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Abstract: P-type binary copper oxide semiconductor films for various O2 flow rates and total
pressures (Pt) were prepared using the reactive magnetron sputtering method. Their morphologies
and structures were detected by X-ray diffraction, Raman spectrometry, and SEM. A phase diagram
with Cu2O, Cu4O3, CuO, and their mixture was established. Moreover, based on Kelvin Probe Force
Microscopy (KPFM) and conductive AFM (C-AFM), by measuring the contact potential difference
(VCPD) and the field emission property, the work function and the carrier concentration were obtained,
which can be used to distinguish the different types of copper oxide states. The band gaps of the Cu2O,
Cu4O3, and CuO thin films were observed to be (2.51 ± 0.02) eV, (1.65 ± 0.1) eV, and (1.42 ± 0.01) eV,
respectively. The resistivities of Cu2O, Cu4O3, and CuO thin films are (3.7 ± 0.3) × 103 Ω·cm,
(1.1 ± 0.3) × 103 Ω·cm, and (1.6 ± 6) × 101 Ω·cm, respectively. All the measured results above
are consistent.

Keywords: binary copper oxide; phase structure; band gap; contact potential difference

1. Introduction

P-type binary copper oxide semiconductors with different morphologies and copper oxidation
states have three distinct phases: cuprous oxide (Cu2O), paramelaconite (Cu4O3), and tenorite
(CuO) [1,2]. They have great application potential in thin-film devices such as solar cell [3] and
thin-film lithium-ion battery [2]. Many efforts have been made to further understand the thin film
physical properties in theoretical calculations [1,4,5] and experiments [6–9]. The crystal symmetries of
Cu2O, Cu4O3, and CuO vary from cubic to tetragonal and monoclinic, resulting in the diversity of
optical and electronic properties.

The band structure of Cu2O, with a direct gap range from 2.1 to 2.6 eV [7,10–12], was
experimentally well established. Although Cu2O has the advantage of good transparency in the
visible light range, its low carrier concentration or large resistivity leads to poor performances [3,10].
The second oxide phase, Cu4O3, discovered during the late 1870s [13], is a metastable mixed-valence
intermediate compound between Cu2O and CuO [1,4,9,14,15]. To date, research about the electronic
structure of Cu4O3 has been limited. The estimated band gap by optical methods varies from 1.3 to
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2.5 eV, depending on whether a direct or indirect gap was assumed for the analysis [4,14]. Recently,
Wang et al. predicted that the indirect band gap of Cu4O3 is 1.59 eV [4]. As for CuO, the type of band
gap of CuO remains controversial; in some studies its band gap is suggested to be direct [16–18], but it
is considered that its band gap is indirect in other studies [1,19,20], and its accurate band gap value is
still a greater challenge for electronic structure calculations.

Therefore, there is an urgent need to verify the calculated electronics structure of binary copper
oxides through experiments. Various methods have been used to prepare binary copper oxides
thin films. They include thermal oxidation [21,22], spray-coating [23], pulsed laser deposition [24,25],
electrochemical deposition [26], and reactive sputtering [9,11,12,14]. Among those methods, magnetron
sputtering at room temperature is desirable for the growth of thin films with good physical properties.
Moreover, one can easily deposit the three types of binary copper oxides or their mixed phases by
merely tuning the oxygen partial pressure during depositions [9,14,15].

The oxygen partial pressure during depositions does influence the oxygen chemical potential
inside the deposition chamber. On one hand, the films deposited under lower oxygen partial pressure
tend to form the Cu2O phase which contains only Cu+, and higher oxygen partial pressure will further
oxidate Cu+ into Cu2+, resulting in the formation of the CuO phase. The calculated phase stability
of the copper oxide system indicates that Cu4O3 is a metastable state [1,4], which means that the
processing window of O2 flow to synthesize Cu4O3 is extremely narrow. Consequentially, the critical
parameters for the synthesis of the Cu4O3 metastable phase need insightful exploration. On the
other hand, the physical properties of thin films (such as preferred orientation, optical band gaps,
mobilities, and carrier concentrations) can also be tuned by changing the oxygen partial pressure
during deposition [9,14,15]. The effects during depositions of oxygen chemical potential on the films’
physical properties still need to be investigated further.

