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Abstract: It is always demanded to prepare a nanostructured material with prominent functional
properties for the development of a new generation of devices. This study is focused on the synthesis
of heart/dumbbell-like CuO nanostructures using a low-temperature aqueous chemical growth
method with vitamin B12 as a soft template and growth directing agent. CuO nanostructures
are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray
photoelectron spectroscopy (XPS) techniques. CuO nanostructures are heart/dumbbell like in shape,
exhibit high crystalline quality as demonstrated by XRD, and have no impurity as confirmed by
XPS. Apparently, CuO material seems to be porous in structure, which can easily carry large amount
of enzyme molecules, thus enhanced performance is shown for the determination of uric acid.
The working linear range of the biosensor is 0.001 mM to 10 mM with a detection limit of 0.0005 mM
and a sensitivity of 61.88 mV/decade. The presented uric acid biosensor is highly stable, repeatable,
and reproducible. The analytical practicality of the proposed uric acid biosensor is also monitored.
The fabrication methodology is inexpensive, simple, and scalable, which ensures the capitalization of
the developed uric acid biosensor for commercialization. Also, CuO material can be used for various
applications such as solar cells, lithium ion batteries, and supercapacitors.

Keywords: CuO nanostructures; vitamin B12; uric acid biosensor; potentiometric response

1. Introduction

Cupric oxide (CuO) is a member of first row transition metal oxides with unique properties
and advantages such as its inexpensive nature and abundance on Earth [1,2]. CuO, with its
controlled shape and dimension, has received more attention due to its potential applications in
various fields such as catalysis [3–8], batteries [9–12], solar cells [13,14], supercapacitors [15,16],
sensors [17–19], and photodetectors [20,21]. Besides this, CuO as nanostructured materials can
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reveal size dependent physical and chemical properties, along with high surface area and quantum
confinement [22]. Active research activities have been carried out for the synthesis of nanostructured
CuO materials with well-defined morphology and size [2]. Thus, numerous morphologies of CuO are
produced including nanoparticles, nanoneedles, nanowhiskers, nanowires, nanoshuttles, nanorods,
nanotubes, nanoleaves, and nanoribbons via wet chemistry and physical methods [23–31]. Moreover,
the complex nanostructures of CuO are also synthesized including nanoellipsoids [32], peanut-like
nanostructures [33], nano-dendrites [34], prickly/layered microspheres [35], and dandelion-like hollow
morphology [36]. The wet chemical method has more importance over other existing methods due
to its low cost, simplicity, and gives a high yield of nanostructured material. Due to fascinating
electrochemical properties of CuO, it is able to be a main component of electrochemical sensors,
especially potentiometric sensors [37].

Uric acid (UA) is the major product of purine metabolism and its release in urine is because of
purines that are formed in the catabolism of the dietary and endogenous nucleic acid. The formation
of uric acid in excess can result in precipitation in the kidney and it hinders urine excretion.
The possibility of gout may be observed due to the metabolism of uric acid [38]. Several studies
have shown that the formation of excessive uric acid in human blood is highly risky and can cause
cardiovascular diseases [39]. Therefore, the estimation of uric acid in human physiological fluids is
very important for the early diagnosis of patients who are victim to a wide range of abnormalities due
to variations in purine metabolism. Currently, several uric acid biosensors are reported from different
research groups [40–44]. Many of these biosensors are based on an amperometry technique [45–48].
These biosensors suffer severe disadvantages that hinder their practical applications due to their
working potential at 0.7 V [49]. The relatively high electrode potential makes other competing species
oxidize on the surface of electrode [50]. This kind of limitation and interference can be avoided by
using the potentiometric configuration that works at a negligible bias voltage as previously reported
in the several studies [51–54]. The vitamin B12 has been used as a reducing and capping agent for the
preparation of noble metal nanoparticles [55].

The template assisted nanostructured materials have the advantage of fast growth nucleation
and in getting controlled morphology of nanomaterials. The vitamin B12 has biocompatibility with
metal oxide nanostructures, which is being presented in this work as an evident for the growth of
other metal oxides. It is for the first time that vitamin B12 is used as a growth directing agent for
tuning the morphology of CuO nanostructures. The present study is focused on the preparation
of heart/dumbbell-like CuO nanostructures using vitamin B12 with excellent functional properties
during the development of a potentiometric uric acid biosensor for the first time.

