Next Article in Journal
On the Shaping of a Short Signal at the Output of the Receiving Piezoelectric Transducer in the Radiation-Reception System
Next Article in Special Issue
Modified Polymeric Nanoparticles Exert In Vitro Antimicrobial Activity Against Oral Bacteria
Previous Article in Journal
Dislocation Based Flow Stress Model of 300M Steel in Isothermal Compression Process
Previous Article in Special Issue
Effects of Three Calcium Silicate Cements on Inflammatory Response and Mineralization-Inducing Potentials in a Dog Pulpotomy Model
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Materials 2018, 11(6), 973; https://doi.org/10.3390/ma11060973

Dental Resin Cements—The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion

1
Department of Prosthetic Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
2
University Laboratory of Materials Research, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
3
Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
*
Author to whom correspondence should be addressed.
Received: 14 May 2018 / Revised: 5 June 2018 / Accepted: 6 June 2018 / Published: 8 June 2018
(This article belongs to the Special Issue Bioactive and Therapeutic Dental Materials)
View Full-Text   |   Download PDF [4062 KB, uploaded 8 June 2018]   |  

Abstract

Resin matrix dental materials undergo contraction and expansion changes due to polymerization and water absorption. Both phenomena deform resin-dentin bonding and influence the stress state in restored tooth structure in two opposite directions. The study tested three composite resin cements (Cement-It, NX3, Variolink Esthetic DC), three adhesive resin cements (Estecem, Multilink Automix, Panavia 2.0), and seven self-adhesive resin cements (Breeze, Calibra Universal, MaxCem Elite Chroma, Panavia SA Cement Plus, RelyX U200, SmartCem 2, and SpeedCEM Plus). The stress generated at the restoration-tooth interface during water immersion was evaluated. The shrinkage stress was measured immediately after curing and after 0.5 h, 24 h, 72 h, 96 h, 168 h, 240 h, 336 h, 504 h, 672 h, and 1344 h by means of photoelastic study. Water sorption and solubility were also studied. All tested materials during polymerization generated shrinkage stress ranging from 4.8 MPa up to 15.1 MPa. The decrease in shrinkage strain (not less than 57%) was observed after water storage (56 days). Self-adhesive cements, i.e., MaxCem Elite Chroma, SpeedCem Plus, Panavia SA Plus, and Breeze exhibited high values of water expansion stress (from 0 up to almost 7 MPa). Among other tested materials only composite resin cement Cement It and adhesive resin cement Panavia 2.0 showed water expansion stress (1.6 and 4.8, respectively). The changes in stress value (decrease in contraction stress or built up of hydroscopic expansion) in time were material-dependent. View Full-Text
Keywords: resin cements; shrinkage stress; water sorption; hydroscopic expansion; photoelastic investigation resin cements; shrinkage stress; water sorption; hydroscopic expansion; photoelastic investigation
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Sokolowski, G.; Szczesio, A.; Bociong, K.; Kaluzinska, K.; Lapinska, B.; Sokolowski, J.; Domarecka, M.; Lukomska-Szymanska, M. Dental Resin Cements—The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion. Materials 2018, 11, 973.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top