z) =
E(z)

1− ν2(z)
, Q12(z) =

ν(z)E(z)
1− ν2(z)

, Q66(z) =
E(z)

2[1 + ν(z)]
(8)
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The force and moment resultants can be obtained as follow:
Ni

ϕ

Ni
θ

Ni
ϕθ

 =

 A11 A12 0
A12 A22 0
0 0 A66




ε0,i
ϕ

ε0,i
θ

γ0,i
ϕθ

+

 B11 B12 0
B12 B22 0
0 0 B66




ε0,i
ϕ

ε0,i
θ

γ0,i
ϕθ

 (9a)


Mi

ϕ

Mi
θ

Mi
ϕθ

 =

 B11 B12 0
B12 B22 0
0 0 B66




ε0,i
ϕ

ε0,i
θ

γ0,i
ϕθ

+

 D11 D12 0
D12 D22 0

0 0 D66




κi
ϕ

κi
θ

κi
ϕθ

 (9b)

{
Qi

ϕ

Qi
θ

}
= κ

[
A66 0
0 A66

][
γ0,i

ϕz

γ0,i
θz

]
(9c)

where κ is shear correction factor. Aij, Bij and Dij are obtained by following integral:

(Aij, Bij, Dij) =
∫ h/2

−h/2
Qij(z)(1, z, z2)dz (10)

The strain energy of the select segment can be expressed from Equation (11) as shown:

Ui =
1
2

y

V

(
Ni

ϕε0,i
ϕ + Ni

θε0,i
θ + Ni

ϕθγ0,i
ϕθ + Mi

ϕki
ϕ+

Mi
θki

θ + Mi
ϕθki

ϕθ + Qi
ϕγ0,i

ϕz + Qi
θγ0,i

θz

)
ABdϕdθdz (11)

To save the space of this paper, the Equation (11) can be expressed as Ui = Ui
S + Ui

B + Ui
BC.

The detailed description of Ui
S, Ui

B and Ui
BC are shown in Appendix A.

The maximum kinetic energy of the select segment can be obtained from Equation (12) as shown:

Ti = 1
2
t

V ρ(z)

[( .
U

i)2

+

( .
V

i)2

+

( .
W

i)2](
1 + z

Rϕ

)(
1 + z

Rθ

)
ABdϕdθdz = [ ]

= 1
2

ϕ1∫
ϕ0

2π∫
0

{
I0

[(
ui
)2

+
(

vi
)2

+
(

wi
)2
]
+ 2I1

(
uiψ

i
ϕ + viψ

i
θ

)
+ I2

[(
ψ

i
ϕ

)2
+
(

ψ
i
θ

)2
]}

ABdϕdθ

(12)

where the dot denotes the differentiation about time, whereas three integrals are defined as follows:

(I0, I1, I2) =

h/2∫
−h/2

ρ(z)
(

1 +
z

Rϕ

)(
1 +

z
Rθ

)(
1, z, z2

)
dz (13)

The energy in two sides of boundary springs can be expressed as:

Ub = 1
2

2π∫
0

h/2∫
−h/2

{
ku,0u2 + kv,0v2 + kw,0w2 + kϕ,0ψ2

ϕ + kθ,0ψ2
θ

}
ϕ=ϕr,0

Bdθdz

+ 1
2

2π∫
0

h/2∫
−h/2

{
ku,1u2 + kv,1v2 + kw,1w2 + kϕ,1ψ2

ϕ + kθ,1ψ2
θ

}
ϕ=ϕr,1

Bdθdz
(14)

where kt,0 (t = u, v, w, ϕ, θ) and kt,1 denote the value of springs at two sides.
The energy in connective springs of two neighbor segments is expressed as:

Ui
s =

1
2

2π∫
0

h/2∫
−h/2

 ku
(
ui − ui+1)2

+ kv
(
vi − vi+1)2

+ kw
(
wi − wi+1)2

+kϕ

(
ψi

ϕ − ψi+1
ϕ

)2
+ kθ

(
ψi

θ − ψi+1
θ

)2


i,i+1

Bdθdz (15)
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The total energy of the constraint conditions can be expressed as:

UBC = Ub +
H−1

∑
i=1

Ui
s (16)

2.3. Displacement Functions and Solution

Proper selection of the admissible displacement function is a critical factor for the accuracy of final
solution [39–43]. As displayed in literatures [44,45], classical Jacobi polynomials are valued in range of
φ ∈ [−1, 1]. Typical Jacobi polynomials P(α,β)

i (φ) of degree i are shown as below in present method.

