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Abstract: To use the full potential of composite parts, e.g., to reduce the structural weight of cars
or airplanes, a greater focus is needed on the joining technology. Adhesive bonding is considered
favorable, superior joining technology for these parts. Unfortunately, to provide a structural and
durable bond, a surface pre-treatment is necessary. Due to its high integration potential in industrial
process chains, laser radiation can be a very efficient tool for this purpose. Within the BMBF-funded
(German Federal Ministry of Education and Research) project GEWOL, a laser source that emits
radiation at 3 µm wavelength (which shows significant advantages in theory) was developed for
a sensitive laser-based bonding pre-treatment. Within the presented study, the developed laser source
was compared with conventional laser sources emitting radiation at 355 nm, 1064 nm, and 10,600 nm
in terms of application for a composite bonding pre-treatment. With the different laser sources,
composites were treated, analytically tested, subsequently bonded, and mechanically tested to
determine the bonding ability of the treated specimens. The results show a sensitive treatment of the
surface with the developed laser source, which resulted in a very effective cleaning, high bonding
strengths (over 32 MPa), and a good effectiveness compared with the conventional laser sources.
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1. Introduction and State of the Art

The main application of composites like carbon fiber reinforced plastics (CFRP) addresses the
increase of the eco-efficiency of airplanes and cars by reducing their structural weight, which reduced
the fuel/energy consumption. Nevertheless, the final structure typically consists of different parts
made out of different materials, which requires the joining of those parts. Therefore, the development
of an efficient joining technology for CFRP-parts becomes more and more relevant [1].

Unfortunately, the joining of CFRPs has several challenges. On the one hand, conventional joining
technologies show disadvantages and some are not applicable. On the other hand, adhesive bonding
of those materials requires more effort compared to the bonding of classical construction materials.
Focusing on the disadvantages of conventional joining techniques, riveting is a useful example. Like all
mechanical joining processes, it has a significant disadvantage in which the load bearing fibers are
cut, which results in a weaker structure and a stress concentration around the rivet. This needs to
be leveled by an additional reinforcement correlating with a higher structural weight. Welding as
another commonly used joining technique cannot be applied for thermoset composites because the
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materials cannot be melted. Adhesive bonding, in contrast, allows the joining of almost any kind of
material and leads to a favorable stress distribution. Nevertheless, to provide a structural and durable
bond, the cohesive performance of the applied adhesive needs to be high and the adhesion on the
part’s surfaces needs to be guaranteed. Unfortunately, the adhesion is reduced by the presence of
mold-release agent residues and other contaminations and, therefore, the bonding performance of
untreated composites is limited [2,3].

As such, thermoset composites require a surface treatment prior to the application of the
adhesive to provide a sufficient adhesion on their surfaces. Within industrial processes, this bonding
pre-treatment is completed mostly by mechanical processes (grinding or blasting processes) or by
the application of so called peel-plies (fabrics that are laminated on top of the structural fibers of the
CFRP part prior to curing and torn out after the curing process). Both methods have relatively bad
integration potentials in a highly automated process chain (e.g., manual grinding) or show additional
disadvantages. Possible disadvantages include the development of dust for conventional blasting
processes [4], limitations in terms of the part geometry (low pressure blasting [LPB]) [4], or a limited
cleaning effect (e.g., atmosphere plasma) [5].

A method, which provides a high automation potential with reduced wear and a high flexibility,
is applied toward laser radiation, which is shown in several fields such as cutting, welding [6],
and materials testing [7]. Based on this potential, several investigations about the applicability
of different laser sources [8–18] to clean the surface in the context of bonding pre-treatment and
characterize the ablation behavior of different CFRP types were made.