In this research work, vitamin B12 is used as growth directing agent to control the morphology of
CuO nanostructures using a low-temperature aqueous chemical growth method. The CuO nanostructured
material is characterized by SEM, XRD, and XPS techniques. The functional properties of nanostructured
CuO are demonstrated in the development of a sensitive, selective, stable, reproducible, and repeatable
uric acid biosensor. The proposed potentiometric configuration was selectivity used in the determination
of uric acid from the real samples, which confirms the practicality of the presented analytical device.

2. Experimental Section

2.1. Chemicals Used

Copper nitrate pentahydrate (Cu (NO3)2·5H2O, 25% ammonia, vitamin B12, uricase (E.C. 1.7.3.3),
25 units/1.5 mg from Arthrobacter globiformis, uric acid, d-glucose, ascorbic acid, glutaraldehyde,
hydrochloric acid (HCl), sodium hydroxide (NaOH), sodium chloride (NaCl), potassium chloride
(KCl), disodium hydrogen phosphate (Na2HPO4), and potasium dihydrogen phosphate (KH2PO4)
were purchased from Sigma Aldrich, Jilin, china. A phosphate buffer solution of 10 mM was made by
mixing appropriate quantities of NaCl, KCl, Na2HPO4, and KH2PO4 in deionized water and a fixed
pH of 7.4 for the phosphate buffer solution was obtained by adding a certain volume of 1 M NaOH,



Materials 2018, 11, 1378 3 of 13

and 1 M HCl. A fresh uric acid solution was prepared in the phosphate buffer solution and kept at
4 ◦C. The low concentration solutions were prepared using a dilution method. All the chemicals used
were of analytical grade and used without further any purification.

2.2. Synthesis of CuO Nanostructures Using a Low-Temperature Aqueous Chemical Growth Method with
Vitamin B12 on Gold Coated Glass Substrates

To modify the surface of the gold-coated glass substrates with CuO nanostructures, a two-step
methodology was followed. First, glass substrates were cleaned with acetone and deionized water in
an ultrasonic bath, then dried with flowing nitrogen gas. Afterwards, the glass substrates were fixed
inside the vacuum chamber of a Satis, Norrköping, Sweden (CR 725) evaporator. A thin layer of 10 nm of
chromium was deposited on the glass substrates as an adhesive layer, followed by the 100 nm thickness
deposition of the gold layer. In the second step, gold-coated glass substrates were again sonicated in
acetone in an ultrasonic bath for 15 min and dried using flowing nitrogen gas, then a seed layer of
CuO nanoparticles was spin-coated using a spin coater at 2500 rpm for 30 s and seed coated substrates
were annealed at 120 ◦C for 30 min in order to get a firm binding of seed particles on the substrates.
Afterwards, a 25 mM copper nitrate pentahydrate solution was prepared in 100 mL deionized water and
5 mL of 25% ammonia was added in the solution. In order to facilitate the growth process and to get CuO
nanostructured material of desired properties, 0.5 g of vitamin B12 was used as a soft template. Then,
the seed-coated gold-coated glass substrates were fixed in a Teflon sample holder and kept in the growth
solution. The beaker was tightly sealed using aluminum foil and kept at 95 ◦C for 24 h. Afterwards,
the CuO-modified substrates were collected and washed with the deionized water in order to remove
the residual particles from the surface of the nanostructured CuO and dried with flowing nitrogen gas.

2.3. Material Characterization

The morphology and structural investigations of nanostructured CuO were performed by SEM
at a 15 kV accelerating voltage. The crystal structure was studied using X-ray powder diffraction
(XRD) with a Phillips (PW 1729, Tokyo, Japan) powder diffractometer associated with CuKα radiation
(λ = 1.5418 Å at a generator voltage of 40 kV and a current of 40 mA). The XPS experiments were
done using an ESC (A200, Sweden) spectrometer in highly vacuum of pressure of 10−10 mbar.
The measurement chamber was equipped with a monochromatic Al (Kα) X-ray source employing
photons of frequency (hν = 1486.6 eV).

2.4. The Immobilization of Uricase Enzymes on the Nanostructured CuO and Potentiometric Measurement

To immobilize uricase enzymes on nanostructured CuO, first uricase solution was prepared in
a phosphate buffer solution of pH 7.4 using (3 mg/mL uricase) and 100 µL of glutaraldehyde was
used as a cross-linker to avoid the self-enzyme reaction. Then, the CuO material was dipped in the
enzyme solution for 5 min and the immobilized electrodes were dried in air at room temperature for
1 h. After the immobilization, the electrodes were kept at 4 ◦C when not in use. The potentiometric
measurements for the sensing of uric acid were done against Ag/AgCl as a reference electrode using a
Metrohm pH meter (Model 744, Beijing, China) by employing the uricase-immobilized nanostructured
CuO material as a working electrode. All the experiments were performed at room temperature and
all solutions were prepared in a 10 mM phosphate buffer solution of pH 7.4. The biosensor can be
reused after rinsing with the buffer solution.

