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Abstract: Surface roughness of electrodes plays a key role in the dielectric breakdown of thin-film
organic devices. The rate of breakdown will increase when there are stochastic sharp spikes on the
surface of electrodes. Additionally, surface having spiking morphology makes the determination of
dielectric strength very challenging, specifically when the layer is relatively thin. We demonstrate
here a new approach to investigate the dielectric strength of organic thin films for organic
light-emitting diodes (OLEDs). The thin films were deposited on a substrate using physical vapor
deposition (PVD) under high vacuum. The device architectures used were glass substrate/indium
tin oxide (ITO)/organic material/aluminum (Al) and glass substrate/Al/organic material/Al.
The dielectric strength of the OLED materials was evaluated from the measured breakdown voltage
and layer thickness.
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1. Introduction

Organic light-emitting diodes (OLEDs) have drawn enormous attention in both academia
and industry owing to their cumulative applications in high-quality flat-panel displays and
solid-state lighting [1–6]. Recently, OLEDs have been commercialized as information displays for
car audio systems, sub-displays of cellular phones, and large-screen TVs, promising large market
opportunities [7–10]. The superior properties of OLEDs start to dominate existing flat-panel display
technology, liquid-crystal display (LCD). OLEDs have striking topographies, such as high color purity,
high luminance, a wide viewing angle, high contrast and response speed, low power consumption, a
simple fabrication process, ultra-thin structure, light weight, flexibility, and low cost [11]. To make
OLED displays and lighting more competitive and customer affordable, and the resultant products
more energy saving and longer lasting, OLEDs with higher power efficiency are demanded [3].

In the last two decades, state-of-the-art OLEDs have achieved prodigious progress in efficiency,
making their potential applications exceedingly promising [3]. However, lifespan is still a crucial
reliability issue to be addressed before they can be extensively adopted. Light-emitting diodes based
on both inorganic and organic semiconducting materials suffer from internal energy losses, and
these losses convert into heat [12]. The produced heat can then itself act as a source of degradation
and decrease the lifetime of the device. Therefore, reduction of heat and dissipation is required in
order to increase the lifetime of OLEDs [13]. In addition, device failures and lifetime are affected by
several other factors, such as electrochemical degradation, oxidation, moisture, molecular migrations,
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and dielectric breakdown [12]. Surface roughness of the electrodes plays a major role in dielectric
breakdown [14].

Only a few reports are available regarding the dielectric properties of OLED materials.
In 1993, Nguyen et al. analyzed frequency-dependent capacitive response in indium tin oxide
(ITO)/poly(p-phenylene vinylene) (PPV)/aluminum (Al) devices, such as conductance and tan δ [15].
Li et al. studied the alternating current impedance of light-emitting diodes (LED) and light-emitting
electrochemical cells (LEC), and propsed an equivalent circuit with a series combination of series
resistance (R0) and parallel resistor-capacitor (RC) [16]. Even though the structure of OLEDs has a
single layer, it shows two semicircles in Cole–Cole plot. Wang et al. reported that materials with
high dielectric constant can perform as a good electron injection layer (EIL), which enhanced device
efficiency and brightness [17]. Ohta et al. studied the influence of high dielectric strength materials in
an active matrix driving OLEDs [18]. Ahn et al. examined the magnitude and phase of impedance,
electrical conductivity, and dielectric loss under different biasing voltage in OLEDs [19].

Generally, OLED devices have a driving voltage of 3 to 5 V. Depending on the color of the light and
the thickness of organic layers, OLED devices need higher voltage in order to achieve more brightness.
However, device efficiency and lifetime start to decline at a higher driving voltage. This failure
of OLED devices is mainly due to dielectric breakdown of the organic material. For a thin film of
100 nm, a voltage of 10 V can produce an electric field of 1 million volts/cm (MV/cm). The produced
electric field is sufficient to cause dielectric breakdown of most of the OLED materials [20]. In this
study, we attempted to discover the correlation between surface roughness of the electrode and
dielectric breakdown of OLED materials. We measured the dielectric strength of the OLED materials
by evaluating the breakdown voltage and layer thickness [21].