In summary, there are several set-ups in which—within a laboratory scale—a sufficient bonding
pre-treatment is possible. However, to establish laser radiation as a tool within industrial applications,
specific challenges have to be solved. The main obstacle is the high initial investment cost for a laser
system. Furthermore, laser systems for the pre-treatment of adherents typically comprise lasers
emitting in the ultraviolet (UV) wavelength range [13], e.g., excimer lasers [14–17]. UV-lasers exhibit
severe limitations since the components of the laser are subjected to UV-radiation, which leads
to degradation effects. Therefore, UV-lasers require frequent maintenance, which leads to high
operational costs. Highly mature lasers with lifetimes spanning over several 10,000 h can be provided
at low cost in the near-infrared, e.g., solid state or fiber-lasers at 1064 nm, and in the mid-infrared,
e.g., CO2-lasers at 10,600 nm [9,13]. The transparency of epoxy (one of the most common resins in
CFRP) is typically high in the near-infrared region (see Figure 1) [18]. Resulting, the major part of
the irradiated light will be absorbed by the fibers, which consequently removes the resin based on
the difference of thermal elongation of fibers and resin. This can lead to delamination effects in the
compound material [11,12,18]. Even though the absorption in epoxy is high at 10,600 nm, the low
photon energy of CO2-laser radiation can lead to thermal ablation and still causes delamination
effects. Even if there are processing parameters that allow for a sufficient bonding pre-treatment with
fiber/solid state and CO2 lasers, the processing window is typically small and, therefore, the required
robustness for industrial applications cannot be guaranteed.

To guarantee a robust process, a new approach was chosen within the GEWOL project.
Using a laser emitting at 3 µm wavelength, which is highly absorbed by epoxy (see Figure 1) while still
having a significant higher photon energy compared with CO2 laser radiation, an efficient pre-treatment
of adherents will be demonstrated without delamination effects. The laser radiation shall be provided
by using a low cost industrial laser at 1064 nm and a subsequent efficient frequency conversion to 3 µm.
First implementations of a 3 µm laser and bonding pre-treatment experiments were presented by the
authors [8,18,19]. This paper focuses on the comparison of the pre-treatment results of adherents at
a 3 µm wavelength with the results at wavelengths emitted by conventional lasers.
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Figure 1. Absorption curve for a typical epoxy resin [18].

2. Methodology and Experimental Set-Up

Within the presented examinations, typical aerospace-related CFRP-samples were treated with
laser radiation of four different wavelengths. To determine the treatment efficiency of each laser source
as well mechanical tests of bonded specimens, analytical tests of the treated surfaces were performed
while the surfaces were pre-treated with comparable treatment intensities (aerial energies).

2.1. Methodology

To compare the efficiency of a bonding pre-treatment with different laser sources, Kreling [13]
established an approach defining an applied aerial energy. In this case, the aerial energy, which is
applied to the specimen’s surface, is calculated by multiplying the average amount of laser pulse hits
per surface increment with the laser pulse fluence.

Unfortunately, the efficiency of different laser sources is difficult to determine because, for every
source, there is a (potentially small) process window, which leads to high bonding strengths. Therefore,
the applied aerial energy was chosen to be the judgement parameter since, due to the risk of causing
material damage, an efficient treatment correlates with a low aerial energy while guaranteeing
a cohesive failure inside the adhesive and no occurrence of material damage (e.g., delaminations).

For comparable material systems as used within this study, the required aerial energies to achieve
high lap shear strengths can be stated to be roughly 60 mJ/mm2 for UV-laser sources (355 nm) where high
bonding strengths could be achieved by removing the contamination layers. In contrast, solid state lasers
require much higher aerial energies to achieve a high bonding strength (>250 mJ/mm2). For pre-treatment,
the top resin layer has to be completely removed until the fibers are exposed. Unfortunately, at these
high intensities and due to the ablation mode, the robustness is relatively small, which results in a high
presence of delaminations. For comparable materials and after a treatment with CO2-lasers, a high
bonding strength is gained starting with aerial energies around 200 mJ/mm2. However, due to with this
treatment intensity, the risk of thermal degradation is relatively high [9,11–14].

