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Abstract: The employment of nuclear magnetic resonance (NMR) spectroscopy for studying
crystalline porous materials formation is reviewed in the context of the development of in situ
methodologies for the observation of the real synthesis medium, with the aim of unraveling the
nucleation and growth processes mechanism. Both liquid and solid state NMR techniques are
considered to probe the local environment at molecular level of the precursor species either soluble
in the liquid phase or present in the reactive gel. Because the mass transport between the liquid
and solid components of the heterogeneous system plays a key role in the synthesis course, the
two methods provide unique insights and are complementary. Recent technological advances for
hydrothermal conditions NMR are detailed and their applications to zeolite and related materials
crystallization are illustrated. Achievements in the field are exemplified with some representative
studies of relevance to zeolites, aluminophosphate zeotypes, and metal-organic frameworks.

Keywords: NMR spectroscopy; zeolites; zeotypes; metal-organic frameworks; aluminophosphates;
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1. Introduction

Crystalline microporous solids historically include zeolites and zeotype materials mostly
metallophosphates, and recently hybrid organic-inorganic coordination polymers also called metal
organic frameworks (MOFs), has joined this family of compounds [1]. They are extensively used in
various fields such as catalysis, separation, ion exchange, and gas storage [2–6]. Understanding their
properties imposes a deep knowledge about their chemistry and structure. The three-dimensional
structures of these classes of materials are often described as an assembly of well-defined molecular
building blocks traditionally called secondary building units or SBUs [7,8]. The shape, size, and
the symmetry of these SBUs define the final topology of the framework structure and the porous
system. Solvent and host molecules are also often found entrapped within their cages and channels
interacting strongly with the framework and are suspected to play key role to ensure the structural
cohesion [9,10]. Although they can be removed through postsynthesis procedures, the extra-framework
species are usually present in as-made materials. The template effect is now recognized as an
important phenomenon occurring during formation of these solids [11–15]. The course of their synthesis
depends not only on hydrolysis-polycondensation processes but also governed by the supramolecular
chemistry [16,17].

Unraveling crystallization mechanism of microporous compounds is of great interest in
engineering tunable synthesis of materials with specific properties for target applications. Synthesis
of microporous is a complex process because of the heterogeneity of the synthesis medium, hardly
reproducible, composed of gel or mixture of insoluble solids and solution or in the best cases sols.
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Moreover, it is a multiparameter synthesis depending on various physical and chemical factors like
temperature, ageing time, pressure, pH, molar composition, concentration, solvent, etc. Nevertheless,
extensive studies have been carried out, and some general concepts about crystallization mechanisms
of these materials have been proposed including solution-mediated nucleation-growth processes and
solid-solid transformation models [8,16,18–22]. Nucleation and growth from soluble prefabricated
SBUs or related molecular structures is among the most accepted mechanisms [8,23,24], although
more elementary mechanisms like growing from monomers and small oligomers have also been
suggested in the literature [25,26]. By opposition, evolution of amorphous nanoparticles developing
ordered structures internally constitutes an alternative model to liquid transport crystallization [27,28].
All these models, and others, need validation from theory and experiments. Combination of various
techniques to explore wide temporal and spatial domain scales is a required approach to refine as
much as possible the current crystallization models of the different synthesis systems.

To verify such postulated mechanisms, kinetic investigation of the crystallization process
represents one of the most effective experimental approaches [29–31]. These methods became more
asserted through in situ approach, enabling sufficient number of experimental data required for precise
kinetics and thermodynamics analyses [32]. Since reactive and intermediate species formed during
the crystallization are fragile and difficult to separate from their native synthesis medium without
changing its properties, in situ methodologies present much more advantages by comparison to ex situ
procedures [33,34]. Furthermore, in situ techniques offer more reliable information of crystallization
events on real time. The majority of in situ studies of following the microporous crystallization process
over time have focused on the formation kinetics of the Bragg reflections. Understanding the assembly
of crystallites from amorphous precursors at the molecular level at the early stages of crystallization
still remains a great challenge because of the lack of long-range order. To directly observe chemical
reactions and formation steps within the solvent prior to solid precipitation local scale spectroscopic
methods are however needed. Compared to solid-state analyses, only a few studies have been carried
out on the early stages of microporous solids formation in solution in real synthesis conditions. To get
a complete picture, both liquid and solid parts of the system have to be analyzed in situ through
specific techniques. Indeed, various in situ studies have been reported covering both liquid and
solid state aspects, often separately, including Infrared and Raman spectroscopies [19,35,36], X-ray
absorption spectroscopy [8,37], X-ray/neutron diffraction (XRD) [29,36,38,39], small- and Wide-angle
X-ray scattering (SAXS/WAXS) [40,41], atomic force microscopy [33,42], electrochemical impedance
spectroscopy [43], and NMR/magic angle spinning (MAS) NMR [8,28,36,38].