2. Experimental Section

2.1. Materials

Indium tin oxide (ITO) coated glass substrates with a sheet resistance of 15 Ω/sq,
surface roughness of 1.5 nm, and light transmittance greater than 84% were purchased from
Luminescence Technology Corporation, Hsinchu, Taiwan. The molecular structures of the organic
materials used in this work are shown in Figure 1. The sublimated grade organic materials
4,7-Diphenyl-1,10-phenanthroline (BPhen) and 4,4′-Bis(9-carbazolyl)-1,1′-biphenyl,4,4-N,N′-Dicarba
zole-1,1′biphenyl (CBP) were purchased from the Luminescence Technology Corporation and Wang
Shine Co., Taichung, Taiwan, respectively. Aluminum (Al) ingots (99.999%) were purchased from
Showa Chemical Co. Ltd., Tokyo, Japan. All materials were used without any further purification.
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Figure 1. Molecular structures of (a) 4,4′-Bis(9-carbazolyl)-1,1′-biphenyl,4,4-N,N′-Dicarba
zole-1,1′biphenyl (CBP) and (b) 4,7-Diphenyl-1,10-phenanthroline (BPhen).

2.2. Device Fabrication

The study of the dielectric properties of OLED devices was performed on the organic layer
sandwiched between two electrodes, with the device structure metal/organic layer/metal (MOM).
The devices were grown on glass slides pre-coated with ITO. The ITO substrates were ultra-sonicatied
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sequencially in acetone and isopropanol for 30 min, followed by 20 min of ultraviolet ozone treatment
to eliminate all organic impurities. Device I was fabricated with an architecture of Glass/ITO/CBP/Al;
Device II: Glass/Al/CBP/Al; Device III: Glass/ITO/BPhen/Al; and Device IV: Glass/Al/BPhen/Al.
All materials were subsequently deposited on the substrates by thermal evaporation under high
vacuum (<10−6 torr). Device I comprised of a 1250 Å ITO anode, 1200 Å CBP, and a 1000 Å aluminum
cathode. Device II comprised of a 1250 Å aluminum anode, 1200 Å CBP, and a 1000 Å aluminum
cathode. Device III and Device IV followed the same thickness of the materials of Device I and Device
II, respectively, but replacing CBP with BPhen. All thickness measurements were done by alpha step
(Dektak 150, Veeco Instruments, Inc., Plainview, NY, USA) where possible instrumental error may be
±5 nm. Purity of the deposited organic materials CBP and BPhen were confirmed by proton nuclear
magnetic resonance (1HNMR, Bruker Avance 400 NMR spectrometer, Bruker Corp., Billerica, MA,
USA), as shown in Figures S1 and S2, respectively.

3. Measurements

Surface morphology was studied using an atomic force microscope (Digital Instruments Nanoscope
IIIa, Bruker Corp., Billerica, MA, USA) in the tapping mode. A Keithley 2400 electrometer (Keithley
Instruments, Inc., Cleveland, OH, USA) was used to measure the current-voltage (I-V) characteristics.
All electrical characterizations have been done under open environment at room temperature.

From the breakdown voltage, we calculated the dielectric strength of the material using
the equation:

E = V/t (1)

where, E, V, and t are the dielectric strength, breakdown voltage in MV, and deposited layer thickness
in cm, respectively.

4. Result and Discussion

Figure 2a,b shows the studied devices composed with glass/ITO/organic material/Al and
glass/Al/organic material/Al for dielectric strength measurement, respectively. Figure 2c,d illustrates
the respective electric circuits of studied devices. Figure 3a,b shows the breakdown voltage of Device
I and Device II. Device I showed a breakdown voltage of 3.90 V, whereas Device II showed 6.20 V.
The calculated dielectric strengths were 0.32 and 0.52 MV/cm for Device I and Device II, respectively.