P(α,β)
0 (φ) = 1 (17a)

P(α,β)
1 (φ) =

α + β + 2
2

φ− α− β

2
(17b)

P(α,β)
i (φ) =

(α+β+2i−1){α2−β2+φ(α+β+2i)(α+β+2i−2)}
2i(α+β+i)(α+β+2i−2) P(α,β)

i−1 (φ)

− (α+i−1)(β+i−1)(α+β+2i)
i(α+β+i)(α+β+2i−2) P(α,β)

i−2 (φ)
(17c)

where α, β > −1 and i = 2, 3, . . .
Thus, the displacement functions of shell segments can be written in form of Equation (18)

as shown:

u =
M

∑
m=0

UmP(α,β)
m (φ) cos(nθ)eiωt (18a)

v =
M

∑
m=0

VmP(α,β)
m (φ) sin(nθ)eiωt (18b)

w =
M

∑
m=0

WmP(α,β)
m (φ) cos(nθ)eiωt (18c)

ψϕ =
M

∑
m=0

ψϕmP(α,β)
m (φ) cos(nθ)eiωt (18d)

ψθ =
M

∑
m=0

ψθmP(α,β)
m (φ) cos(nθ)eiωt (18e)

where Um, Vm, Wm, ψϕm and ψθm are unknown coefficients. n and m denote the semi wave number
in axial and circumferential direction, respectively. M is highest degrees of semi wave number m.
The total Lagrangian energy functions L can be obtained as it is shown in Equation (19):

L =
H

∑
i=1

(
Ti −Ui

)
−UBC (19)

The total Lagrangian energy function L is shown in Equation (20):

∂L
∂ϑ

= 0 ϑ = Um, Vm, Wm, ψϕm, ψθm (20)

Substituting Equations (11), (12), (16), (18), (19) into Equation (20), then Equation (21) can be
obtained as: (

K−ω2M
)

Q = 0 (21)

where K and M denote stiffness and mass matrixes, respectively. Q is unknown coefficient matrix.
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3. Analysis of Examples

The general boundary conditions are denoted by the abbreviations. Thus the abbreviations F, C, SD,
SS and Ei respectively represent free, clamped, shear diaphragm, shear support and elastic boundary
conditions. The material properties are chosen as: Em = 70 GPa, Ec = 168 GPa, ρc = 5700 kg/m3,
ρm = 2707 kg/m3, νm = νc = 0.3, M = 8, α = 0, β = −0.5, H = 5. The geometrical dimensions are
chosen as follows: R0 = 0.2 m, R1 = 1 m, Lp = 1 m, h1:h2:h3:h4:h5 = 0.04:0.045:0.05:0.055:0.06 . The results
of this paper are handle by: Ω = ωR1

√
ρc/Ec.

3.1. Convergence Analysis

Figure 4 shows the frequency parameter of stepped FGMI (a = 1; b = −0.5; c = 2; p = 2) doubly
curved paraboloidal shell with different boundary parameters. We can get that the spring stiffness
values in range of 10–1010 Ec can converge to stable, regardless of the kinds of spring. In other words,
for clamped boundary condition, the spring stiffness can be assigned within the range of 10–1010 Ec.
Based on the boundary parameters analysis, the general edge constraints are be provided as shown
Table 1.

Table 1. Spring stiffness values.

BC ku,0, ku,1 kv,0, kv,1 kw,0, kw,1 kϕ,0, kϕ,1 kθ,0, kθ,1

F 0 0 0 0 0
SD 0 103 Ec 103 Ec 0 0
SS 103 Ec 103 Ec 103 Ec 0 103 Ec
C 103 Ec 103 Ec 103 Ec 103 Ec 103 Ec
E1 10−3 Ec 103 Ec 103 Ec 103 Ec 103 Ec
E2 103 Ec 10−3 Ec 103 Ec 103 Ec 103 Ec
E3 10−3 Ec 10−3 Ec 103 Ec 103 Ec 103 Ec