Among other spectroscopic methods, NMR has been frequently used in microporous formation
studies, since it gives the possibilities of gaining detailed information about speciation in both solid and
solution phases [18,44]. This technique provides structural and dynamic insights with distinct spatial
and temporal resolution. NMR spectroscopy allows access to unique information on the short-range
(0.15–0.3 nm length scale) and medium-range (0.3–1 nm) structures and on motions over wide timescale
range (from femtosecond to second). Furthermore, this spectroscopy is element specific and inherently
quantitative. NMR spectroscopy is ideally suited to the study of microporous materials since they
contain numerous active NMR nuclei like 29Si, 27Al, 31P, 19F, 1H, and 13C in both framework and
extra-framework parts. Multinuclear approach is capable of providing distinct information on local
structures of organic/inorganic species, and their interaction, simultaneously [45–47]. In situ NMR
has been progressively developed to investigate the real synthesis conditions of microporous solids,
under hydrothermal conditions. It starts with the pioneering works of Taulelle et al. in the mid-1990s
adapted for liquid-state NMR apparatus [48–50], and only recently real in situ high temperature high
pressure MAS NMR technology has been achieved at the Pacific Northwest National Laboratory
(PNNL) [28,51,52].

I will survey herein the recent technological and methodological developments in the field of
in situ NMR of hydrothermal synthesis medium together with past results. Within this context, I
will expose an overview of main achievements in mechanistic studies of microporous materials
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crystallization through representative examples of zeolites, aluminophosphates, and aluminum
carboxylate type MOFs.

2. Some Experimental Aspects of NMR under Hydrothermal Conditions

2.1. NMR Cells and Devices for High Temperature and High Pressure

Zeolites and related compounds including MOFs are usually synthesized under mild hydrothermal
conditions (T < 250 ◦C, P < 40 bars) [16]. In situ NMR measurements of synthesis media under real
conditions require specific equipment. Although conventional NMR with modern spectrometers can
reach high temperatures up to 150 ◦C routinely (when equipped with an air-cooling system), sample
holders having to withstand combined high temperature and high pressure is a real issue. High-pressure
NMR tubes exist commercially but are made in glass, which could be a source of contamination when
exposed to the corrosive synthesis media, especially at high temperatures. Taulelle et al., who first
used in 1995 homemade NMR tubes for hydrothermal conditions [53], succeeded to measure corrosive
media (HF containing solutions at extreme pH) at temperature exceeding 210 ◦C under autogenesis
pressure [54]. For solid-state NMR, rotors have to be sealed tightly under high pressure during MAS.
This requires not only mechanical resistance against temperature and pressure but also high rotation
speed stability, which represents a real challenge. Recently, Hu et al. from PNNL in Richland (USA),
also reported homemade devises for solid-state NMR allowing measurement up to 250 ◦C and 100 bars
under 4 kHz MAS [51]. These devices for liquid and solid-state NMR are shown in Figure 1 acting as
real hydrothermal cells where the synthesis is performed inside the NMR magnet.
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studies of hydrothermal media are still rather scarce probably because they are no without risk.  

2.2. Measuring pH In Situ by NMR Method 

Figure 1. NMR cells for hydrothermal conditions: (a) 10 mm tube for liquid state NMR; (b)
representative designs of high temperature and high pressure MAS rotors. Adapted from [51,54].

The hydrothermal cell for liquid NMR (Figure 1a) is made from a Vespel (or Torlon) 10 mm tube,
protected with a Teflon liner to avoid any contact with the reaction medium. Sealing is ensured with
an elongated Teflon screw to reduce as maximum as possible sample volume. The hydrothermal MAS
rotors (Figure 1b) are made from zirconia cylinders with sizes ranging from 9.5 to 3.2 mm. The rotor
can be sealed with a screw cap fitting one or two O-rings, and at its opposite side a spin tip is fixed in
a separate compartment. This design is capable of sealing heterogenous mixed solid-liquid samples
under extreme experimental conditions.

