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Abstract: Carbon dots (CD) have excellent stability and fluorescence activity, and have been widely
used in fluorescence methods. However, there are no reports about using CD as catalysts to amplify
SERS signals to detect trace sulfate. Thus, preparing CD catalysts and their application in SERS
sulfate-sensing are significant. In this article, highly catalytic N-doped carbon dots (CDN) were
prepared by a hydrothermal procedure. CDN exhibited strong catalysis of the gold nanoparticle
(AuNP) reaction between HAuCl4 and H2O2. Vitoria blue 4R (VB4R) has a strong SERS peak at
1614 cm−1 in the formed AuNP sol substrate. When Ba2+ ions were added, they were adsorbed on
a CDN surface to inhibit the CDN catalytic activity that caused the SERS peak decreasing. Upon addition
of analyte SO4

2−, a reaction with Ba2+ produced stable BaSO4 precipitate and CDN, and its catalysis
recovered to cause SERS intensity increasing linearly. Thus, an SERS method was developed for the
detection of 0.02–1.7 µmol/L SO4

2−, with a detection limit of 0.007 µmol/L.

Keywords: N-doped carbon dots; catalysis; gold nanoreaction; SERS

1. Introduction

Because carbon dots (CD) have excellent stability, excellent chemical properties, high fluorescence
activity, anti-photobleaching abilities and low cell toxicity [1–5], they are of interest to scientists.
Based on the redox, complex, enzyme and immune reactions, CD have been used to determine
chlorine ion, phosphate, ATP, ferric ion, hydrogen peroxide, glucose, immunoglobulin G, biological
thiols, deoxyribonucleic acid, trypsin and so on [6–11]. Freire et al. [12] used polyvinyleneimine to
prepare carbon quantum dots (CQDs/BPEI) to detect proteins. The nitrogen-doped carbon dots with
high fluorescence efficiency have attracted much attention. Liu et al. [13] prepared nitrogen-doped
graphene quantum dots and a photoelectrochemical aptasensor for chloramphenicol determination.
Gu et al. [14] used 2-azidoimidazole and ammonia as reactants to prepare a fluorescent quantum dots
by a thermal procedure, and to determine cysteine (Cys) by the reaction of CD-Cu2+-Cys. An aptamer
has good electivity and has been combined with CD. Feng et al. [15] reported a graphene quantum
dots-aptamer fluorescent probe to detect lead (II) ions (as low as 0.6 nmol/L). However, there are
no reports about preparation of highly catalytic N-doped carbon dots and their application to SERS
quantitative analysis.

SERS is a highly sensitive and selective molecular spectral technique; it has been used in
biomedical, environmental monitoring, and analytical chemistry [16–18]. Liang et al. [19] prepared
silver nanorods/reduced graphene oxide (AgNR/rGO) nanosol as SERS substrate to determine
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8–1500 nmol/L iodide. Yang et al. [20] prepared silver nanosol SERS substrate to determine
2–191.0 mg/L thiocyanate. Luo et al. [21] prepared triangular nanosilver based on graphene oxide
catalysis, and the nanosilver was used to analysis of 0.7–72 nmol/L nitrite by SERS. Jiang et al. [22]
examined the catalytic reduction of HAuCl4 by cysteine with AuNP nanoenzyme to prepare gold
nanosol substrate with high SERS activity to determine surfactants. Zhang et al. [23] developed
a SERS method for detection of SO2, with a detection limit of 1 mg/L, based on the Raman peak
at 630 cm−1 of S atom. Shang et al. [24] prepared silver nanochain (AgNC) sol substrate to analyze
0.00725–0.3 µmol/L hexametaphosphate. Sulfate is one of the important anions in water science, food
science, soil chemistry, biology, mineralogy and related disciplines. For analysis of trace SO4

2−, there are
visible–ultraviolet spectrophotometry, turbidimetry, fluorescence spectrophotometry, electrochemical
analysis, radiochemical analysis, resonance Rayleigh scattering, ion chromatography, and so on [25–30].
In this experiment, highly catalytic N-doped carbon dots were prepared for the HAuCl4-H2O2 reaction,
and a new and sensitive SERS quantitative analysis method was proposed for the determination of
sulfate in water and beer samples, based on the CD catalysis.

2. Materials and Methods

2.1. Apparatus and Reagents

The SERS spectra were recorded by a model of DXR smart Raman spectrometer (Thermo,
Waltham, MA, USA) with laser wavelength of 633 nm, power of 3.5 mW, slit of 50 µm and acquisition
time of 5 s. A model of 3K-15 high-speed refrigerated centrifuge (Sigma Co., Darmstadt, Germany)
and a model of 79-1 magnetic stirrer with heating (Zhongda Instrumental Plant, Jiangsu, China) were
used. A model of S-4800 field emission scanning electron microscope (Hitachi High-Technologies
Corporation, Japan/Oxford Company, Oxford, UK) was used to record the graphs.