This leads to the approach within the presented investigations that identifies the crucial aerial
energy from which the favorable cohesive failure could be achieved with the new laser source
emitting a 3 µm wavelength. Taking this into account, the pre-treatment efficiency in comparison
with conventional laser sources was found by pre-treating the samples with the same aerial energy
and, subsequently, comparing the obtained bonding strengths rather than varying the aerial energy
to achieve for each laser source high bonding strength and, subsequently, compare the differences in
terms of the aerial energy.
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2.2. Laser Systems

In addition to the developed laser system with an output wavelength of 3012 nm, the samples
were also treated with conventional lasers. UV-laser a Coherent® AVIATM 355-23 (Coherent, Inc.,
Santa Clara, CA, USA) was used. The laser achieves a maximum average power of 23 W depending
on the repetition rate (common from 50 kHz to 200 kHz within this examinations set to 200 kHz).
The repetition rate depending on the pulse duration was in the range of 30 ns for the present study.
Furthermore, a fiber-laser called the SPI-G4 pulsed fiber-laser (SP-070P-AHS-H-C-Y, SPI Lasers,
Ltd., Southampton, UK) emitted radiation with a wavelength of 1064 nm and a maximum average
output power of 70 W for repetition rates from 55 kHz to 1000 kHz, which was chosen to be
70 kHz (pulse duration is in the range of around 100 ns). In addition, a CO2-laser (Diamond E
400, Coherent, Inc.) emitting laser radiation at a wavelength of 10,600 nm was used. This laser has
a maximum average output power of 400 W and can operate from a single shot up to 200 kHz of pulse
frequency (set to 50 kHz). The pulse length of this laser was around 1.2 µs during this study.

To generate the targeted laser radiation, the output of an industrial solid state IR-laser
(CleanLASER CL 150, Clean-Lasersysteme GmbH, Herzogenrath, Germany) had its frequency
converted to a wavelength of 3 µm. The industrial laser provides up to 105 W of average power
with a pulse duration of 120 ns at pulse frequencies from 11 kHz to 15 kHz (set to 12 kHz).
The frequency conversion is implemented as a two-stage scheme comprising an optical parametric
oscillator (OPO) and generating the target wavelength and a subsequent optical parametric amplifier
(OPA). The frequency-converted laser provides up to 18 W of average power at a wavelength of 3012 nm
and a pulse frequency of 12 kHz. A detailed presentation of the setup and the laser characteristics can
be found in Reference [19].

For all laser set-ups, the laser beam was focused by an F-Theta optics (resulting in a spot diameter
of 300 µm (GEWOL-laser), 200 µm (CO2-laser), 95 µm (fiber-laser), and 35 µm (UV-laser)) and guided
on the specimen surface by a galvanometer scanner.

2.3. Materials and Measurements

The composite samples were fabricated out of a typical aerospace prepreg system (HexPly® 913,
HTS fiber from Hexcel Composites GmbH, Stade, Germany), which have a curing temperature of
125 ◦C. The lay-up was chosen to be [0◦/90◦/0◦/90◦/0◦]s, which results in a post-cure thickness of
roughly 2.5 mm. The composite plates were manufactured in an autoclave with an applied pressure
of 7 bar while the vacuum was approximately −0.8 bar compared to the atmosphere. To achieve
representative surface contaminations, the aluminum mold was coated with a polysiloxane-based
release agent (Chemlease® R&B EZ from Chem-Trend L.P. Howell, MI, USA) and no additional release
film was applied.

The demolded CFRP plates were cut with a water-cooled circular saw. After laser pre-treatment
with a single scanning process, the specimens were bonded with a typical one component epoxy
based adhesive (3MTM Scotch-WeldTM Structural Adhesive Film AF 163-2K from 3M Corp., St. Paul,
MN, USA) with a curing temperature of 125 ◦C and a post-cure thickness of around 0.1 mm, which was
guaranteed by an implemented net within the adhesive.

The bonding capability and the correlating efficiency of the bonding pre-treatment was
mechanically tested within the single lap shear test following DIN EN 1465 [20] with a slightly
different testing rate of 10.0 mm/min and a varied specimen’s width of 20 mm due to the size of the
scanning device. The mechanical tests were performed using a universal testing machine Instron 5584
(Instron Deutschland GmbH, Darmstadt, Germany).

The analytical characterization of the surface was completed by using the Fourier transform
infrared spectroscopy and a laser scanning microscope. The FTIR measurements were performed with
a Bruker Tensor27 (Bruker Corporation, Billerica, MA, USA) working on the basis of attenuated total
reflectance (ATR). For the optical judgement of the surface, a Keyence VK-X Series 3D Laser Scanning
Confocal Microscope (Keyence Deutschland GmbH, Neu-Isenburg, Germany) was used.
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3. Results

The main criteria to judge the effectiveness of a pre-treatment method is the achieved bonding
strength, which can be correlated with the removal of contamination layers. Therefore, mechanical
and analytical tests were performed within this study.