The relative percentage errors of stepped FGMI (a = 1; b = −0.5; c = 2; p = 2) paraboloidal shell
with various Jacobi parameters are presented in Figure 5. The results of α = β = 0 are selected as the
reference values. We can easily conclude from Figure 5 that different Jacobi parameters will lead to
almost the same results when n is a fixed value. The maximum relative error is less than 8 × 10−8.
Thus, we can conclude that displacement functions consisting with Jacobi polynomial and Fourier
series are perfectly appropriate. The most advantages of proposed method are the unified Jacobi
polynomials, which make the displacement functions easier to select in contrast with other approaches.
Figure 6 exhibits the results of stepped FG paraboloidal shell about truncation. We can get that the
convergent results can be guaranteed when M is higher than 5. M is defined as the value of eight in
this paper.
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Figure 4. Frequency parameters Ω of stepped FG paraboloidal shell with various boundary parameters.

Table 2 exhibits the frequency parameter Ω of FGMI (a = 1; b = 0; c; p) about the value of H, and
the verification model is a spherical shell. The results are compared with those in literature [46]. From
Table 2, we can conclude that the results will converge quickly as the value of H increase. We can also
conclude that very high value of M is unnecessary. In addition, it can be obtained from Table 2 that the
present method is strongly agreed with reference data.

Table 2. Frequency parameter Ω of the FGMI (a = 1; b = 0; c; p) spherical shell structure (BC; C–C, m = 1).

Power-Law
Exponent

Number of the Segment (He)
Ref [46]

n 2 3 4 5 6 7 8

p = 0.6

1 1.0569 1.0569 1.0568 1.0568 1.0568 1.0568 1.0568 1.0538
2 1.0379 1.0376 1.0374 1.0372 1.0371 1.0371 1.0370 1.0354
3 1.0319 1.0317 1.0314 1.0312 1.0312 1.0310 1.0310 1.0294
4 1.0760 1.0757 1.0755 1.0752 1.0751 1.0750 1.0749 1.0733
5 1.1588 1.1586 1.1584 1.1581 1.1581 1.1580 1.1580 1.1559
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Table 2. Cont.

Power-Law
Exponent

Number of the Segment (He)
Ref [46]

n 2 3 4 5 6 7 8

p = 5

1 1.0446 1.0446 1.0446 1.0445 1.0445 1.0445 1.0445 1.0411
2 1.0116 1.0115 1.0113 1.0111 1.0110 1.0109 1.0108 1.0085
3 1.0085 1.0083 1.0082 1.0080 1.0079 1.0079 1.0078 1.0053
4 1.0572 1.0571 1.0569 1.0568 1.0566 1.0565 1.0563 1.0539
5 1.1470 1.1468 1.1467 1.1465 1.1464 1.1464 1.1463 1.1433

p = 20

1 1.0282 1.0282 1.0281 1.0281 1.0281 1.0281 1.0281 1.0266
2 0.9958 0.9957 0.9956 0.9954 0.9953 0.9953 0.9952 0.9945
3 0.9927 0.9926 0.9924 0.9923 0.9922 0.9921 0.9920 0.9913
4 1.0407 1.0405 1.0404 1.0403 1.0403 1.0402 1.0399 1.0392
5 1.1290 1.1289 1.1287 1.1286 1.1285 1.1284 1.1284 1.1273
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Figure 5. Relative error of frequency parameters Ω in stepped FG paraboloidal shell (BC: C–C).
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Figure 6. Frequency parameters Ω for various truncation in stepped FG paraboloidal shell.

3.2. Free vibration Behavior of Stepped FG Paraboloidal Shell

Table 3 shows the precision of the approach in solving free vibration behavior of stepped FG
paraboloidal shell with clamed boundary condition, and all the FEM commercial program ABAQUS
(S4R model) results have converged to stable when the element size is chosen as 0.03 m. In addition,
it should be note that the homogeneous elements not graded elements [47] were used in this paper.
From the comparison study, we can conclude that the present method is capable to analyze the
vibration behaviors of stepped doubly curved paraboloidal shell with general boundary conditions.