A 2.9 mmol/L HAuCl4 (National Pharmaceutical Group Chemical Reagents Company, Shanghai,
China), 10 µmol/L VB4R (Shanghai Reagent Three Factory, Shanghai, China) stock solution, 1 mmol/L
BaCl2 (Hunan Reagent Factory, Changsha, China), 1.00 mmol/L Na2SO4 (Xilong Science Co.,
Ltd., Shantou, China) and 3.4 mmoL/L trisodium citrate (Xilong Chemical Plant, Shantou, China)
were prepared.

Preparation of N-doped carbon dot solution (CDN): A 1 g of citric acid and 0, 0.5, 1.0 and 2.0 g
urea were dissolved respectively in 30 mL water, and the brown yellow transparent solution was
transferred to a polytetrafluoroethylene autoclave. After sealing, the autoclave was heated at 180 ◦C
for 5 h. It was cooled to room temperature with tap water and was dialysis a night with dialysis bag of
3500 Da, and neutralized with NaOH solution to pH 7.0 to get a 0.021 g/mL CDN that was named as
CD0N, CD0.5N, CD1N and CD2N respectively.

2.2. Procedure

In a 5 mL graduated test tube, an appropriate amount of Na2SO4, 80 µL 1 mmol/L BaCl2 and
75 µL 100 µg/mL CD were added and mixed well. Then 100 µL 0.1% HAuCl4 and 50 µL 0.10 mol/L
H2O2 solution were added and diluted to 1.5 mL. The tube was heated at 50 ◦C water bath for 20 min,
cooled with ice-water, and 50 µL10 µmol/L VB4R molecular probe was added. The SERS spectrum
was recorded by the spectrometer. The SERS peak intensity at 1614 cm−1 (I1614cm−1 ) and a blank
(I1614cm−1 )0 without SO4

2− were recorded. The value of ∆I = I1614cm−1 − (I1614cm−1 )0 was obtained.

3. Results and Discussions

3.1. Principle

The AuNP reaction was very slow, and the CD1N surface contained more surface electrons that
enhanced the electron transfer of the HAuCl4-H2O2 redox reaction, and displayed strong catalytic
activity on the AuNP reaction. The Ba2+ ions adsorb on the CD1N surface and repress the catalysis.
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When SO4
2− was added, stable BaSO4 formed and CD1N was released which caused the SERS peak

to increase due to formation of more SERS active gold nanoparticles. The more SO4
2− was added,

the more CD was released, the more Au nanoparticles formed, and the SERS signal enhanced greatly
after addition of probe VB4R. Accordingly, a new SERS quantitative analysis method was proposed for
trace sulfate, based on the regulation of CD1N catalysis (Figure 1).
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Figure 1. Surface enhanced Raman scattering (SERS) determination of sulfate by BaSO4 regulation of
CDN catalysis of the gold nanoreaction between HAuCl4 and H2O2.

3.2. SERS Spectra

Compared to common carbon nanomaterials such as graphene and C60, CD are very stable and
dissolved in water, and were chosen for use. The CD0N, CD0.5N, CD1N and CD2N analytical systems
were studied by an SERS technique with VB4R molecular probes. There are nine SERS peaks at 240,
432, 675, 800, 1175, 1202, 1290, 1394 and 1614 cm−1 (Figure 2). With the SO4

2− concentration increasing,
the SERS signal increased greatly. Among the four systems, the CD1N analytical system at 1614 cm−1

SERS peak is the most sensitive. Thus, it was chosen to detect SO4
2−.
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Figure 2. SERS spectrum of HAuCl4-H2O2-CD1N-Na2SO4-BaCl2-VB4R system. (a): 4.2 µmol/L HAuCl4
+ 2.5 mol/L H2O2 + 5 µg/mL CD1N + 53 µmol/L BaCl2 + 0.33 µmol/L VB4R; (b): a + 0.05 µmol/L Na2SO4;
(c): a + 0.10 µmol/L Na2SO4; (d): a + 0.2 µmol/L Na2SO4; (e): a + 0.7 µmol/L Na2SO4; (f): a + 1.0 µmol/L
Na2SO4; (g): a + 1.7 µmol/L Na2SO4.