3.1. Mechanical Tests

Since the objectives of the study was to evaluate the effectiveness of a 3 µm—laser treatment,
examinations were performed to identify a sensitive treatment intensity treatment parameter,
which results in high bonding strengths without damaging the composite. Furthermore, the efficiency
of the developed laser source can be compared with conventional laser sources by applying the same
aerial energy on the sample’s surface and comparing the resulting bonding performance (strength and
fracture pattern).

3.1.1. Identification of Pre-Treatment Parameters

The surfaces of the composite samples were treated with different aerial energies. This was
achieved by adapting the scanning parameters. The results of the lap shear tests are shown in Figure 2a
while Figure 2b is showing typical fracture patterns of a cohesive failure (CF), an adhesion failure (AF),
a substrate close cohesive failure (SCF), and a delamination showing a cohesive substrate failure (CSF).

Figure 2. Lap shear results of differently treated samples (a) and representative fracture patterns (b).

Focusing the results of the initial tests to identify a sensitive treatment intensity, it can be seen that
already low treatment intensities of 20 mJ/mm2 lead to a significant increase (more than a factor of 2.5)
of the bonding strength compared with the untreated specimens, which only achieve an average lap
shear strength of 6.0 ± 0.9 MPa. Nevertheless, the failure mode of these specimens is still an adhesion
failure, which leads to the conclusion that higher aerial energies are required to achieve a sufficient
cleaning effect. By increasing the aerial energy, the lap shear strength can be increased and the failure
mode changes can change to be more and more cohesive inside the adhesive. At an aerial energy of
90 mJ/mm2, an average lap shear strength of 32.5 ± 0.9 MPa is achieved. This value is close to the
value of the reference treatment method (low pressure blasting), which is 34.0 ± 0.8 MPa. Higher aerial
energies do not lead to increased bonding strengths due to the fact that the cohesive performance of
the applied adhesive is obtained.

3.1.2. Bonding Performance after Treatment with Radiation of Different Laser Sources

Based on the previously presented results, a treatment with an aerial energy of 90 mJ/mm2 was
identified to be superior and, therefore, all laser systems were adjusted to apply this aerial energy
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(see Table 1). This was based on the methodology of this paper for applying the same energy levels
and comparing the fracture patterns.

Table 1. Laser parameters for pre-treatment with different laser sources.

Parameter UV-Laser Fiber-Laser GEWOL-Laser CO2-Laser

Aerial energy (mJ/mm2) 90 89 90 89
Spot diameter (µm) ~35 ~100 ~300 ~200
Average power (W) 12 10 12 13
Scan speed (mm/s) 2700 2800 1220 2660

Repetition rate (kHz) 200 70 12 50
Spot and line overlap (%) ~40 ~58 ~66 ~73

Wavelength (nm) 355 1064 3012 10,600

Figure 3 shows the relevant outcome of the surface treatment experiments using the stated laser
and treatment parameters represented by the lap shear strength of the bonded. With regards to the
achieved strengths, it can be seen that, under a treatment using the UV-laser (355 nm wavelength),
the GEWOL-laser (3012 nm wavelength) and low pressure blasting device leads to similar values of
lap shear strength. The highest value of 34.9 ± 0.7 MPa is achieved using the UV-Laser. In contrast,
the treatment using the fiber-laser (1064 nm wavelength) leads to values of lap shear strength falling far
short of the values of the UV-laser. Specimens treated with the fiber-laser fail on a comparable strength
level of roughly 6 MPa similar to the untreated reference specimens and also show an adhesion failure.
The treatment with the CO2-laser at the stated parameters still leads to adhesion failure even though
the force level and the correlating lap shear strength rises to 14.6 ± 4.6 MPa.

Figure 3. Comparison of the bonding performance of samples treated with different laser sources.

