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1. Materials and Incident Angles 

1.1. Selection of Materials 

In our design, the multilayer film is applied as the narrow band filter (NBF) similarly to 
the Fabry-Perot cavity. The designed NBF is based on a quasi-one-dimensional photonic 
crystal (PC) with a structure denoted as (HL)6(LH)6, for this defective PC, the defect mode is 
located inside the photonic band gap (PBG), and its spectral position with respect to the PBG 
center is defined by parameters of the multilayer films (thickness and refractive index). Here 
the materials composed of multilayer films are Nb2O5 and SiO2, corresponding to the high (H) 
and low (L) refractive index materials, respectively. The materials selected are due to the 
following demands for the application of NBF in the infrared communication region:  

1) Their transparency range should cover the application infrared communication 

band (0.8–1.8 m), otherwise the film will absorb, thus reduces transparency. 

2) These materials should be easily prepared by using advanced coating technology 

for achieving high-quality film.  

3) Their matching degree of these two kinds of materials should be high, which will 

directly influence the cohesion and stability between different layers. 

The common materials satisfied with the above demands are listed in Table S1. For the 
experiment, physical vapor deposition (PVD) was used to turn solid materials into gas and 
deposit them on the substrate. Here, the films were deposited by electron beam gun 
evaporation (EBD) and ion-beam assisted deposition (IAD) [34,35]. During the process of 



vacuum coating, the electron gun produces a high-energy electron beam to directly impact the 
target materials sublimating the solid into gas molecules or atoms, then these gas molecules or 
atoms, obtaining enough energy from ion-beam assistance, travel through the vacuum 
chamber to deposit upon the substrate. As shown in Table S1, using EBD with IAD can obtain 
a high stacking density of Nb2O5, which always matches with SiO2 to fabricate multilayer films 
due to its small stress. It is well known that the greater the difference between the high and 
low refractive indices, the wider the forbidden band and the narrower the transmission peak 
that can be obtained. TiO2 and Ta2O5 as oxide films also have high refractive indices; however, 
compared with Nb2O5, the quality of the NBF composited with SiO2 will decline slightly. MgF2 
and Na3AlF6, as fluoride films have low refractive indices. However, due to stress problems, 
MgF2 always matches with ZnS to prevent film cracking, and the low firmness of Na3AlF6 is 
not resistant to the environment. Considering the quality of the filter and the preparation 
technology, we selected Nb2O5 and SiO2 as suitable materials. 

1.2. Angular Dependence for Quasi-One-Dimensional PC-Based NBF 

In the simulation, the incident wave is of linear polarization, the TE wave has an electric 
field parallel to the interface and is named as S polarization, while the TM wave with a 
magnetic field parallel to the interface is named as P polarization. We considered only the 
condition of light normally incident to the surface of the proposed quasi-one-dimensional PC 
in the paper, where the S and P polarizations are identical. For further discussion of angular 
dependence caused by oblique incidence [36,37], we present the transmittance and reflectance 
of the proposed quasi-one-dimensional PC with different incident angles, θ, changed from 0°  
to 80°. As shown in Figure S1, it can be observed that the wavelength of the transmission peak 
and forbidden band is blue-shifted significantly with the increase of the incident angle. 
Furthermore, S-pol and P-pol (dashed and solid lines) exhibit polarization that gradually 
separates with the increase of the incident angle. When the angle of incidence increases from 
0° to 80°, the detailed data of the properties of the quasi-one-dimensional PC-based NBF are 
listed in Table S2. For the light of S-Pol, the magnitude of the transmission peak gradually 
decreases; the central wavelength shift is in the direction of short waves, and the FWHM will 
become narrower and the Q factor will become larger. For the light of P-Pol, the magnitude of 
the transmission peak increases firstly, and then decreases, and the central wavelength shift to 
the direction of short waves; the FWHM will become wider and the Q factor will become 
smaller. The value of the transmission peak, FWHM and Q factor vary with the increase of 
incidence angles evidently. There is a serious effect of the oblique incident angle to the 
performance of the NBF. In practical application, the designed quasi-one-dimensional PC for 
its miniaturization and integration can be loaded directly into the device port, thus, light 
usually has perpendicular incidence to the surface. Thus, we discussed only the performance 
of NBF under normal incident light. 

Table S1. Common use materials and evaporation technical data. 

 

Note: T: tensile stress, C: compressive stress; S: soft, H: hard. 
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Figure S1. The simulated reflectance and transmittance spectra of the designed 1DPCs with 

(Nb2O5/SiO2)6(SiO2/Nb2O5)6 when the incident angle is set to 10°, 20°, 30°, 40°, 50°, 60°, 70°, and 80°. 

 

 



Table S2. The influence of different incident angles to the properties of NBF. 

 

Note: Red: rising trend; blue: declining trend. 
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