3.3. Scanning Electron Microscopy

Scanning electron microscopy (SEM, Hitachi High-Technologies Corporation, Japan/Oxford
Company, Oxford, UK) and energy spectra of CD1N show that the small CD particles are spherical
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with an average size of 20 nm (Figure 3a) and the large aggregate may be the salt crystallization on
the silicon wafer of SEM. There is a spectral peak at 0.25 keV for C, N and O elements. The SEM of
HAuCl4-H2O2-CD1N-Na2SO4-BaCl2-VB4R was recorded. When there is no Na2SO4, the HAuCl4-H2O2

reaction is very slow to produce few quasi spherical AuNPs with an average size of 50 nm (Figure 3b);
the morphology is not like the CD1N, and there is a spectral peak at 1.7 keV for Au. When Na2SO4 was
added (Figure 3c), there were more AuNPs with an average size of 40 nm owing to CD1N catalysis
recovering and enhancing the SERS peak. This also indicated that the particles are AuNPs in the
analytical system.
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3.4. Catalysis and Inhibition

Under the conditions as in the procedure, the AuNP reaction of H2O2-HAuCl4 is slow. The CDN
exhibited catalysis of the AuNP reaction, and the SERS intensity increased with increasing CD
concentration (Table 1, Figure 4). The CD without N element exhibited weak catalysis of the AuNP
reaction of H2O2-HAuCl4, with a slope of 55.8. After doping N element such as CD1N with a slope
of 249, the CD1N surface electrons were enhanced; the CD1N surface electrons accelerated the redox
electron transfer so that the gold nanoreaction was greatly enhanced to produce more AuNPs which
caused the SERS intensity to increase (Figure 5).

Table 1. Comparing of the catalysis by SERS method a.

System Linear Range Regress Equation Coefficient

CD0N 1.0–60 µg/mL ∆I = 55.8x + 30 0.9898
CD0.5N 6.0–20 µg/mL ∆I = 89.2x + 130 0.9869
CD1N 0.79–8 µg/mL ∆I = 249.0x − 8.6 0.993
CD2N 0.79–10 µg/mL ∆I = 197.4x + 13 0.9633
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Figure 5. Enhancement of the doped N element.

3.5. Optimization of Analytical Conditions

The effect of reagent concentration such as HAuCl4, H2O2, CD1N, BaCl2 and VB4R, reaction
temperature and time were optimized, respectively (Figure 6). When HAuCl4 is 4.2 µmol/L,
most AuNPs formed in analytical systems with large ∆I. With increasing H2O2, the ∆I increased
due to the formed AuNPs increasing, and a 2.5 mmol/L H2O2 gives the largest ∆I. CD1N is the catalyst
of the AuNP reaction, when the catalyst concentration increased, the ∆I enhanced, a 5 µg/mL CD1N

gives the largest ∆I. BaCl2 can inhibit the CD catalysis, when its concentration increased the ∆I was
enhanced due to the blank decreasing, a 53 µmol/L BaCl2 gives the largest ∆I. VB4R is a sensitive
molecular probe; when the concentration increased the ∆I enhanced due to more VB4R adsorption
on the AuNP surface, a 0.33 µmoL/L VB4R gives biggest ∆I. Reaction temperature and time were
considered; 50 ◦C for 20 min gives biggest ∆I. Thus, a 4.2 µmol/L HAuCl4, 2.5 mmol/L H2O2, 5 µg/mL
CD1N, 53 µmol/L BaCl2 and 0.33 µmoL/L VB4R, and a reaction temperature of 50 ◦C for 20 min was
selected in this SERS method.
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Figure 6. Effect of reagent concentration, reaction temperature and time. (a): HAuCl4 + 2.5 mmol/L
H2O2 + 5 µg/mL CD1N + 0.67 µmol/L Na2SO4 + 53 µmol/L BaCl2 + 0.33 µmol/L VB4R; (b): 4.2 µmol/L
HAuCl4 + 0.33 µmol/L VB4R + 5 µg/mL CD1N + 0.67 µmol/L Na2SO4 + 53 µmol/LBaCl2;
(c): 4.2 µmol/L HAuCl4 + 2.5 mmol/L H2O2 + CD1N + 0.67 µmol/L Na2SO4 + 53 µmol/L BaCl2
+ 0.33 µmol/L VB4R; (d): 4.2 µmol/L HAuCl4 + 2.5 mmol/L H2O2 + 5 µg/mL CD1N + 0.67 µmol/L
Na2SO4 + BaCl2 + 0.33 µmol/L VB4R; (e): 4.2 µmol/L HAuCl4 + 2.5 mmol/L H2O2 + 5 µg/mL CD1N

+ 0.67 µmol/L Na2SO4 + 53 µmol/L BaCl2 + VB4R; (f): Reaction temperature, 4.2 µmol/L HAuCl4
+ 2.5 mmol/L H2O2 + 5 µg/mL CD1N + 0.67 µmol/L Na2SO4 + 53 µmol/L BaCl2 + 0.33 µmoL/L
VB4R; (g): Reaction time, 4.2 µmol/L HAuCl4 + 2.5 mmol/L H2O2 + 5 µg/mL CD1N + 0.67 µmol/L
Na2SO4 + 53 µmol/L BaCl2 + 0.33 µmoL/L VB4R.

