Enhancement of Electrical Characteristics and Stability of Amorphous Si-Sn-O Thin Film Transistors with SiO_x Passivation Layer

Xianzhe Liu¹, Weijing Wu¹, Weifeng Chen¹, Honglong Ning^{1,*}, Xiaochen Zhang¹, Weijian Yuan¹, Mei Xiong^{1,2}, Xiaofeng Wang³, Rihui Yao^{1,*} and Junbiao Peng¹

- ¹ State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China; msliuxianzhe@mail.scut.edu.cn (X.L.); wuwj@scut.edu.cn (W.W.); chenweifengchn@foxmail.com (W.C.); zhangxc_scut @foxmail.com (X.Z.); g18826075867@163.com (W.Y.); xiaochanglang@163.com (M.X.); psjbpeng@scut.edu.cn (J.P.)
- ² Shenzhen China Star Optoelectronics Technology Co., Ltd. (CSOT), Shenzhen 518132, China
- ³ Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China; wangxiaofeng@semi.ac.cn
- * Correspondence: ninghl@scut.edu.cn (H.N.); yaorihui@scut.edu.cn (R.Y.); Tel.: +86-20-8711-0606 (H.N.); +86-20-8711-4346 (R.Y.)

Figure S1. The fabricated three samples: Device A, Device B and Device C, respectively.

Figure S2. (a) The transfer characteristic curve of Device A annealed at 350 °C in air ambient. (b) DOS extraction of corresponding Device A.

Figure S3. The cross-sectional image and EDS scan line data of the SiOx/a-STO interface in Device C with post-annealing process.

The procedure for the proposed extraction method is described as follows:

$$\psi_{s} = \int_{V_{fb}}^{V_{gs}} \left(1 - \frac{c_{g}(v_{gs}')}{c_{ox}} \right) dV_{gs}' \tag{1}$$

$$\rho(\psi_s) = -\frac{c_g(v_{gs}) \int_{V_{fb}}^{V_{gs}} c_g(v_{gs}') dv_{gs}'}{\varepsilon_s \left(1 - \frac{c_g(v_{gs})}{c_{ox}}\right)}$$
(2)

$$N_t(E_{F0} + q\psi_s) = -\frac{1}{q^2} \frac{\rho(\psi_s + \Delta\psi_s) - \rho(\psi_s)}{\Delta\psi_s} - \frac{n_0}{qV_t} exp\left(\frac{\psi_s}{V_t}\right)$$
(3)

Where ψ_s is the surface potential, V_{fb} is the flat band voltage, V_{gs} is the gate voltage, C_g is gate capacitance, C_{ox} is the gate oxide capacitance per unit area, $\rho(\psi_s)$ is the surface charge concentration, E_{F0} is the bulk Fermi level of the active layer and $N_t(E_{F0} + q\psi_s)$ is density of trap states with respect to some energy level ($E = E_{F0} + q\psi_s$), respectively.

Firstly, Ψ_s in terms of V_{gs} is calculated from the C_g-V_{gs} characteristics of TFTs by (1). Secondly, the surface charge concentration $\rho(\Psi_s)$ can be obtained from the C_g-V_{gs} characteristics of TFTs by (2). Finally, the density of states $N_t(E)$ with respect to some energy level ($E = E_{F0} + q\Psi_s$) can be extracted by (3). As seen above, the proposed extraction method of DOS has the advantages of analyticity and simplicity.

Table S1. Change in parameters including V_{th} , μ_{sat} and SS of a TFT as a function of stress time for different bias stress conditions: (a) Positive bias stress and (b) Negative bias stress, respectively.

)	Positive	bias	stress	conditio
---	----------	------	--------	----------

(a) Positive bias stress condition													
Time (s)	0	100		600		1200	2400	3600					
$V_{th}(V)$	10.71	10.83		11.01		11.29	11.75	12.13					
μ_{sat} (cm ² /V	s) 4.13	4.19		4.15	4.15 4.1		4.06	6 4.02					
SS (V/decad	le) 0.23	0.25		0.41 0.2		0.25	0.33	0.34					
	(b) Negative bias stress condition.												
	Time (s)	0	100	600	1200	2400	3600						
	$V_{th}\left(V ight)$	9.78	9.33	8.88	8.64	8.52	8.30						
	$\mu_{sat} (cm^2/V s)$	4.36	4.52	4.54	4.54	4.56	4.57						
-	SS (V/decade)	0.33	0.38	0.26	0.23	0.22	0.23						