Table 3. Comparison of frequency parameter Ω for stepped doubly curved paraboloidal shell (FGMI

(a, b, c, p = 0)).

n m Proposed Method FEM

0

1 1.2139 1.2144
2 1.3579 1.3586
3 1.5621 1.5645
4 1.6154 1.6183

1

1 0.9499 0.9504
2 1.2605 1.2615
3 1.6030 1.6070
4 1.9770 1.9725

2

1 0.7521 0.7524
2 1.1907 1.1924
3 1.6002 1.6056
4 2.1071 2.1083

3

1 0.7171 0.7176
2 1.1811 1.1835
3 1.6590 1.6566
4 2.2217 2.2251

To further prove the effectiveness of this method, the experiment test focused on free vibration of
cylindrical shell was carried out. It should be note that the cylindrical shell is isotropic. The material
properties and geometrical parameters are chosen as: E = 210 GPa, ρ = 7850 kg/m3, ν = 0.3, R = 0.06 m,
L = 0.3 m, h = 0.005 m. The boundary condition is free for isotropic cylindrical shell due to the
of the restraints test environment. Figure 7 shows the test instrument and model. In experiment,
the hammer was used to strike different positions of cylindrical shells in turn, and acceleration sensors
with sensitivity of 100 mv/g were used to collect the vibration response at the same point. Then the
time domain signals obtained by test were transformed into frequency domain signals by Fourier
transform. The final results of frequencies are shown in Table 4. For natural frequencies obtained
by FEM commercial program ABAQUS (S4R model), it is obvious that the structure and material
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parameters are the same as the experiment, and it should be note that the results have converge to
stable when the mesh size is 0.03 m. From Table 4, it is easy to find that the present results closely
agreed with experiment and FEM. For selected five modes, the maximum error of present method and
experiment is 2.35%, and the maximum error of present method and FEM is 0.38%. The reason for the
large error of present method with the test results are mainly the influence of elastic hoisting boundary
and random error. The mode shapes obtained by three different methods are presented in Figure 8.
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Figure 7. Testing instruments and model. (a) The test system; (b) the test model.

Table 4. Comparison study of the frequencies for cylindrical shell.

n, m Present Experimental Error (%) FEM Error (%)

0, 1 545.89 551.97 1.11 547.49 0.29
2, 2 582.13 588.39 1.08 581.98 0.03
0, 3 1561.93 1572.53 0.68 1567.90 0.38
2, 3 1618.37 1656.42 2.35 1613.70 0.29
3, 3 2143.98 2169.05 1.17 2150.70 0.31
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p = 2) 

1 

1 0.7470 0.9238 0.6151 0.8886 0.6736 0.5307 0.2076 0.2171 0.4519 0.7301 
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4 1.6262 1.9378 1.4683 1.8208 1.5746 1.7016 1.4638 1.4535 1.4271 1.6000 
5 1.7717 2.0975 1.8376 2.0156 2.0259 1.9062 1.5645 1.7696 1.7209 1.6947 

2 

1 0.5453 0.7334 0.6855 0.6973 0.7196 0.6154 0.5819 0.4742 0.4983 0.5329 
2 0.9432 1.1666 1.0460 1.0800 1.1426 1.1078 0.9250 0.9212 0.8446 0.8894 
3 1.3195 1.5767 1.3190 1.4539 1.3368 1.5389 1.3106 1.3023 1.3013 1.2305 
4 1.7651 2.0848 1.4434 1.9063 1.5690 2.0412 1.4790 1.3588 1.7237 1.6529 
5 2.2154 2.5207 1.8933 2.4718 2.0823 2.2287 1.9788 1.7737 2.1426 2.1436 

3 

1 0.6918 0.7037 0.6469 0.6597 0.6939 0.6630 0.6588 0.6816 0.6549 0.6516 
2 1.1043 1.1629 1.0674 1.0763 1.1594 1.1255 1.0998 1.1029 1.0725 1.0362 
3 1.4964 1.6405 1.5063 1.5173 1.6362 1.6151 1.5855 1.4963 1.4798 1.4098 
4 1.9638 2.2032 1.9827 2.0370 2.0021 2.1782 1.8904 1.9536 1.9463 1.8532 
5 2.5376 2.8897 2.0261 2.6731 2.1986 2.8331 2.1627 2.0105 2.5267 2.4127 

FGMII 
(a = 1; 

b = −0.5;  
c = 2; 
p = 2) 

1 

1 0.7418 0.9171 0.6086 0.8875 0.6689 0.5274 0.2064 0.2161 0.4491 0.7153 
2 1.1663 1.2205 0.8821 1.1388 0.9110 1.1991 0.5427 0.8263 1.0974 1.1007 
3 1.4059 1.5589 1.1408 1.4569 1.2232 1.4590 1.1604 1.1759 1.4010 1.3328 
4 1.6117 1.9209 1.4556 1.7561 1.5588 1.6896 1.4532 1.4381 1.4141 1.6112 
5 1.7523 2.0820 1.8189 2.0554 2.0045 1.8919 1.5520 1.7494 1.7022 1.6794 