Such specific setups for NMR measurements under combined high temperature and high
pressure conditions are realized with special diamagnetic resistant materials to avoid any perturbation
and interference with both the external high magnetic field (B0) and the radio-frequency field
(B1). These devices are thus designed with metallic character-free components using high
performance polymers (Vespel, Torlon, Teflon, etc.), ceramics (zirconia), and resins (epoxy glue, etc.).
These achievements represent an important technological breakthrough to perform in situ NMR
measurements under harsh hydrothermal conditions. Nevertheless, NMR studies of hydrothermal
media are still rather scarce probably because they are no without risk.
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2.2. Measuring pH In Situ by NMR Method

Proton activity, usually expressed as pH, is one of the most critical parameters in hydrolysis/
polycondensation chemistry of oxides in aqueous solution. It is obvious that it plays crucial role in
the synthesis of microporous compounds since speciation in solution is directly dependent on pH.
However, measuring the pH in the synthesis conditions at high temperature and pressure is technically
a difficult task. Usually this parameter is measured at room temperature before or/and after the
hydrothermal synthesis, but such values could not reflect the real reaction pH. An NMR method
for pH probing of hydrothermal solutions has thus been developed [48] using the NMR tubes for
autogeneous pressures at high temperature shown in Figure 1a.

The method consists of using internal molecular probes as pH indicators through the dependence
of its chemical shifts with pH. Two amines, imidazole (Im), and 1,4-diazabicyclo[2,2,2]octane (DABCO),
have been selected on the base of their complementary pKa values to cover a wide pH range (about
9 pH units). Indeed, 14N chemical shifts are sensitive to pH change close to the pKa values where
the population of protonated species varies significantly. To establish the relationships between the
observed chemical shifts (δobs) and the pH, calibration curves depending of the amine have to be
performed first. From such calibration, expression of pH can be derived (Equation (1)) on the base
of fast chemical exchange regime on the NMR time scale between the different protonation states
(BH+/B) of the amine B at pH around the corresponding pKaBH

+
/B.

pH = pKaBH+/B + Log
(δobs − δBH+)

(δB − δobs)
(1)

where δBH
+ and δB are chemical shifts of each protonated/deprotonated species. These characteristic

parameters were determined for Im with one protonation state (pKaImH
+

/Im, δImH
+, and δIm) and DABCO

with two protonation states (pKaDABCOH2
2+

/DABCOH
+, δDABCOH2

2+, δDABCOH
+, pKaDABCOH

+
/DABCO,

δDABCOH
+, and δDABCO), from which the calibration curves are calculated (Figure 2a). These parameters

are also temperature dependent and have to be calibrated for each desired temperature [48].
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Figure 2. NMR method to measure the pH in situ: (a) 14N chemical shifts of Im and DABCO versus pH;
(b) in situ pH evolution with time during the hydrothermal synthesis of AlPO4-CJ2 at 150 ◦C calculated
from calibration curves of NMR parameter as a function of pH shown in (a). Adapted from [48].

This method has been applied to follow the pH evolution during the hydrothermal synthesis of the
microporous AlPO4-CJ2 at 150 ◦C (Figure 2b). Results indicate a rapid pH increase from approximately
3.5 to 6 during the first hour and then a fairly constant pH value at 6 along the synthesis period.
The jump of the pH at the early stage of the synthesis can be explained by a rapid dissolution of an
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initially formed amorphous phase and the pH stabilization around 6 reveals pH conditions close to
neutral since pKW = 11.5 at 150 ◦C. This is important information with respect to Al speciation in
solution known to be pH dependent.

2.3. Quantification by NMR at Variable High Temperature

Among information needed to investigate mechanisms of crystallization process from
heterogenous medium, knowledge about the amount of soluble species is crucial not only to understand
solution speciation but also solubility and supersaturation effects. NMR spectroscopy is a quantitative
technique in the sense that the intensity of the NMR response is directly proportional to the quantity
of detected nuclei. Nevertheless, on increasing the temperature of samples, considerable NMR signal
loss occurs as a consequence of Curie’s law. Dielectric constant and conductivity effects on signal
loss are reflected in the evolution of the quality factor (Q) of the probe. A calibration method for
signal loss correction based on relative variations of the Q factor of the radiofrequency (rf) circuit
is thus necessary for efficient spin counting. The relations between acquisitions, transmission and
reception, and experimental NMR amplitudes had been studied in details in the context of NMR under
hydrothermal conditions [55].

Figure 3a shows the as-measured amplitudes, A, of the 27Al and 14N NMR signals of an aluminum
nitrate solution monitored as a function of temperature. A substantial NMR amplitude loss of about
70% is observed on heating from 303 to 403 K in the case of 27Al and about 55% in the case of 14N.
Several factors have been identified contributing to these signal losses as follows:

(i) Currie Law effect: At a given external magnetic strength B0 the magnetization M0 and the
magnetic susceptibility χ0 varies as 1/T:

M0 = χ0B0; χ0 ∝
1
T

; ⇒ AT
A303

∝
303
T

(2)

(ii) Sample density effect: The amplitude A should be directly proportional to liquid density ρ

which is temperature dependent:
AT

A303
∝

ρT
ρ303

(3)

(iii) Q factor effect at excitation: The amplitude A is dependent on the pulse angle θ and in turn to
the pulse length tp with respect to the 90◦ pulse length t90:

AT
A303

∝
sin(θT)

sin(θ303)
⇒ AT

A303
∝

sin( 90tp

tT
90
)

sin( 90tp

t303
90

)
(4)

(iv) Q factor effect at detection: The amplitude A is also a function of Q factor of the probe head
that can be measured independently using a network analyzer or through the values of the measured
90◦ pulse length t90 at a given temperature:

AT
A303

∝

√
QT

Q303
⇒ AT

A303
∝

√
tT
90

t303
90

(5)

Correction from all these effects allows recovering the NMR amplitude loss as it has experimentally
been verified on the example of 14N NMR of aluminum nitrate solution (Figure 3b). The two major
contributors to the NMR signal loss upon the temperature variation have found to be the Curie law
effect and probehead quality factor change. This latter is mainly due to electrical conductivity and
dielectric constant changes of the sample. Preliminary studies of specific calibration of some variables
like ρ(T) and t90(T) are required. This method appears very useful under specific conditions for
which internal calibration is difficult. It allows the quantification of hydrothermal NMR at variable
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temperature experiments considering the effects of not only temperature, but also concentration of
solutes and pH which affect significantly the conductivity and dielectric properties of the medium.Materials 2018, 11, x FOR PEER REVIEW  6 of 19 
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3. Examples of In Situ NMR Studies on Crystallization of Microporous Materials

3.1. Zeolites

3.1.1. First In Situ MAS NMR Study

The first report on the use of solid-state NMR to monitor in situ the evolution of order during the
conversion of amorphous intermediate gels to crystalline zeolites dates to 1996. Carr and coworkers
studied the formation of zeolite A acquiring 29Si and 27Al MAS spectra at 65 ◦C over a period of ca.
5 h [56]. They used conventional MAS equipment and standard rotors since this zeolitic system offers
the possibility of quick crystallization at moderate temperature from gel composition in the molar
range 1 Al2O3:2 SiO2:2–4 Na2O:40–160 H2O. The MAS rate was also moderate at ca. 2 kHz.

Figure 4 shows the results obtained from in situ 27Al MAS NMR spectra of silicoaluminate zeolite
A synthesis from gel at 65 ◦C [56]. These spectra (Figure 4a) allowed monitoring the growth of
the crystalline phase and the species occurring in solution and the gel phases. A rapid increase in
crystallinity can be revealed from decreasing half-height width of the peak at 59 ppm associated to
framework Al(OSi)4 species as a function of the crystallization time. Meanwhile, the peak intensity of
[Al(OH)4]−, representing the soluble species, decreases gradually indicating that these latter participate
directly in the framework development of zeolite A during the crystallization process. Thus ordering of
the local environment of aluminum tetrahedra with formation of long-range Al(OSi)4 can be monitored
in situ by 27Al NMR spectroscopy in conjunction with XRD (Figure 4b).

A study as a function of gel composition showed that water affects significantly kinetics of
crystallization process. More concentrated gel promotes crystallization and the transformation rate
increases suggesting that more nuclei should be formed during the induction/nucleation period.
There is however no indication from the 29Si MAS NMR measurements of specific solution-state
species, such as secondary building units, most probably due to their existence as a broad structural
and conformational distribution that could not be resolved at the NMR time scale.
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Figure 4. Monitoring the zeolite A synthesis from two intermediate sodium aluminosilicate gels (gel
1:1 Al2O3:2 SiO2:4.3 Na2O:160 H2O; gel 2:1 Al2O3:2 SiO2:2.4 Na2O:42 H2O): (a) In situ 27Al MAS NMR
spectra from gel 2 at 65 ◦C. (b) Top: plots showing synthesis progress as measured from line narrowing
of 59 ppm 27Al line and 2θ 29.9◦ Bragg peak; Bottom: curves of Al% in the liquid phase (close symbols)
and the gel phase (open symbols) from quantitative 27Al NMR vs heating time. Adapted from [56].

3.1.2. Liquid State In Situ NMR Study

The same system, i.e., zeolite A, has also been subjected to in situ NMR study using conventional
liquid state NMR. Miladinovic et al. used 10 mm Quartz tubes to study suspension (dilute gel)
precursors for zeolite A at relatively mild temperatures not exceeding 80 ◦C [30,57]. With this
method, they identified signatures for species in both liquid and solid phases that they can monitor
simultaneously during the synthesis course (Figure 5). The species in liquid phase are characterized
by a narrow resonance as a result of rapid tumbling in solution, whereas the solid-state components
appear broad due to reduced mobility and conformational distribution.