To fully judge the effectiveness of the treatment, the fracture patterns have to be considered.
With regard to the fracture patterns, the UV-laser treatments show small disadvantages due to the
fact that, after this treatment, delaminations are present, which may be caused by the slightly reduced
matrix absorbance (around 82%) and correlate with higher interaction of the radiation with the carbon
fibers. When examining the samples, which were treated with laser radiation of 3012 nm wavelength
and by low pressure blasting, no delaminations could be found.

3.2. Analytical Measurements

To argue the observed differences in terms of the lap shear strength after different laser treatments,
the chemical composition of the surface can be analyzed.
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3.2.1. Fundamentals by Analyzing the Reference Specimens

Therefore, FTIR-measurements were performed, which are presented in Figure 4 for the reference
surface states. It shows an untreated and a low pressure blasted surface.

Figure 4. ATR-spectra of the reference specimens: (a) global overview, (b) focus at characteristic wavenumbers.

An overview about the normalized ATR-spectra of the references is given in Figure 4a. It can
be seen that, for low pressure blasted samples, all signals are reduced. This happens in the region
around a wavenumber of 3000 cm−1 as well as in the fingerprint region of the infrared spectrum below
1700 cm−1. These effects can be correlated with the occurring surface state. The peaks in the region of
3000 cm−1 mainly correlate with CH-bindings and OH-bindings [21], which are part of the chemical
composition of the matrix resin and humidity. This is located inside the matrix. Due to this fact, it is
plausible that the peaks of the low pressure blasted specimens are less pronounced because the resin
layer is significantly removed (see Figure 5b). Due to this reason, the peaks at wavenumbers below
1700 cm−1 are less pronounced. These peaks correlate with different organic compounds due to their
bindings (as well as signals out of the matrix resin including out of the release agent). A removal of
these layers leads to a decreased intensity within this region.

Figure 5. Appearance of the CFRP surface: (a) after low pressure blasting and (b) untreated.

To determine the removal of the contamination layers, a detailed look of the wavenumber region
between 1200 cm−1 and 900 cm−1 is useful. Within this region, the untreated specimens show
two significant peaks. Those peaks are located at 1145 cm−1 and 1091 cm−1 (see Figure 4b). The peak
a 1145 cm−1 can be correlated with a C—O-binding [22] and the peak at 1091 cm−1 is formed by
a Si—O-binding [23]. Based on the fact, the C—O-binding is a significant part of an epoxy resin [21]
and the Si—O-binding is highly representative for a polysiloxane chain [23]. The peak expression
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at 1145 cm−1 can be correlated with the matrix thickness (which is relatively thick for untreated
specimens (Figure 5b) and, by analyzing the ratio of both peaks to itself, the contamination degree can
be stated. Therefore, a relative contamination value C can be calculated by subtracting the peak height
at 1145 cm−1 (E1145) from the peak height at 1091 cm−1 (E1091) (Equation (1)), which is subsequently
divided by the 1145 cm−1 to take the resin layer thickness into account.

C = (E1091 − E1145)/E1145 (1)

Based on this calculation, a clean, contamination free surface is characterized by a small C value while
a large value correlates with strong contamination. The peak height at a wavenumber of 1145 cm−1

is a characteristic value for the resin thickness or the resin share on the surface and the C value is an
indicator for the surface contamination. Both the peak height and C value are shown in Table 2.

Table 2. Characteristic, analytical parameters for the reference specimens.

Parameter Untreated LPB

Peak height at 1145 cm−1 32.71 7.52
C value +1.09 × 10−1 −0.08 × 10−1

Both values can be well correlated with the observed surface state. While the relative high values
for the untreated specimens can be linked with a relatively thick resin layer, its present polysiloxane
is contaminated. This isn’t the case for the low pressure blasted specimens. The resin share on the
surface is low (correlating with a small peak height at 1145 cm−1) and the remaining resin does not
show any contaminations (very low negative C value), which indicates that the values below zero
correlate with a silicone-free surface.

3.2.2. Cleaning Effect of Different Laser Sources

With this knowledge, the cleaning effect of the different laser treatments can be analyzed.
Therefore, the global ATR-spectra of the laser and the reference specimens are shown in Figure 6a.
The relevant detail of the ATR-spectra is shown in Figure 6b.

Figure 6. ATR-spectra of the laser treated and reference specimens: (a) overview, (b) focus at
characteristic wavenumbers.