2 

1 0.5378 0.7271 0.6821 0.6895 0.7136 0.6103 0.5768 0.4670 0.4920 0.5171 
2 0.9331 1.1553 1.0399 1.0802 1.1315 1.0968 0.9159 0.9117 0.8351 0.8909 
3 1.3062 1.5593 1.3101 1.4468 1.3285 1.5218 1.3017 1.2916 1.2878 1.2172 
4 1.7468 2.0615 1.4329 1.8881 1.5518 2.0196 1.4630 1.3468 1.7066 1.6445 
5 2.1931 2.5059 1.8788 2.4820 2.0593 2.2170 1.9600 1.7554 2.1281 2.0916 

3 

1 0.6846 0.6968 0.6436 0.6477 0.6872 0.6566 0.6524 0.6746 0.6482 0.6389 
2 1.0906 1.1506 1.0609 1.0731 1.1471 1.1136 1.0877 1.0892 1.0592 1.0300 
3 1.4762 1.6214 1.4944 1.5073 1.6171 1.5961 1.5665 1.4761 1.4597 1.3933 
4 1.9404 2.1772 1.9727 2.0216 1.9913 2.1526 1.8796 1.9316 1.9231 1.8339 
5 2.5057 2.8601 2.0097 2.6553 2.1728 2.8113 2.1386 1.9983 2.4952 2.3801 

 

Figure 8. The selected mode shapes of three kinds of method.
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Table 5 exhibits the results of free vibration behaviors for stepped FG paraboloidal shell with
various boundary conditions. From Table 5, it is easy to find that the free vibration characteristics are
not only influence by boundary conditions, but material parameters. To better reveal the vibration
characteristics of the shell, some mode shapes are given in Figure 9.

Table 5. Frequency parameters Ω of stepped paraboloidal shell.

Type n m
Boundary Restraints

F–C C–C SD–SD SS–SS E1–E1 E2–E2 E3–E3 F–E1 F–E2 F–SS

FGMI
(a = 1;

b = −0.5;
c = 2; p = 2)

1

1 0.7470 0.9238 0.6151 0.8886 0.6736 0.5307 0.2076 0.2171 0.4519 0.7301
2 1.1767 1.2318 0.8874 1.1522 0.9171 1.2104 0.5468 0.8334 1.1066 1.0967
3 1.4199 1.5746 1.1503 1.4582 1.2343 1.4709 1.1710 1.1866 1.4113 1.3661
4 1.6262 1.9378 1.4683 1.8208 1.5746 1.7016 1.4638 1.4535 1.4271 1.6000
5 1.7717 2.0975 1.8376 2.0156 2.0259 1.9062 1.5645 1.7696 1.7209 1.6947

2

1 0.5453 0.7334 0.6855 0.6973 0.7196 0.6154 0.5819 0.4742 0.4983 0.5329
2 0.9432 1.1666 1.0460 1.0800 1.1426 1.1078 0.9250 0.9212 0.8446 0.8894
3 1.3195 1.5767 1.3190 1.4539 1.3368 1.5389 1.3106 1.3023 1.3013 1.2305
4 1.7651 2.0848 1.4434 1.9063 1.5690 2.0412 1.4790 1.3588 1.7237 1.6529
5 2.2154 2.5207 1.8933 2.4718 2.0823 2.2287 1.9788 1.7737 2.1426 2.1436

3

1 0.6918 0.7037 0.6469 0.6597 0.6939 0.6630 0.6588 0.6816 0.6549 0.6516
2 1.1043 1.1629 1.0674 1.0763 1.1594 1.1255 1.0998 1.1029 1.0725 1.0362
3 1.4964 1.6405 1.5063 1.5173 1.6362 1.6151 1.5855 1.4963 1.4798 1.4098
4 1.9638 2.2032 1.9827 2.0370 2.0021 2.1782 1.8904 1.9536 1.9463 1.8532
5 2.5376 2.8897 2.0261 2.6731 2.1986 2.8331 2.1627 2.0105 2.5267 2.4127

FGMII
(a = 1;

b = −0.5;
c = 2; p = 2)