Similarly, Figure 4a,b shows the breakdown voltages of Device III and Device IV. Device III
showed a lower breakdown voltage when compared with Device IV. The breakdown voltages were
7.52 and 13.80 V for Device III and Device IV, respectively. The calculated dielectric strengths were
0.63 and 1.15 MV/cm for Device III and Device IV, respectively. The dielectric strength results are
summarized in Table 1.
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The reason why devices fabricated with an ITO anode show low dielectric strength when
compared with devices with an Al anode may be attributed to two important factors in the designed
device architecture. First, the Al anode has a low work function (4.3 eV) as compared to the ITO
anode (5.2 eV). Second, the devices fabricated with an ITO anode more effectively transfer holes
into the organic layer because of 0.8 and 1.1 eV hole-injection barriers at the interface of ITO/CBP
and ITO/BPhen, respectively, i.e., 1.7 and 2.0 eV for the devices with Al as an anode, as shown in
Figure 5a,b and Figure 6a,b . Furthermore, we observed the low charge injection region in Figures 3b
and 4b, below the voltage 2 V and 10 V, for Devices II and IV, respectively. That current density (J)
follows the externally applied voltage (V) linearly, as shown in Equation (2), may be the reason behind
this [22].

Table 1. Tabulation of the used anode, observed breakdown voltage, and calculated dielectric strength
for the deposited 120 nm thickness of the organic layer.

Organic Material Anode Breakdown Voltage (V) Calculated Dielectric Strength (MV/cm)

CBP ITO 3.90 0.32
CBP Al 6.20 0.52

Bphen ITO 7.52 0.63
Bphen Al 13.80 1.15
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J = enue f f
V
L

(2)

where en is the charge density (e: elementary charge, n: charge carrier density), µeff is the effective
charge mobility, and L the organic film thickness. It is notable that the effective charge mobility µeff
includes charge trapping phenomenon as follows [22]:

ue f f = u0

(
nmob

nmob + ntrap

)
(3)

where µ0 is trap-free charge mobility, and nmob and ntrap are mobile and trapped charge carrier densities,
respectively. As shown in Figure 3b, in the voltage region from 2 to 3 V an abrupt increase of the
current is observed. Note that the significant rise of the current in certain voltage regions only is
usually assigned to the trap-filled-limit (TFL) voltage. In other words, the charge transport properties
of organic films are changed due to filling of all localized states, and charge carriers are no more
influenced by the trapping mechanism. Similar behavior is also observed in Device IV in the voltage
region from 10 to 12 V, as shown in Figure 4b.

In addition, the devices with BPhen as an organic layer show higher dielectric strength as
compared to devices with CBP organic layers. The reasons behind this may be: (i) highest occupied
molecular orbital (HOMO) level of BPhen is deeper (6.3 eV); (ii) high electron mobility of BPhen; and
(iii) the bipolar nature of CBP [23–26].

The surface topography of the pristine ITO and thermally deposited Al were studied using atomic
force microscopy (AFM) in the tapping mode. AFM data analysis provides quantitative information
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about surface morphology. Two-dimensional (2D) and three-dimensional (3D) AFM micrographs of
the pristine ITO and thermally deposited Al (Figure 7) samples clearly show that the obtained films
indeed possess a uniform surface, very developed grain boundaries, and free surfaces. Roughness
of the films was estimated with Nanoscope analyser. Scans over 4 × 4 µm2 were taken in order to
measure the surface roughness of the films. The root-mean square roughness (RRMS) was estimated by
using the formula [27]:

RRMS =
N

∑
i=1

(

(
hi −
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5. Conclusions

In this study, the dielectric properties of OLED materials were investigated using metal/organic
layer/metal device structures. The surface roughness of electrodes and dielectric strength of organic
materials play a crucial role in dielectric breakdown, which is directly related to the performance of
OLED devices. Surface roughness of electrodes will accelerate the dielectric breakdown. By optimizing
the surface roughness of electrodes and the dielectric strength of organic materials, we can design
and fabricate OLEDs with long lifetime and high-efficiency. Despite various advantages in OLEDs, a
fundamental research of their physical properties is not yet been fully explored. Our findings might
help domain experts carry out extensive studies to design high-efficiency and long lifespan devices.
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Figure S2: 1H NMR analysis of 4,7-Diphenyl-1,10-phenanthroline (BPhen).
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