Similar to the previous in situ MAS study, crystallization profiles from these 27Al NMR spectra,
where an example is shown in Figure 5a, can be derived either from the increase of the broad line at 59
ppm or the decrease of the narrow line at 79 ppm. The simultaneous changes in intensity and shape of
both NMR lines are indicative of depletion of [Al(OH)4]− ions from the liquid phase and the building
up of a Al(OSi)4 tetrahedral network at the surface of zeolite crystal particles [30]. Both alkalinity
and dilution effects have been investigated on various gels with wide molar composition range.
A particular interest has been attracted to quantitative analysis.

By using the Sharp-Hancock kinetic model (Equation (6)), crystallization parameters including
Avrami’s exponent n and rate constant k, can be extracted for a given system (Figure 5b).
The crystallization extent α derived from 27Al NMR data can be expressed as a function of time
t following Equation (6):
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ln[− ln(1− α)] = n ln(t− t0) + n ln k (6)

where t0 stands for induction time. The crystallization exponent n also known as Avrami’s exponent
provides useful insight about crystallization mechanism. Indeed, low values of n (typically 0.5 < n
< 1.5) are usually observed for diffusion-controlled mechanism, while higher values (typically 2.0
< n < 3.5) are indicative of phase boundary growth process [30]. It has been found that syntheses
performed at lower alkalinity conditions provide high values of n ranging from 1.9 and 3.3, consistent
with Avrami-Erofe’ev nucleation and crystal growth model. On the other hand, the almost dominant
presence of a diffusion mechanism has been verified for syntheses conducted at higher alkalinity
conditions with values for n gathered around 1.5.
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Figure 5. Kinetics analysis of zeolite A crystallization: (a) Typical in situ 27Al NMR spectra during
the course of zeolite A synthesis monitored by liquid-state NMR technique; (b) examples of linear
Sharp-Hancock plots obtained from 27Al NMR kinetic curves describing crystallization of zeolite A for
different molar compositions. Adapted from [30].

3.2. Aluminophosphate Zeotypes

Aluminophosphate molecular sieves have been considered as model compounds to study
crystallization of zeolitic materials offering quite simpler chemistry compared to the complex gel
chemistry of alkaline aluminosilicate systems. Férey pioneered the development of molecular
building block concept for rational synthesis of open framework solids [1,58,59]. Such molecular
“Lego” approach for the bottom-up synthesis of complex architectures needs the identification of
reactive SBU species in order to control the course of the synthesis, and thus to validate the concept.
For this means, Férey and coworkers developed in situ methodologies to probe metallophosphate
microporous synthesis media including XRD, EXAFS, and NMR [8,29,60]. For the latter, oxyfluorinated
alumonphosphate AlPO4-CJ2, (NH4)0.88(H3O)0.12AlPO4(OH0.33F0.67), has been chosen as the model
compound for the multinuclear NMR approach [61].

3.2.1. Identifying the Primary Building Units (PBUs)

By combining data from 31P, 27Al and 19F NMR of solution part of the initial precursor of
AlPO4-CJ2, the nature of the species constituting the reactive medium prior to heating has been
identified [49]. Specific signatures for Al-OP and Al-F bonds can be recognized from the 31P and
19F NMR spectra, respectively. This precursor has been found to be very simple, mainly composed
of mixed fluoroaluminophosphate octahedral complexes accompanied by freely solvated fluoride
and phosphate anions (Figure 6). These complexes should be thermodynamically stable and poorly
reactive at ambient conditions since they are formed spontaneously upon mixing the starting reagents.
Such elementary species should therefore represent the primary building units or PBUs from which
more complex structures could be derived. PBUs include the elementary building units, such
as the tetrahedral phosphate anions and octahedral aluminum cations but also the very simple
fluoroaluminophosphate complexes.
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3.2.2. Tracking the Prenucleation Building Units (PNBUs)

To investigate the real synthesis medium high temperature NMR under hydrothermal conditions
is required. Using devices shown in Figure 1a, 27Al NMR was successively applied on precursor
synthesis of AlPO4-CJ2 [50]. The main results are shown in Figure 7. When increasing progressively
temperature up to 210 ◦C the 27Al NMR line of PBU shifts continuously from 0 to 40 ppm indicating
a coordination change from octahedral at room temperature to penta-coordinated Al at synthesis
temperature (Figure 7a). In this experiment, only the liquid part of the synthesis mixture was
considered after separation of the insoluble solid component by filtration. In a second experiment
taking into account the overall heterogeneous system without phase separation (Figure 7b), new
resonances appeared at high temperature at ca. 50 ppm. Interestingly, lowering the temperature back
to room conditions led to the shift of the PBU line from 40 to 0 ppm, as observed previously in the
first experiment on solid-separated liquid, but did not affect the position of the new resonance which
remain at 50 ppm even at room temperature.