In this work, binary copper oxide thin films including Cu2O, Cu4O3, and CuO were prepared by
DC magnetron sputtering under different oxygen partial pressures. The crystal structures of those
binary copper oxide films were studied using XRD and Raman spectra; band gaps were measured by
introducing a UV–vis spectrophotometer; and the nanoscale electrical property was investigated by
conductive AFM (C-AFM). Additionally, the oxide states of Cu on the film’s surface were determined
by Kelvin Probe Force Microscopy (KPFM). It is hoped that these experimental results can facilitate the
better understanding of the thin film growth mechanism and the tuning effect of physics properties of
binary copper oxide thin films.

2. Experiments

The binary copper oxide films were grown at room temperature by reactive magnetron sputtering.
In the experiment, a Cu target of 2 inches with 99.999% purity was used. By using deionized water,
acetone, and methanol, the glass substrates were rinsed ultrasonically. By blowing nitrogen gas, these
substrates were dried in case of deposition. Then, the substrates were installed on a holder 10 cm away
from the target. The rotation rate of 15 rpm was fixed during the deposition. The vacuum chamber
was evacuated until the base pressure reached 4 × 10−4 Pa. The operating pressure varies from 0.5 to
2.0 Pa. Mixed argon–oxygen was used as the reactive gas. The oxygen flow rate was changed from 1 to
30 sccm, while the argon flow rate was kept at 50 sccm. A fixed DC power of 160 W was used for all
the films. The deposition time was set to be 10 min. In order to measure the optical characterization,
transparent glass substrates were used. However, in order to obtain J–E curves, a conductive substrate
(ITO—indium tin oxide) was also considered.

The crystalline structures of the films were measured using XRD (RigakuMiniFlex II, Rigaku,
Tokyo, Japan) with Cu Kα radiation of λ = 1.5418 Å and using Raman spectroscopy (HORIBA Jobin
Yvon Evolution, Jobin Yvon, Paris, France). The scanning speed of XRD characterization was set
to 5◦/min in order to ensure sufficiently strong diffraction intensity. The surface morphologies
were observed using SEM (Hitachi SU-8010, Tokyo, Japan). Based on Dektak XT (Bruker, Hamburg,
Germany), the thickness of the films was obtained. Using a UV–vis spectrophotometer (Shimadzu
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UV-Vis 2450, Kyoto, Japan), we measured the optical reflectance and transmission spectra. The work
functions and I–V curves were recorded using KPFM (Bruker Dimension Icon, Hamburg, Germany)
and C-AFM measurements, respectively (AFM, Bruker Dimension Icon, Hamburg, Germany). In order
to avoid the influence of moisture and gas absorption on the measured results, the whole AFM was
put into a glove box with water and oxygen content <0.1 ppm.

3. Results and Discussion

Figure 1a shows the XRD patterns for pure phase Cu2O, Cu4O3, and CuO deposited at 0.5 Pa
with the flowing rates of 8 sccm, 14 sccm, and 24 sccm, respectively. From the figure, one can notice
that the peaks of the three samples are consistent with those characteristic of the cuprous oxide,
paramelaconite, and tenorite phases (JCPDS NO. 65-2388, 49-1830, and 65-2309), respectively. All the
observed diffraction peaks are summarized in Table 1. Raman spectra were also introduced to confirm
the film structure and detect the trace impurity. As shown in Figure 1b, all the Raman peaks marked
using vertical bars agree well with experiments [15] and with previous calculations [27]. The XRD and
Raman results indicate that the three types of Cu2O, Cu4O3, and CuO films can be prepared through
magnetron sputtering by only tuning the O2 flowing rate.
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Figure 1. The XRD (a) and Raman spectra (b) of Cu2O, Cu4O3, and CuO deposited at 0.5 Pa with the
flow rates of 8 sccm, 14 sccm, and 24 sccm, respectively.

By using XRD and Raman measurements, the phase diagram of CuxOy, deposited under different
O2 flow rates and total pressures, is shown on Figure 2a. From the figure, we can see that the increase
of the oxygen flowing rate at 0.5 Pa results in the evolution from pure Cu2O, to a mixture of Cu2O and
Cu4O3, to pure Cu4O3, to a mixture of Cu4O3 and CuO, and to pure CuO. However, further increase
of the O2 flow rate will give rise to the deterioration of the film crystallinity of CuO. This is consistent
with previous results [9,14].