1

1 0.7418 0.9171 0.6086 0.8875 0.6689 0.5274 0.2064 0.2161 0.4491 0.7153
2 1.1663 1.2205 0.8821 1.1388 0.9110 1.1991 0.5427 0.8263 1.0974 1.1007
3 1.4059 1.5589 1.1408 1.4569 1.2232 1.4590 1.1604 1.1759 1.4010 1.3328
4 1.6117 1.9209 1.4556 1.7561 1.5588 1.6896 1.4532 1.4381 1.4141 1.6112
5 1.7523 2.0820 1.8189 2.0554 2.0045 1.8919 1.5520 1.7494 1.7022 1.6794

2

1 0.5378 0.7271 0.6821 0.6895 0.7136 0.6103 0.5768 0.4670 0.4920 0.5171
2 0.9331 1.1553 1.0399 1.0802 1.1315 1.0968 0.9159 0.9117 0.8351 0.8909
3 1.3062 1.5593 1.3101 1.4468 1.3285 1.5218 1.3017 1.2916 1.2878 1.2172
4 1.7468 2.0615 1.4329 1.8881 1.5518 2.0196 1.4630 1.3468 1.7066 1.6445
5 2.1931 2.5059 1.8788 2.4820 2.0593 2.2170 1.9600 1.7554 2.1281 2.0916

3

1 0.6846 0.6968 0.6436 0.6477 0.6872 0.6566 0.6524 0.6746 0.6482 0.6389
2 1.0906 1.1506 1.0609 1.0731 1.1471 1.1136 1.0877 1.0892 1.0592 1.0300
3 1.4762 1.6214 1.4944 1.5073 1.6171 1.5961 1.5665 1.4761 1.4597 1.3933
4 1.9404 2.1772 1.9727 2.0216 1.9913 2.1526 1.8796 1.9316 1.9231 1.8339
5 2.5057 2.8601 2.0097 2.6553 2.1728 2.8113 2.1386 1.9983 2.4952 2.3801

Table 6 shows the results of stepped FG paraboloidal shell with different power-law exponents,
in which four values are included. From Table 6, we can get that the boundary conditions and power-law
exponents all will have important impact on the results of the structure.

Table 7 shows the results of stepped FG paraboloidal shell with different thickness distributions.
Four kinds of thickness distributions, i.e., h1:h2:h3:h4:h5 = 0.04:0.045:0.05:0.055:0.06 are included. It is
obvious that the thickness distributions affect the vibration behavior of stepped FG paraboloidal
shell largely.

Figures 10–12 exhibit the frequency parameters Ω of stepped FG paraboloidal shell with various
parameters a, b, c and p. From selected data, it could be found that a, b and c have a great deal of
impact on the results of Ω. In addition, for parameters a and c, the smaller value will obtain the larger
results. Figure 13 exhibits the results of stepped FG paraboloidal shell with various stiffness ratios and
parameter p. It can be seen that no matter what value of parameter p, the vibration characteristics will
decrease with Ec/Em increasing.
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Figure 9. Mode shapes of stepped FG paraboloidal shell (BC: SS–SS).

Table 6. Frequency parameters Ω for stepped FGMI (a = 1; b = 0.5; c = 2; p) shell with different
power-law exponents.

Power-Law Exponents n m C–C SD–SD F–SS

p = 0.2

1
1 0.9480 0.6315 0.7461
2 1.2583 0.9133 1.1301
3 1.6007 1.1769 1.3859

2
1 0.7507 0.7047 0.5374
2 1.1888 1.0703 0.9119
3 1.5983 1.3557 1.2499

3
1 0.7161 0.6612 0.6606
2 1.1796 1.0868 1.0534
3 1.6574 1.5264 1.4231

p = 0.5

1
1 0.9451 0.6297 0.7444
2 1.2550 0.9104 1.1259
3 1.5971 1.1737 1.3836

2
1 0.7486 0.7025 0.5369
2 1.1859 1.0673 0.9090
3 1.5951 1.3514 1.2472

3
1 0.7144 0.6593 0.6595
2 1.1772 1.0841 1.0508
3 1.6545 1.5232 1.4207
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Table 6. Cont.