3.6. Performance Curve

The working curve of the system was drawn according to the experimental method. In the four
systems (Table 2, Figure 7), the CD1N was most sensitive, with a linear range (LR) of 0.02–1.7 µmol/L
and a detection limit (DL) of 0.007 µmol/L, and was selected for detection of sulfate. Comparison of
the reported methods for detection of sulfate [25–30] showed the SERS method was more sensitive.
The C60 catalytic SERS method was used to detect sulfate, but the preparation of C60 is complex,
the C60 nanosol is unstable [25], and the CD1N analytical system overcomes the disadvantages.
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Table 2. Analytical features of CD-catalytic SERS determination of sulfate.

CD Linear Equation Coefficient LR (µmol/L) DL(µmol/L)

CD0N ∆I = 66.9C + 20.4 0.9283 1.0–6.0 0.50
CD0.5N ∆I = 166.4C + 48.8 0.9463 0.5–2.31 0.20
CD1N ∆I = 348.8C + 18.0 0.9384 0.02–1.7 0.007
CD2N ∆I = 268.6C−73.9 0.9403 0.06–2.66 0.02
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3.7. Influence of Foreign Substances

The influence of foreign substance on the determination of 0.66 µmol/L SO4
2− was investigated

according to the experimental method. When the relative error is within 10%, results show that
33 µmol/L Na+, Zn2+, Ca2+, ethanol, Pb+2, NH4

+, K+, SO3
2−, Bi3+ and Cu+2, 26.4 µmol/L HCO3

−,
Mg2+, 16.5 µmol/L ethylene glycol, 6.6 µmol/L Cr6+, Fe3+, NO2

− and glycolic acid did not interfer
with the SERS detection. Table 3 shows that the SERS quantitative analysis method has good selectivity.

Table 3. Effect of interfering substances on the SERS detection of 0.66 µmol/L SO4
2−.

Foreign
Substance

Tolerance
Concentration

(µmol/L)

Relative Error
(%)

Foreign
Substance

Tolerance
Concentration

(µmol/L)

Relative Error
(%)

Na+ 33 5.0 Cu2+ 33 7.6
Zn2+ 33 6.4 HCO3

− 26.4 8.6
Ca2+ 33 −6.7 Mg2+ 26.4 6.0

ethanol 33 −5.6 ethylene glycol 16.5 5.8
Pb2+ 33 7.0 Cr6+ 6.6 −6.0

NH4
+ 33 3.9 Fe3+ 6.6 −4.5

K+ 33 6.0 NO2
− 6.6 6.2

SO3
2− 33 −7.9 glycolic acid 6.6 5.0

Bi3+ 33 6.4
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3.8. Analysis of Samples

The water samples including tap water, Rong lake water and Shan lake water were taken into
sample bottles. The lake water was filtered with filter paper, and then a 2.0 mL water sample was
removed in a centrifuge tube. Three beer samples were purchased supermarkets. Samples were
centrifuged at 7000 r/min for 10 min, to obtain a sample solution. The sulfate content was determined
according to the SERS detection procedure. The SERS results were in agreement with that of ion
chromatography (IC), the relative standard deviation was in the range of 0.90–4.77% and the recovery
was between 92.3% and 105% (Table 4).

Table 4. Analytical results of sulfate in water samples.

Sample Single Value
(µmol/L)

Average
(µmol/L)

Added
(µmol/)

Found
(µmol/L)

Recovery
(%) RSD (%) Content

(µmol/L)
IC Results
(µmol/L)

Running
water

0.39, 0.41, 0.38,
0.40, 0.43 0.40 0.13 0.52 92.3 4.77 0.40 0.38

Ronng
lake

water

1.12, 1.17, 1.11,
1.17, 1.17 1.15 0.13 1.274 95 2.6 1.15 1.22

Shan
lake

water

0.70, 0.71, 0.71,
0.72, 0.71 0.71 0.13 0.839 99.2 0.90 0.71 0.68

Beer 1 1.22, 1.26, 1.30,
1.28, 1.32 1.28 0.20 1.47 95 3.0 1.28 1.20

Beer 2 1.30, 1.35, 1.38,
1.39, 1.33 1.35 0.20 1.56 105 2.7 1.35 1.38

Beer 3 1.39, 1.30, 1.39,
1.32, 1.25 1.33 0.20 1.52 95 4.3 1.33 1.28

4. Conclusions

Highly catalytic CDN was prepared by a hydrothermal procedure, and it was used to catalyze
the reduction of chlorauric acid by H2O2 to produce AuNP sol substrate with high SERS activity.
Ba(II) ions can combined with CDN to inhibit the catalysis of CDN. Upon addition of sulfate ions,
stable barium sulfate precipitates formed, and CDN was released, which causes CDN catalysis to be
activated and the SERS signal to be enhanced. Based on this principle, a new, simple and selective
SERS quantitative analysis method was established for the detection of trace sulfate.
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