From these results, one can conclude that the starting primary complexes undergo coordination
change from hexa-coordinated Al, species (i) in Figure 7, at room temperature to more reactive
penta-coordinated Al species (ii) at synthesis temperature. Without the presence of the initial solid
part of the precursor, these species (ii) are not reactive enough to partially transform into the third
new species (iii) at 50 ppm. This supposes supersaturation conditions needed for such transformation.
The NMR signature of species (iii) is temperature-independent meaning these species are metastable
over a short period of time where its coordination state is maintained through equilibrium with
growing solid particles. Such observations typically apply to nucleating reactive species at work.

These results represent experimental evidence of the so-called prenucleation building units or
PNBUs, which differ structurally from the SBU for the construction of the solid as it will be discussed
in next section. A sequential pathway from initial hexa-coordinated PBU species (i) to the PNBU
species (iii) passing by the intermediate reduced coordination number species (ii) is proposed in
Figure 7c. The PNBUs consist of cyclic dimerized form of the penta-coordinated PBUs. The reduction
in coordination number by rising the temperature facilitates condensation reactions.
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Figure 7. Evidence of reactive species for AlPO4-CJ2 crystallization, the prenucleation building unit
(PNBU): Variable temperature 27Al NMR spectra of (a) the liquid part of the initial precursor showing
the change in coordination number of Al in the PBU and of (b) the heterogeneous solid-liquid complete
precursor showing the formation of new species (PNBU) with temperature-independent reduced
coordination number; (c) proposed sequential pathway of PNBU formation from starting PBU.

3.2.3. Structural Relationship between PNBUs and SBUs

Now the prenucleating species (PNBU) are identified experimentally, their comparison with
the AlPO4-CJ2 SBU can reveal some insights about the crystallization process for this compound.
The PNBU is a tetrameric unit composed of two aluminum and two phosphate units linked to each
other by alternation. The two Al centers adopt penta-coordinated geometry according to the unique
resonance observed in solution at 55 ppm in a dissolution experiment at 210 ◦C (Figure 8), or at
50 ppm in the synthesis medium during the crystallization (Figure 7b). The SBU is structurally
comparable showing a tetrameric unit but the two aluminums are bridged and also differ from
their coordination number where one is octahedrally coordinated and the second is present in
penta-coordinated environment. This is well-illustrated in the MAS spectrum of the solid exhibiting
the two distinct resonances.

It is clear that the PNBU differs from the SBU, but they are structurally related. A simple junction
between the two aluminum centers in the PNBU by linking them through one terminal function (OH
or F) is sufficient to create the SBU structure. This means by a simple conformational rearrangement,
the PNBU can be transformed into the AlPO4-CJ2 SBU. This would occur during the condensation of
these PNBUs under structural constrain imposed by the minimization of the network energy to create
the growing surface. Also, as an evidence of that, the bridged position between the two Al atoms
in the SBU was found to be distributed, i.e., partially occupied by either a hydroxide or a fluoride
suggesting that such particular site would be created in a later stage during the AlPO4-CJ2 network
development [62]. In this study case of AlPO4-CJ2, although SBU has not been identified in growth
solution, structurally related PNBU has been clearly evidenced thanks to in situ NMR.
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3.2.4. Recent MAS In Situ Investigation on AlPO4-5

Since the first in situ measurements by the MAS NMR technique exposed in Section 3.1.1, limited
studies have been achieved certainly due to the technical challenge with respect to high pressure at high
temperature conditions. Most of the in situ NMR investigations are conducted under static condition
that suffers from spectral resolution associated with the solid part or at moderate temperature below
100 ◦C in an in situ MAS setup that restricts the study to only a few systems [35]. Thanks to recent
availability of high temperature-high pressure MAS rotors, presented in Figure 1b, in situ multinuclear
MAS NMR investigations of the crystallization process of AlPO4-5 molecular sieve have been carried
out [28]. Especially, the roles of water during the crystallization were demonstrated by highly sensitive
in situ 1H MAS NMR.

27Al, 31P, and 1H MAS NMR spectra of synthesis gel for AlPO4-5 at 150 ◦C maintained over a
period of 14 h are shown in Figure 9. After about 100 min, the peak of the four-coordinated aluminum
(Figure 9a) became narrower and gradually shifted from 37 to 34 ppm, attributed to the framework Al
of AlPO4-5. Solution species were also detected and are represented by the 46 ppm peak appearing at
extended reaction time. In 31P spectra (Figure 9b), the peak of terminal phosphate (PO3(OAl)) near
−8 ppm became broad as a new shoulder peak rose at −6 ppm at about 50 min. Correspondingly,
relative signal intensities of these 31P lines increased significantly (Figure 9d), implying that the
breakage of Al-O-P bond occurs in the amorphous gel as more terminal phosphates are formed.
With crystallization proceeding, the chemical shift oscillating combined with fluctuated change of the
signal intensity of the −6 and −8 ppm peaks seems to indicate repeated hydrolysis and condensation
reaction, producing and consuming terminal phosphate functions during the whole synthesis process.