Power-Law Exponents n m C–C SD–SD F–SS

p = 2

1
1 0.9321 0.6210 0.7359
2 1.2395 0.8969 1.1078
3 1.5796 1.1585 1.3711

2
1 0.7389 0.6922 0.5332
2 1.1721 1.0532 0.8959
3 1.5789 1.3322 1.2339

3
1 0.7064 0.6508 0.6534
2 1.1650 1.0712 1.0389
3 1.6394 1.5074 1.4081

p = 5

1
1 0.9164 0.6103 0.7236
2 1.2221 0.8807 1.0892
3 1.5625 1.1413 1.3542

2
1 0.7276 0.6803 0.5280
2 1.1575 1.0383 0.8832
3 1.5646 1.3084 1.2210

3
1 0.6983 0.6422 0.6460
2 1.1540 1.0597 1.0285
3 1.6282 1.4954 1.3991

Table 7. Frequency parameters Ω for stepped FGMI (a = 1; b = 0.5; c = 2; p = 2) shell with different
thickness distributions.

h1:h2:h3:h4:h5 n m C–C SD–SD F–SS

0.04:0.05:0.06:0.07:0.08

1
1 0.9579 0.5884 0.7655
2 1.3085 0.9008 1.1470
3 1.6903 1.2140 1.4461

2
1 0.7667 0.6952 0.5476
2 1.2454 1.1009 0.9267
3 1.7064 1.2969 1.3145

3
1 0.7590 0.6841 0.6925
2 1.2600 1.1513 1.1067
3 1.7917 1.6410 1.5140

0.08:0.07:0.06:0.05:0.04

1
1 0.8600 0.6915 0.6176
2 1.1979 0.9477 1.0841
3 1.6283 1.1045 1.2400

2
1 0.7026 0.6680 0.5916
2 1.1782 1.0529 0.9674
3 1.6697 1.4977 1.3075

3
1 0.6992 0.6584 0.6578
2 1.2297 1.1176 1.1192
3 1.8009 1.6410 1.6103

0.04:0.06:0.08:0.07:0.05

1
1 0.8483 0.5982 0.6988
2 1.2766 0.8162 1.1448
3 1.6965 1.1861 1.3817

2
1 0.6747 0.6343 0.5059
2 1.2266 1.0603 0.9036
3 1.7104 1.4039 1.2943

3
1 0.6993 0.6493 0.6457
2 1.2530 1.1403 1.1109
3 1.8046 1.6523 1.5196
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Table 7. Cont.

h1:h2:h3:h4:h5 n m C–C SD–SD F–SS

0.07:0.05:0.04:0.06:0.08

1
1 1.0086 0.6664 0.7052
2 1.2356 0.9912 1.0789
3 1.6421 1.1382 1.4098

2
1 0.8278 0.7647 0.6457
2 1.1948 1.0710 0.9595
3 1.6748 1.2893 1.3483

3
1 0.8000 0.7185 0.7324
2 1.2351 1.1212 1.1102
3 1.7878 1.6336 1.5970
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Figure 11. Results about different p and b of stepped FGMI (a = 1; b, c = 2; p) paraboloidal shell.
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Figure 12. Results about different p and c of stepped FGMI (a = 1; b = 0.5; c; p) paraboloidal shell.
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Figure 13. Results about different Ec/Em and p of stepped FGMI (a = 1; b = 0.5; c = 2; p)
paraboloidal shell.

4. Conclusions

The paper proposed a solving formulation to investigate the free vibration behaviors of stepped
FG paraboloidal shell with general boundary conditions. The paper is based on multi-segment
strategy and FSDT. The displacement functions are simulated by Jacobi polynomials and Fourier series.
To obtain the general boundary conditions of stepped FG paraboloidal shell, the penalty method was
adopted. The final modes solutions about FG paraboloidal shell were obtained by Rayleigh–Ritz
method. The most discoveries of proposed method are unified Jacobi polynomials, which make
the displacement functions easier to select. For convergence analysis, the influence of boundary
parameters, numbers of shell segments etc. are examined. The accuracy of this method was verified
by the comparison study with those obtained by published literature, FEM, and the experiment. The
results of this paper can provide the reference data for future research.
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Appendix A

M = diag
[
M1, M2, · · · , MH

]
(A1)

Mi =

ϕi+1∫
ϕi

2π∫
0


Muu 0 0 Muϕ 0

0 Mvv 0 0 Mvθ

0 0 Mww 0 0
Muϕ 0 0 Mϕϕ 0

0 Mvθ 0 0 Mθθ

ABdϕdθ (A2)