As the total pressure is enhanced to 1.0 Pa, the processing windows of O2 flow rate to synthesize
a mixture of Cu2O and Cu4O3 disappeared, and the O2 flow processing window for pure-phase Cu2O
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and Cu4O3 became narrower. Moreover, the pure phase domains of Cu2O and Cu4O3 are moved to
lower O2 flow rate magnitude, which indicates that, for the larger total pressure, a lower oxygen flow
rate can produce copper oxide with higher valence. Additionally, it is worth mentioning that the pure
Cu4O3 and Cu2O phases disappear at 1.5 Pa and 2.0 Pa, respectively. It is also found that the phases are
represented by Cu2O, Cu4O3, CuO, Cu, and their mixtures, which means that grains of intermediate
composition CuxOy may not present under such deposition conditions. As seen in Figure 2b, the film
thicknesses deposited with 0.5 Pa, 1.0 Pa, 1.5 Pa, and 2.0 Pa under 1 sccm O2 flow rate were obtained
at about 700 nm, 620 nm, 550 nm, and 400 nm, respectively. Moreover, the film thickness is reduced
with increasing oxygen flowing rate for same total pressure, reducing with increasing total pressure
for same O2 flowing rate.

Table 1. The summary of diffraction peaks in XRD patterns.

Cu2O Cu4O3 CuO

2θ (◦) (h k l) 2θ (◦) (h k l) 2θ (◦) (h k l)

36.5 1 1 1 30.7/31.1 2 0 0/1 0 3 35.5/35.7 0 0 2/111
42.4 2 0 0 35.6/35.7/36.3 2 0 2/0 0 4/2 2 0 38.9/39.1 1 1 1/2 0 0
61.5 2 2 1 63.9/65.0 4 0 0/2 0 6 65.6 0 0 2
73.6 3 1 1
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Figure 2. (a) The schematic deposition diagram of films deposited under different total pressure and
O2 flow rate; (b) film thickness prepared under different conditions.

At a fixed argon flow rate, the increase of the total pressure means that of the O2 partial pressure.
The O2 partial pressure influences the morphology of deposited films.

The evolution of the film morphologies under various total pressures is shown in Figure 3. From
the figure, one notices that the surface roughness of the binary copper oxide increases with increasing
oxygen partial pressure. The surface of the Cu2O thin film consists of a lot of “spherical” grains, while



Materials 2018, 11, 1253 5 of 13

the Cu4O3 and CuO thin films consist of many “roof-type” and “pyramidal-shape” grains, respectively.
Especially, the Cu4O3 thin films deposited under 1.5 Pa contain the CuO phase which forms many
“pimples” on top of the Cu4O3 “roof”. As shown in Figure 3d, an EDX compositional analysis of Cu4O3

deposited at 0.5 Pa and 1.0 Pa indicates that Cu-to-O atomic ratios are 1.26:1 and 1.27:1, respectively,
which is close to the stoichiometric ratio with 1.33:1. However, the Cu-to-O atomic ratio of deposited
films at 1.5 Pa deviates from 1.26:1, which indicates that CuO phase may exist in the Cu4O3 films.
In addition, the existence of a CuO impurity phase was also confirmed by the following optical band
characterization. The morphology of pure-phase thin films is closely related to their crystal structure,
which was discussed in detail in other studies [9]. From our measured results, it is suggested that
binary copper oxide films with fine electrical quality should be prepared under lower total pressure.
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Materials 2018, 11, 1253 6 of 13

The optical band gaps of Cu2O, Cu4O3, and CuO were also analyzed. The transmittance and
reflectance spectra for different copper oxides deposited under various total pressures are present
in Figure 4. By using the Tauc relation, one can estimate the Eg values from the transmittance and
reflectance [12,28]:

(αhυ)n = A(hυ − Eg) (1)

where hν is the incident photon energy, and A is a constant related to the materials. The magnitudes of
n are considered to be 2, 1/2, 3, and 3/2 corresponding to allowed direct, allowed indirect, forbidden
direct, and forbidden indirect transitions, respectively.
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Figure 4. The transmittance and reflectance spectra of Cu2O, Cu4O3, and CuO thin films deposited
under various total pressures.