Focusing on the overview of the ATR spectra (Figure 6a), there are already significant differences
between the different treatment methods. One difference is the reduction of peak impression in the
region around the wavenumber of 3000 cm−1, which shows high reduction for a treatment with the
UV-laser and almost no reduction for the fiber-laser treated samples. Furthermore, there are significant
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differences between the different treatment methods in the fingerprint region. As mentioned before,
these peaks are highly critical for determining the remaining silicone contamination of the CFRP
surfaces after the specific pre-treatment.

Therefore, the relevant region within the ATR-spectra is presented in Figure 6b. It can be observed
that the expression of the relevant peaks is almost identical when comparing the untreated specimens
with treated specimens, which were treated using the fiber-laser. In contrast, both peaks are reduced
after treatment with CO2 laser radiation despite the fact that they are still well pronounced. This is
not the case for the specimens that were treated with laser radiation at 355 nm and at 3012 nm and
were low pressure blasted. The ATR-spectra of all of those specimens show a depressed expression in
the fingerprint region, the peak at 1145 cm−1, and an even more significant depression of the peak at
1091 cm−1. This optical impression can be underlined by the relevant, analytical values, which are
shown in Table 3.

Table 3. Characteristic, analytical parameters for the laser-treated specimens.

Parameter UV-Laser Fiber-Laser GEWOL-Laser CO2-Laser

Peak height at 1145 cm−1 2.24 33.62 4.98 21.78
C value −2.19 × 10−1 +1.05 × 10−1 −0.46 × 10−1 +0.73 × 10−1

Comparing the values in Table 3, it can be concluded that there are no contaminations left on the
surface after a treatment with 355 nm laser radiation. This is indicated by the high negative C value.
This is also the case for the specimens, which were treated with laser radiation at 3012 nm wavelength
while the C value of the surfaces were treated with 1064 nm radiation using the stated treatment
parameters, which is relatively high. As mentioned before, the specimens treated with 1064 nm laser
radiation show almost the same value as the untreated specimens while the values of the specimens
treated with 10,600 nm radiation indicate that there is still a significant resin layer present on the
surface. Additionally, a relevant amount of silicone residues remains on the surface.

4. Discussion

In general, there is a very satisfactory correlation between the analytical and the mechanical tests.
For specimens that were measured to have a low contamination value and a relatively clean surface,
high bonding strengths could be achieved. In addition, the depression of other ATR-information
(reduction of the fingerprint region and the peaks in the range of 3000 cm−1 wavenumbers) can be correlated
with an ablation of the matrix resin from the surface, which reduces the peaks generated by the resin itself
(fingerprint region) and shares of humidity inside the resin (range around 3000 cm−1 wavenumbers).

The results of the mechanical and the analytical measurements can be justified with the ablation
mode of the different laser sources and their correlating place of interaction between the laser radiation
and the specimens. Therefore, two relevant facts have to be considered. It is the absorption of the laser
radiation inside the resin and it is also the photon energy (Ep) of the laser radiation.

Focusing treatment with laser radiation of 1064 nm wavelength, it has to be noticed that the resin
is almost fully transparent for this wavelength (see Figure 1). This leads to the fact that, during the
pre-treatment of the CFRP specimens, the radiation is transmitted through the top resin layer and is
absorbed by the carbon fibers. The applied treatment intensity was kept constant to compare the laser
sources by analyzing the bonding performance. The general 90 mJ/mm2 were too low to remove the
top layer. Therefore, it is not possible to remove the contamination, which results in a surface state
that is comparable to the untreated one. This correlates with an inferior bonding performance that
results in a subpar efficiency based on the chosen approach. In perspective, an increase in terms of
aerial energy would lead to high bonding strength, but, due to this high intensity, the risk of material
damage is high and the process window is very small [11–13].
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In contrast, laser radiation with 355 nm wavelength is fairly good absorbed inside the resin,
which results in an ablation mode that can be characterized as partly top-down and partly removed
by the difference of thermal expansion of fibers and resin. This leads the top resin layer to be blasted
away. In correlation with the high photon energy of about 3.48 eV, it is possible to remove the resin
layer from the carbon fibers. This results in a contamination free surface and high bonding capability.
However, since the ablation is also (partly) characterized by a thermally based blasting process of the
resin, there is a potential of damaging the lower fiber layers, which is underlined by the small shares
of delaminations within the fracture patterns of the bonded specimens. With focus on the wavelength
of 3012 nm and 10,600 nm in Figure 1, it is obvious that, for both wavelengths, the ablation mode
is top-down due to the high absorption inside the resin. Therefore, the differences in terms of the
cleaning effect and the correlating bonding capability of the pre-treated specimens have to be explained
by the photon energy of the radiation [24,25]. The photon energy can be calculated to 0.41 eV for the
3012 nm and 0.11 eV for the 10,600 nm laser radiation. Based on this, the reduced cleaning effect of
the CO2 laser radiation can be justified by the fact that a higher treatment intensity is necessary to
remove the contamination layer through photo-thermal and multiphoton-based bond breaking [13,26].
Some share of the applied aerial energy is dissipated by heat transfer trough the specimens. This effect
is less pronounced for treatment with the radiation emitted by the GEWOL laser.