Thus, specific water should catalyze the structure rearrangement via repeated hydrolysis and
condensation reaction. Indeed, in 1H MAS NMR (Figure 9c), significant changes were demonstrated
near 4–5 ppm belonging to hydroxyl groups, protonated amine, and water that are all involved in
an exchange process. The activated water with sharp peak features at 4.3 ppm at 30 min dispersed
in different environments with well distinguishable peaks near 4–5 ppm at 50–70 min. Such water
should play an important role during the hydrolysis of Al-O-P bonds. The significantly fluctuated
change of 1H signal intensity during the initial 100 min seems to indicate continuous adjustment of
local structures of amorphous gel accompanied by excluding or consuming excess water, phosphate,
and aluminum species.
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3.3. Aluminum Carboxylate MOFs

MOFs, like zeolites are usually synthesized by the hydrothermal technique, but they also are
obtained many often solvothermally when an organic solvent is employed to solubilize, as much as
possible, poorly soluble organic linkers. In such a case, the synthesis conditions are usually milder
compared to the hydrothermal synthesis when these solvents present lower vapor pressure and higher
boiling point than those of water. Because 27Al is a relatively high-sensitivity nucleus with 100%
natural abundance, most in situ NMR studies have focused on the synthesis of Al-based MOFs, where
both 1H and 27Al NMR can be used to probe the formation process. Two main contributions in the field
have been published so far on MIL-type Al carboxylate systems (MIL stands for Material of Institute
Lavoisier) [63,64].

3.3.1. Identifying PNBUs in Growth Solution of Al-Trimesate Based MOFs

Aluminum trimesate (1,3,5-benzene tricarboxylate, or btc) is typical system within which several
compounds can be formed by varying the reaction conditions and synthesis parameters. Indeed, three
phases with completely different three-dimensional crystal structures appear in this system by varying
the pH and reaction time. The common precursor is a mixture of Al source and trimesate ester where the
molar ratio and pH are adjusted depending on the nature of the final product. The complex structure
of MIL-96 [65], consists of corrugated chains of octahedral Al forming hexagonal 18-membered ring
tunnels, at the center of which are fixed µ3-oxo-centered trinuclear Al3 clusters. Such trinuclear units
are also found in the mesoporous MIL-100 and represents the unique SBU for this phase [66]. The third
compound, MIL-110 [67], is built up from completely different an original SBU based on Al8 octamer.
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At short reaction times (<5 h), increasing the pH successively leads to MIL-100 in a very narrow
range of pH (0.5 < pH < 0.75), MIL-96 (0.75 < pH < 3.25), and MIL-110 (pH > 3.25). Above 60 h of
reaction, the repartition has completely changed: MIL-100 has disappeared, and MIL-110, which was
formed in 4 h at pH 3.5, exists now only at very low pH (<0.5), with the MIL-96 domain being almost
unchanged. This surprising behavior has been investigated by the combination of X-ray powder
diffraction and in situ NMR method [64].

Four 27Al NMR signals can be distinguished at 0, ~1, ~4, and ~7 ppm (Figure 10a). They correspond
to four distinct Al-based species in octahedral coordination. Their identification is based on comparison
between NMR observation in solution and the nature of the XRD solid product along the syntheses
course. The signal at 0 ppm is observed in all the solutions. It is assigned to the uncomplexed cation
Al(H2O)6

3+. The resonance at 1 ppm appears during the increase of the temperature, from room
temperature to 180 ◦C. Its presence is correlated with the presence of btc in solution, and therefore
assigned to the primary complex Al(H2O)5(H2btc)2+. This labile complex undergoes fast chemical
exchange with Al(H2O)6

3+, and these two species represent the PBUs. The signals at 4 and 7 ppm are
visible only at synthesis temperature 180 ◦C. The signal at 4 ppm correlates with the MIL-110 formation,
while the appearance of the second signal (7 ppm) coincides with the formation of MIL-96 and, to a
lesser extent, the formation of MIL-100. MIL-110 is based on a unique octameric Al8 unit, whereas
MIL-96 and MIL-100 share a common trimeric Al3 unit, Al3(µ3-O)(H2O)2(OH)(btc)2. As the 7 ppm
signal appears always after the 4 ppm signal, the two corresponding species should be structurally
related. Therefore, the substructure Al2(µ2-O)(H2O)2(btc)2