3. Results and Discussion

3.1. The Morphological, Structural, and Composition Studies of as Prepared CuO Nanostructures Using
Vitamin B12

The distinctive SEM images at different magnifications for the nanostructured CuO material are
shown in Figure 1a–d. It can be seen from the low magnification image Figure 1a that the morphology
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of CuO nanomaterial was heart/dumbbell-like, which is further verified at higher magnification
and it exhibits a porous structure as depicted in Figure 1b. Furthermore, it can be seen that the
formation of the heart/dumbbell-like morphology was comprised of thin sheets consisting of the
nanoparticles on the surface as shown in Figure 1c. Figure 1d shows that the sheets in the structured
CuO nanomaterial were well-packed with a thickness of 100 to 200 nm. The heart/dumbbell-like
morphology was well controlled using vitamin B12 as the soft template that ensured the uniform
growth of the CuO nanomaterial. Chemically, vitamin B12 contains several polar functional groups
in its structure along with a small portion of non-polar cyclic structures, but the dominancy in the
growth of the CuO heart/dumbbell-like nanostructure is governed by the polar group that allowed
for the control of the kinetic process during the growth in water and resulted a unique morphology
of the CuO nanomaterial. However, the carbon chains of vitamin B12 were acting as a soft template
for the maturing heart/dumbbell structure. The actual role of vitamin B12 in the evolution of CuO
nanostructures is still unclear, thus we are only providing a possible role of vitamin B12 based on the
preliminary results.
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Figure 1. (a–d): SEM images of the vitamin B12 assisted synthesis of CuO nanostructures at
different magnifications.

Figure 2 shows the XRD patterns of the nanostructured CuO material prepared using a
low-temperature aqueous chemical growth method. The measured diffraction patterns are according
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to the standard (JCPDS card no: 96-101-1195). The CuO nanomaterial exhibited the monoclinic phase
and no other peak was detected, which confirms the high purity of the CuO nanomaterial.
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Figure 2. The XRD spectrum of the vitamin B12-assisted CuO nanomaterial.

The chemical composition of the nanostructured CuO was further investigated using XPS
measurements and the obtained spectra are shown in Figure 3. Figure 3a shows the wide scan survey
for the elemental composition that has two distinctive peaks, where those at 284.00 and 531.00 eV
represent C 1s and O 1s, respectively [56]. Additionally, the recorded peaks at 933.30, 121.10 and
77.00 eV could be attributed to Cu 2p, Cu 3s and Cu 3p respectively [57].

Figure 3b,c discloses the XPS spectra of Cu 2p and O 1s, respectively. In the case of Cu 2p,
the recorded peak at 933.60 eV was assigned to the binding energy of Cu 2p3/2, which is in good
agreement with the published work [58], as shown in Figure 3b. Moreover, two shake-up peaks show
the clear evidence for the synthesis of a CuO compound using a low-temperature aqueous chemical
growth method. Figure 3c shows the XPS spectrum of O 1s in which two peaks are observed that
could be indexed to the O2− in CuO at 529.47 eV and the peak at 531.15 eV is from the adsorbed
oxygen, respectively. From composition point of view, XRD and XPS studies are in good agreement
with each other.
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3.2. The Potentiometric Response of the Proposed Uric Acid Biosensor Based on Uricase Immobilized
Heart/Dumbbell-Like CuO Nanostructures

The potentiometric measurement was carried out via a two-electrode cell system using
heart/dumbbell-like CuO nanostructures as an excellent transducer for the immobilization of uricase
acting as a working electrode and silver-silver chloride (Ag/AgCl) as a reference electrode. All the
experiments were performed at room temperature except for the temperature study. The output
potential signal was measured in the phosphate buffer solution; thus, different concentrations of
uric acid were prepared in the phosphate buffer solution of pH 7.4. The uricase immobilized
heart/dumbbell-like CuO nanostructures were tested in different concentrations of uric acid ranging
from 0.001 mM to 10 mM and the response of the biosensor was found according to Nernst’s equation:

E = E0 − 0.05916 V/n log [Reduced]/[Oxidized] (1)