By summarizing these facts, it can be stated that the introduced state of the art about the laser
bonding pre-treatment of composites can be complemented by a surface treatment with laser radiation
of 3 µm wavelength. Based on the performed analytical and mechanical tests, the following conclusions
can be made. In comparison with conventional laser sources and by applying the same aerial energy
on the samples’ surfaces, a treatment with this laser radiation leads to similar bonding strengths than
UV-laser radiation without the challenges of using UV-radiation (especially UV-aging of surrounding
parts) and the reduced lifetime of UV-laser sources. In addition, the emitted radiation can be guided
through a fiber, which results in benefits regarding their applicability within the industrial process
chain. Compared with IR-laser radiation (around 1 µm), the radiation with 3 µm wavelength is
beneficial due to their high absorbance in the resin layer, which resulted in a more favorable ablation
mode (top-down) and, therefore, in a better, more efficient cleaning of the composite surfaces. This is
underlined by significantly higher bonding strength when the same treatment intensity (aerial energy)
is applied. A better cleaning and correlating bonding performance of the GEWOL-laser can also be
observed when compared with a typical CO2-laser. Again, when applying the same treatment intensity
on the specimen, the bonding performance measured by single lap shear tests is significantly higher.
Due to the fact that the resin shows the same high absorbance for both wavelengths, the difference
seems to be based on the higher photon energy of the 3 µm radiation, which results in a more efficient
ablation mode. Thus, based on the reduced required treatment, the risk to cause material damage
leads to delaminations by a thermal over treatment with CO2-laser radiation. However, CO2-lasers
result in a higher process robustness due to treatment with 3 µm laser radiation.

5. Conclusions and Outlook

The presented examinations show that laser radiation with a wavelength of 3012 nm can be
used for a sufficient bonding pre-treatment of CFRP structures, which is underlined by the analytical
measurements regarding the cleaning effect as well as the mechanical bonding tests. In comparison
with conventional laser sources (fiber-laser, frequency tripled solid state laser, and CO2-laser)
a comparable (frequency tripled solid state (UV) laser) or a better cleaning effect resulting in high
bonding strengths could be achieved. Based on the presented and previous examinations [8,18],
the applicability of the developed laser source could be proven even for the low emitted average
output power.

However, to finally establish laser radiation as the preferred method for bonding pre-treatment
processes, further work has to be performed. For an industrial application, the laser radiation of 3 µm
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is promising but the average output power has to be increased to be able to enlarged the spot sizes and
increase the pre-treatment speeds, which is comparable with the low pressure blasting process.

In addition, further research should be pursued to investigate the influence of different related
materials (especially the potentially present degree of thermal degradation) and the influence of laser
source related topics (for example, pulse lengths). This topic leaves relevant room for further research
because especially ultra-short pulse laser sources seem promising due to the non-linear absorption
and correlating ablation mode of former transparent material [27]. Within this topic, it needs to
be investigated whether a specific wavelength (like the present 3012 nm, correlating with a high
absorption in the resin) is still more promising than the non-linear ablation mechanisms for ultra-short
pulses (i.e., emitted by an IR-laser). Based on these future investigations, laser radiation can be
established as a tool for bonding pre-treatment.
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