2− (corner-sharing bi-octahedral motif)
would be more likely related to the 7 ppm signal, knowing that MIL-110 presents another kind of
dimer Al2(µ2-O)2(H2O)2(btc)− (edge-sharing bi-octahedral motif), which would be related to the
4 ppm signal. On this basis, the resonances at 4 and 7 ppm are assigned to the dimer complexes
Al2(µ2-OH)2(H2O)6(H2btc)3+ and Al2(µ2-OH)(H2O)6(H2btc)2

3+, respectively (Figure 10b).
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Figure 10. Al-based species observed in the synthesis solutions of aluminum trimesate MOF type
compounds, MIL-96, MIL-100, and MIL-110: (a) Typical 27Al NMR spectra of synthesis medium for
MIL-100 and MIL-110 recorded at 180 ◦C; (b) chemical pathways of the starting PBUs leading to the
PNBUs characterized by the 4 and 7 ppm 27Al signals.

According to the Férey SBU concept [58], the species present in solution at the moment of
crystallization are directly related to the building units of the crystal. Since the SBUs of the three
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products (MIL-96, MIL-100, and MIL-110) are very different and complex, the two resonances observed
in synthesis solutions should correspond to simpler but related substructures. These PNBUs can lead
to the final corresponding SBUs simply by adding monomers (Figure 11).
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3.3.2. The Role of N,N-Dimethylformamide Solvent on the Synthesis of NH2-MIL-101

In another study of the MIL series, Gascon et al. used in situ MAS NMR to elucidate the
role of N,N-dimethylformamide (DMF) in promoting NH2-MIL-101(Al) formation [63]. The NMR
measurements were in essence a liquid-state experiments, but in order to detect large chemical
structures in confined space that are normally beyond the typical limits of detection in solution NMR,
the synthesis precursors were rotated under magic angle at a sample rotation rate of 1.1 kHz. For this
purpose a Bruker 7 mm MAS WVT (wide variable temperature) probe head was used. To contain the
pressure buildup at the synthesis temperature, i.e., 130 ◦C, specially designed home-constructed PEEK
(polyether ether ketone) inserts sealable with screwed caps were used inside the standard zirconia
7 mm MAS rotors. Nevertheless, the generated pressure should be moderate since the experiment
temperatures did not exceed the boiling point of DMF (153 ◦C) used as solvent.

From earlier XRD experiments [68], it was determined that either NH2-MIL-101(Al) or
NH2-MIL-53(Al) could form from a common NH2-MOF-235(Al) intermediate, and that solvent effects
(DMF versus H2O) played a critical role in determining the final product. Building on this work,
Gascon et al. identified a number of protonated complexes with DMF occurring at high temperature in
their 1H NMR spectra (Figure 12a) [63]. They showed that 1H NMR peaks assigned to H−Cl···DMF
grew as a function of time (Figure 12b) and were concurrent with a downfield-shift and broadening of
the 1H NMR signal for water. These observations led the authors to conclude that DMF serves as a
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molecular promoter for a water dissociation reaction (Equation (7)) that transforms water-coordinated
NH2-MOF-235(Al) into hydroxy-coordinated NH2-MIL-101(Al).

Cl− + H2O + DMF → OH− + H−Cl · · ·DMF (7)

Moreover, these results correlate well with the consumption of 27Al nuclei in solution.
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4. Conclusions

In situ NMR techniques yield invaluable information at the molecular scale on processes occurring
in the transformation of growth solutions and amorphous precursors for zeolitic matters. With the
recent technical progresses and technological advances in the design of specific high-temperature
and high-pressure NMR setups, the in situ NMR approach under hydrothermal conditions is now
state-of-the-art, although such studies remain still scarce. Various NMR cells and devices including
tubes, rotors, and inserts have been developed acting as real hydrothermal reactors for both liquid and
solid state NMR. Specific NMR methodologies for hydrothermal conditions, such as high-temperature
NMR quantification and in situ NMR pH-metry have been presented. We can expect that these new
methodological developments will expand applications in many fields when access to reaction medium
by conventional techniques is difficult.

The hydrothermal and solvothermal chemistries are typically hardly accessible by classical
analytical tools. The equilibriums and species distributions are different from ambient conditions
and in situ investigations are needed for determining chemical composition of synthetic medium
and its reactivity. Although elementary building units, i.e., PBUs, can be identified at room and
moderate temperatures, the reactive species and PNBUs have been found to occur exclusively at
synthesis temperature often with short live-times. The roles of solvent and ‘activated water’ in
hydrolysis-condensation are demonstrated. The change in coordination and evolution of pH with
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temperature affect drastically the stability and thus the reactivity of these PBUs. Kinetics data are also
valuable insights that can be obtained only at real conditions.

Despite significant progress in understanding zeolite and MOF syntheses, much work remains to
be accomplished since no universal mechanism can be validated for all systems yet.
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