The sensing mechanics of the electrochemical uric acid biosensors was demonstrated by uricase.
It was uricase that oxidized the uric acid into allantoin along with the formation of carbon dioxide



Materials 2018, 11, 1378 7 of 13

and hydrogen peroxide. As the biosensor was working in the water, the allantoin most probably
snatched a proton from the water and consequently there was the formation of an allantoinium ion
that further interacted with the CuO nanostructures and at the surface of the CuO there was an
accumulation of charges that were responsible for the output potential and was easily measurable by
the potentiometric technique. The scale of the potential varied with respect to different concentrations
of uric acid. The fabricated uric acid biosensor responded to a wide linear range of uric acid and
the output potential was linearly related to the logarithmic concentrations of the uric acid, having a
sensitivity of 61.88 mV/decade, which is very close to the Nernstian slope and it indicates that the
proposed configuration of sensor system was in good agreement with the Nernstian response with a
regression coefficient of 0.99. The limit of detection of the fabricated uric acid biosensor was found to
be 0.0005 mM, which is estimated from the linear range as shown in Figure 4a. The repeatability was
another way to notice the response of the same-immobilized CuO nanostructures electrode and its
capability of reuse after rinsed with phosphate buffer solution and this experiment was repeated for
the same electrode for three consecutive days. When the biosensor was not in use, it was kept at 4 ◦C,
and this study has shown that the biosensor has the ability to survive for a long time by maintaining
the sensitivity and linear range.
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of 0.0001–10 mM uric acid concentration; (b) the repeatability response of the uric acid biosensor in the
concentration range of 0.0001–10 mM uric acid.

For the performance evaluation of the biosensor, several parameters were investigated such as
reproducibility, repeatability, selectivity, and stability. The reproducibility is an essential parameter
for the performance evaluation of a fabricated biosensor. In order to ensure reliable reproducibility,
six independent electrodes were fabricated by following same conditions as discussed above and
the electrodes were immersed in 0.1 mM uric acid solution and the recorded response is shown in
Figure 5a, which clearly indicates the excellent inter-electrode response of the fabricated biosensor
using functional nanostructured CuO. The relative standard deviation of the electrode-to-electrode
response was found to be less than 5%, which shows the promising analytical features of the
proposed uric acid biosensor. The presented uric acid biosensor based on CuO nanostructures offers a
decent hosting platform for the immobilization of uricase enzyme and ultimately demonstrates the
sensitive and selective response to uric acid under physiological conditions. Owing to the porous
structure of the CuO material, the uricase molecules were allowed to penetrate within the body
of the dumbbell-like nanostructures. The uricase was firmly bound to the CuO surface to expose
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the highly attractive features for the oxidation of uric acid. The stability of the fabricated uric acid
biosensor was evaluated for four weeks and the biosensor had the ability to maintain the linear range,
detection limit, and sensitivity as shown in Table 1. The biosensor could be used for more than four
weeks if the storage conditions were well-controlled. Importantly, the CuO nanostructures-based
uric acid biosensor could easily be capitalized for the monitoring of uric acid from real samples as all
experiments were performed in the same physiological conditions. Therefore, a recovery method was
used for the real sample analysis using the presented uric acid biosensor as the driving candidate for
the sensing of uric acid with a satisfactory performance as shown in Table 2.
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Figure 5. (a) The inter-electrode reproducibility of the uric acid biosensor in 0.1 mM uric acid; (b) the
effect of pH on the output potential of the uric acid biosensor in 0.5 mM uric acid; (c) the effect of
temperature on the potentiometric response of the uric acid biosensor in 0.5 mM uric acid.

Table 1. The storage stability proposed uric acid biosensor based on CuO nanostructures.

No of Weeks Linear Range Uric Acid (mM) Sensitivity (mV/Decade) Limit of Detection Uric Acid (mM)

1 0.001–10 61.88 0.0005
2 0.002–10 61 0.0005
3 0.001–10 61.58 0.0004
4 0.0025–10 60 0.0003
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Table 2. The recovery method results for the analytical reliability of uric acid biosensor.