Here, for CuO, the indirect band gap is considered, so n = 1/2. Moreover, Cu2O and Cu4O3 are
supposed to a direct transition so n = 2 is considered [1,4,19]. The absorption coefficient α can be
obtained based on following relation:

α =
1
d

ln

[
(1 − R)2

T

]
(2)
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where d is the thickness of the film, and R and T are the reflectance and transmittance.
Figure 5 presents the photon energy dependence of the (αhν)n values. The calculated optical Eg

values can be obtained as 2.51 ± 0.02 eV, 1.65 ± 0.1 eV, and 1.42 ± 0.01 eV for Cu2O, Cu4O3, and CuO,
respectively. These are consistent with the previous reported results [2,4,7,12,15,28]. Furthermore,
the measured results of the band gap indicate that, although the morphologies of the films under
various O2 partial pressures are different, the band gap value of each type of single-phase copper oxide
remains almost constant. This informs us that the band gap of binary copper oxide films can be tuned
by controlling the ratio of Cu2O/Cu4O3/CuO in the mixed phase.
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Compared with XPS, Raman, and FTIR with spatial resolution at the micrometer scale, the KPFM
measured method allows us to distinguish between the Cu oxide states with nanometer resolution,
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and to observe the local morphology of thin films simultaneously [29]. There exists a contact potential
difference (VCPD) between the scanning tip and the surface of sample; VCPD can be described as
follows [30]:

VCPD =
(ϕtip − ϕs)

q
(3)

where ϕs is the work function of the sample, ϕtip is that of the tip, and q is the electronic charge.
By measuring the work function of a standard sample (such as Au), the magnitude of ϕtip can be
gained. Therefore, according to Equation (3), by measuring the value of VCPD, ϕs can be determined.

Figure 6a,b present VCPD and the work function distribution on the respective surfaces of Cu2O,
Cu4O3, and CuO thin films. These data were obtained inside a 1 × 0.3 (µm)2 scanning region on the
surface of the films, and the measured mean VCPD values for Cu2O, Cu4O3, and CuO thin films are
231.0 mV, 98.5 mV, and 8.7 mV, respectively. According to Equation (3), the positive VCPD values indicate
that the work functions of the thin films are lower than the value of ϕtip. The results indicate that the
thin films of CuO and Cu4O3 containing Cu2+ have lower surface potential. From Figure 6b, it is found
that φCu2O < φCu4O3 < φCuO, which is consistent with other experimental results [29]. In addition,
the copper oxide state can be identified with KPFM by a corresponding measurement VCPD value range
or work functions, and KPFM facilitates the undamaged characterization of the Cu oxidation state on
binary copper oxide thin film surfaces, which should have wide application prospects.

To further study the electronic properties of the binary copper oxide thin films, we used the C-AFM
measurement system, as seen in Figure 7a. Here, a conductive tip (Rc ≈ 20 nm and k = 2.8 N/m)
was used and a constant force (150 nN) was applied. This is similar to a tip-to-sample space mold in
measuring J–E [31].
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Our studied Tip–CuO–base should belong to the metal–insulator–metal (MIM) system. For this
MIM case, a nonresonant tunnel transport has been established [31,32]. There exists a metal–insulator
contact barrier ϕ produced by the insulator in MIM. Now, a bias voltage V is applied to the MIM system.
Then, as the value of ϕ is less than qV, an injection tunnel current will be produced. However, as ϕ > qV,
a direct current will arise. In order to analyze the properties of the field emission, the following F–N
equation is generally used [31–34]:

J =
A β2E2

φs
exp(

−Bϕ3/2

βE
) (4)
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Equation (4) can be rewritten as the following:

ln(
J

E2 ) = ln(
A β2

ϕs
)− Bϕ3/2

β
(

1
E
) (5)

where ϕ = ϕtip − ϕs; E is the applied electric field; J is the current density (A·cm−2); β is the field
enhancement factor; and A and B are constants.
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Figure 7b,c present the J–E curves and their ln(J/E2) versus 1/E plots of Cu2O, Cu4O3, and CuO,
respectively. Both clear direct and injection tunnel regimes can be found in the figure. As found in
Equation (5), according to the slope of ln(J/E2) versus 1/E plots, the ϕ information can be acquired.
From Figure 7c, we can see that the slope of ln(J/E2) versus 1/E plots in the injection region increases
in the order of Cu2O, Cu4O3, and CuO, which means that the value of ϕ is reduced in this order. That
is, φCu2O < φCu4O3 < φCuO, which is consistent with the observed result in Figure 5b. Moreover, in the
direct tunnel region, it is found that, compared with Cu2O film, the current density J is evidently
enhanced for Cu4O3 and CuO thin films, which indicates that the carrier concentration at room
temperature increases for thin films deposited under higher O2 partial pressure. The above result is
related to the observed fact of the band gap in Figure 5.