Muu = I0UTU, Mvv = I0VTV, Mww = I0WTW, Mϕϕ = I2ΦTΦ (A3)

Mθθ = I2ΘTΘ, Muϕ = I1UTΦ, Mvθ = I1VTΘ (A4)

U = Pm ⊗Cn, V = Pm ⊗ Sn, W = Pm ⊗Cn, Φ = Pm ⊗Cn, Θ = Pm ⊗ Sn (A5)

Pm = [P(α,β)
0 (φ), P(α,β)

1 (φ), · · · , P(α,β)
m (φ), · · · , P(α,β)

M (φ)] (A6)

Cn = [cos(0θ), cos(1θ), · · · cos(nθ), · · · , cos(Nθ)] (A7)

Sn = [sin(0θ), sin(1θ), · · · sin(nθ), · · · , sin(Nθ)] (A8)

K = Kξ + Kb + Ks (A9)

Kξ = diag
[
K1

ξ , K2
ξ , · · · , KH

ξ

]
(A10)

Ki
ξ =

ϕξ,i+1∫
ϕξ,i

2π∫
0


Kξ,uu Kξ,uv Kξ,uw Kξ,uϕ Kξ,uθ

KT
ξ,uv Kξ,vv Kξ,vw Kξ,vϕ Kξ,vθ

KT
ξ,uw KT

ξ,vw Kξ,ww Kξ,wϕ Kξ,wθ

KT
ξ,uϕ KT

ξ,vϕ KT
ξ,wϕ Kξ,ϕϕ Kξ,ϕθ

KT
ξ,uθ KT

ξ,vθ KT
ξ,wθ KT

ξ,ϕθ Kξ,θθ

ABdϕdθ (A11)

Kb = diag[Kbl , 0, · · · , Kbr] (A12)

Kbl =

2π∫
0

diag
[
Kbl,uu, Kbl,vv, Kbl,ww, Kbl,ϕϕ, Kbl,θθ

]
ϕ=ϕ0

Bdθ (A13)

Kbr =

2π∫
0

diag
[
Kbr,uu, Kbr,vv, Kbr,ww, Kbr,ϕϕ, Kbr,θθ

]
ϕ=ϕ1

Bdθ (A14)

Ks = diag
[
K1

s , K2
s , · · · , KH

s

]
(A15)

Ki
s =

2π∫
0

[
Ks0 Ks1

KT
s1 Ks2

]
Bdθ (A16)

Ks0 = diag
[
Kuiui , Kvivi , Kwiwi , Kϕi ϕi , Kϕi ϕi

]
(A17)

Ks1 = diag
[
Kuiui+1 , Kvivi+1 , Kwiwi+1 , Kϕi ϕi+1 , Kϕi ϕi+1

]
(A18)

Ks2 = diag
[
Kui+1ui+1 , Kvi+1vi+1 , Kwi+1wi+1 , Kϕi+1 ϕi+1 , Kϕi+1 ϕi+1

]
(A19)
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Ui
S =

1
2

y



A11

(
1
A

∂ui

∂ϕ + vi

AB
∂A
∂θ + wi

Rϕ

)2
+ A22

(
1
B

∂vi

∂θ + ui

AB
∂B
∂ϕ + wi

Rθ

)2

+A66

(
A
B

∂
∂θ

(
ui

A

)
+ B

A
∂

∂ϕ

(
vi

B

))2
+

2A12

(
1
A

∂ui

∂ϕ + vi

AB
∂A
∂θ + wi

Rϕ

)(
1
B

∂vi

∂θ + ui

AB
∂B
∂ϕ + wi

Rθ

)
+

+κA66

(
1
A

∂wi

∂ϕ −
ui

Rϕ
+ ψi

ϕ

)2
+ κA66

(
1
B

∂wi

∂θ −
vi

Rθ
+ ψi

θ

)2


ABdϕdθdz (A20)

Ui
B =

1
2

y



D11

(
1
A

∂ψi
ϕ

∂ϕ +
ψi

θ
AB

∂A
∂θ

)2
+ D22

(
1
B

∂ψi
θ

∂θ +
ψi

ϕ

AB
∂B
∂ϕ

)2

+D66

(
A
B

∂
∂θ

(
ψi

ϕ

A

)
+ B

A
∂

∂ϕ

(
ψi

θ
B

))2

+2D12

(
1
A

∂ψi
ϕ
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