Spiked Concentration of
Uric Acid (Mm)

Uric Acid Conc. as Quantified
by Proposed Biosensor % Uric Acid Biosensor Recovery

0 1.5 -
1.8 2 111.11
3.5 3.7 105.71
2.5 2.4 96
4.1 4.2 102.43

The selectivity is the backbone of the fabricated biosensor because it is directly identifying the
sensing element in the presence of other competing species. Several methods are used to monitor the
selectivity of the potentiometric biosensors such as separate solution method, mixed solution method,
matched potential method, and unbiased selective coefficients. In the current study, a separate solution
method was used to measure selectivity coefficients according to our reported work [59] and the
obtained values are fairly constant as given in Table 3. In the human blood, the common interfering
species are ascorbic acid, urea, and glucose during the sensing of uric acid. Using 1 mM uric acid
and 0.1 mM of each of the interfering species, selectivity coefficients were calculated, which are fairly
constant. This study has strengthened the claim that the uric acid biosensor is highly selective for the
quantification of uric acid in physiological conditions.

Table 3. The calculated selectivity coefficients for the interfering species using separate solution method
using 0.1 mM solution of each interfering substance.

Interfering Species (B) Log Kpot
uric acid, B

Ascorbic acid 2.5
Urea 1.9

Glucose 2.25

3.3. pH and Temperature Studies

The aim of this study was to find the suitable pH conditions under which the biosensors based on
metal oxides nanostructures seemed to be stable because many of the metal oxides do not have a good
figure of merit in harsh conditions, and also to ensure the physiological pH for which the biosensor
needed to be in the driving position. pH has a direct influence on the activity of enzymes and the
change of charges at the surface of the electrode strongly effects the output potential of the sensor.
The pH-based potentiometric signal was recorded in the 0.5 mM uric acid solution and the biosensor
showed the optimum response close to pH 7, which is in good agreement with the performance of
uricase enzyme; however, for higher pH values, the response of the biosensor degraded, which could
be due to the loss of enzymatic activity and also the slow dissolution of metal oxides in the analyte
solution as shown Figure 5b. Thus, pH 7.4 was chosen for all the measurements except the pH study.

Under the controlled experimental setup, the effect of different temperatures on the performance
of the biosensor was examined in a 0.1 mM uric acid solution in the temperature range of 15 to 65 ◦C
as shown in Figure 5c. It can be seen that there was a gradual increase of output potential when
the temperature was increased, and at 35 ◦C the maximum response was recorded, which indicates
that the kinetics of enzymatic activity was enhanced, and at high temperature the enzyme starts to
denature and loose its activity, and thus the output signal dropped. Keeping in mind the ease of the
experimental setup to avoid the solution evaporation, the measurements were therefore performed at
room temperature.

The analytical results of the presented biosensor are compared with the existing uric acid
biosensors in terms of linear range and sensitivity as given in Table 4. It is obvious that the proposed
uric biosensor exhibited a wide linear range due to the porous nature of CuO nanostructures that
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carried large amounts of uricase during immobilization and provided a large surface for uric acid
molecules to undergo easy oxidation.

Table 4. The comparison of presented uric acid biosensor with existing biosensors.

Electrode Material Technique Linear Range mM Sensitivity mV/Decade References

ZnO nanowires Potentiometry 0.001–1 29 [60]
ZnO nanotubes Potentiometry 0.05–1.5 68 [61]
ZnO nanoflakes Potentiometry 0.0005–1.5 66 [62]
ZnO nanorods Amperometry 0.005–1 ———- [63]

ZnO nanoparticles Amperometry 0.00–1 ———- [64]
PEDOT/Palladium Differential pulse voltammetry 0.007–0.011 ———- [65]

PrGO Differential pulse voltammetry 0.3 ———- [66]
Graphene-poly(acridine red)/GCE Differential pulse voltammetry 0.008–0.15 ———- [67]

RGO–AuNPs–CSHMs Differential pulse voltammetry 0.001–0.3 ———- [68]
CuO nanostrucutures Potentiometery 0.001–10 61 This work

4. Conclusions

In this study, heart/dumbbell-like CuO nanostructured material was synthesized uisng vitamin
B12 as a growth-directing agent and template for the facilitation of the growth process using a
low-temperature aqueous chemical growth method. CuO nanostructures were investigated uisng
SEM, XPS, and XRD techniques. Using these nanostructures of CuO, uricase enzyme was immobilized
on them and used for the development of a stable, sensitive, selective, reproducible, and repeatable
uric acid biosensor. The nanostructures of CuO are porous, which allowed the uricase molecules
to reside within those pores to further allow the fast oxidation of uric acid, and finally we have a
successful and an alternative analytical device for the monitoring of uric acid. The obtained results
were unique and can be capitalized to commercialize the uric acid biosensor because the fabrication
process is simple, cost effective, and scalable. We propose the functional properties of the prepared
nanostructured CuO material in the field of lithium ion batteries, solar cells, and supercapacitors based
on its functional properties.
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