Finally, the resistivities of Cu2O, Cu4O3, and CuO thin films measured by the four-point probe
method are (3.7 ± 0.3) × 103 Ω·cm, (1.1 ± 0.3) × 103 Ω·cm, and (1.6 ± 0.6) × 101 Ω·cm, respectively.
Clearly, ρCu2O > ρCu4O3 > ρCuO. The resistivity values of CuO thin films are nearly 2 magnitudes less
than those of Cu2O and Cu4O3, which should be attributed to the higher intrinsic carrier density of
CuO [28,35,36]. The measured result indicates that the Cu2O film with the largest resistivity has the
largest band gap and the least Cu valence state, while the CuO film with the least resistivity has the
smallest band gap and the largest Cu valence state. All the measured results above are consistent.

The evolution of Cu valence states and the thickness of binary copper oxide films are typically
affected by total pressure, O2 flow rate, substrate temperature, and so on. At room temperature,
the interplay of total pressure and O2 flow rate leads to the complex change of the phase. The phase
diagram and corresponding thickness change in Figure 2 should be associated with the deposition rate
and energy of impinged atoms. For the same O2 flow rate, the low deposition rate for a high Pt value
gives rise to the decrease in the incoming atom flow. High total pressure can reduce the contribution
of the atomic bombardment, because the collisions of the sputtering atoms are enhanced. As a result,
with increasing total pressure, the deposition thickness is decreased. Usually, a larger O2 flow rate can
lead to higher energy of negative oxygen ions (O−) [37], which indicates that the bombardment effect
on the deposition surface should be severer in binary copper oxide films with larger O2 flowing rate.
Thus, for the same total pressure, with increasing O2 flow rate, the deposition thickness is decreased.
However, on the other hand, higher energy of O− under larger O2 flow rate can give rise to a more
sufficient reaction between Cu+ and O−. As a consequence, at low O2 flow rate, Cu2O phase is mainly
formed due to insufficient O2 and lower energy of O−. With increasing O2 flow rate, the reaction
between Cu+ and O− is gradually enhanced, which leads to some of Cu+1 being oxidized to become
Cu+2. Thus, Cu4O3 phase (Cu2O + 2CuO) is formed. Similarly, a larger O2 flow rate can lead to all of
Cu+1 being oxidized to Cu+2, which gives rise to the formation of pure CuO. Based on the measured
results of the band gap and work function in Figures 5 and 6, an illustration of the band diagrams of
Cu2O, Cu4O3, and CuO films is presented in Figure 8. From the figure, it is found that the magnitudes
of the band gap for Cu2O, Cu4O3, and CuO films are consistent with the other experimental results [38].
However, the experimental gap for Cu2O is in good agreement with that calculated based on hybrid
functional calculations, while there are discrepancies between experiment and theory for CuO and
Cu4O3 [1]. This may be associated with the defects in the prepared films, which need to be clarified by
further experimental and theoretical investigations.

The developments of film characterization techniques supply more tools to produce insight into
the microscopic mechanism of physical properties for the films. Here, we introduced a nondestructive
characterization approach, KPFM, to distinguish the surface electronic states depending on the
composition. In general, the moisture, surface charge, absorption, and so on can evidently influence
the measured accuracy of the work function [39–41]. Thus, in the measuring process, these adverse
factors should be overcome. The direct valence measurement by X-ray photoelectron spectroscopy
(XPS) can detect not only the information from the film’s surface, but also a depth of penetration.
Therefore, the integration of KPFM with XPS may be a tremendously exciting endeavor.
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4. Conclusions

The Cu2O, Cu4O3, and CuO films were prepared through magnetron sputtering by changing the
O2 flowing rate and total pressure. The phase diagrams and morphologies of Cu2O, Cu4O3, CuO,
and their mixtures were established by structural analysis using XRD, SEM, and Raman spectrometry.
One notices that the binary copper oxide films with fine electrical quality should be prepared under
lower total pressure. Moreover, the contact potential difference and the field emission property were
measured by KPFM and conductive AFM(C-AFM). It is found that φCu2O < φCu4O3 < φCuO. The band
gaps of Cu2O, Cu4O3, and CuO thin films were observed to be 2.51 ± 0.02 eV, 1.65 ± 0.1 eV, and
1.42 ± 0.01 eV, respectively. The resistivity values of the Cu2O, Cu4O3, and CuO thin films are (3.7 ± 0.3)
× 103 Ω·cm, (1.1 ± 0.3) × 103 Ω·cm, and (1.6 ± 0.6) × 101 Ω·cm, respectively. Moreover, the measured
results indicate that the Cu2O film with the largest resistivity has the largest band gap and the least Cu
valence state, while the CuO film with the least resistivity has the smallest band gap and the largest
Cu valence state. All the measured results above are consistent.
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