Alloy	Condition	
CM1-	As cast	Heat treated
10 g	Nb _{ss} , βNb ₅ Si ₃	Nb _{ss} , αNb ₅ Si ₃
	$Nb_{ss} + \beta Nb_5Si_3$ eutectic	$Nb_{ss} + \alpha Nb_5Si_3$ lamellar microstructure
		subgrains in $Nb_{5}Si_3$ and fine precipitates
6mm	Nb _{ss} , βNb₅Si₃	Nb _{ss} , αNb₅Si₃
	$Nb_{ss} + \beta Nb_5Si_3$ eutectic	$Nb_{ss} + \alpha Nb_5Si_3$ lamellar microstructure
		subgrains in Nb ₅ Si ₃ and fine precipitates
8mm	Nb _{ss} , Nb₃Si, βNb₅Si₃	Nb _{ss} , αNb ₅ Si ₃
	$Nb_{ss} + \beta Nb_5Si_3$ eutectic	$Nb_{ss} + \alpha Nb_5Si_3$ lamellar microstructure
	$Nb_{3}Si \rightarrow Nb_{ss} + \alpha Nb_{5}Si_{3}$	subgrains in Nb ₅ Si ₃ and fine precipitates
600 g	Nb _{ss} , αNb₅Si₃	Nb _{ss} , αNb₅Si₃
	$Nb_{ss} + \alpha Nb_5Si_3$ lamellar microstructure	$Nb_{ss} + \alpha Nb_5Si_3$ lamellar microstructure
	subgrains in Nb_5Si_3 and fine precipitates	subgrains in Nb $_5$ Si $_3$ and precipitates
OFZ	Nb _{ss} , αNb ₅ Si ₃	Nb _{ss} , αNb ₅ Si ₃
All	$Nb_{ss} + \alpha Nb_5Si_3$ lamellar microstructure	$Nb_{ss} + \alpha Nb_5Si_3$ lamellar microstructure
growth rates	Fine precipitates in αNb_5Si_3	subgrains in Nb ₅ Si ₃ and fine precipitates

Table S1: Summary of microstructures in arc melted, suction cast and OFZ alloy CM1

Figure S1: X-ray diffractograms of cast and heat treated CM1-10g and CM1-600g

Figure S2: X-ray diffractograms of cast and heat treated CM1-6mm and CM1-8 mm bars

Figure S3: X-ray diffractograms of cast CM1-OFZ grown at growth rates of 12, 60 and 150 mm/h.

Figure S4: Relationships between W and Ti concentrations in the Nb_{ss} (a) in as-cast CM1-10g and (b) CM1-OFZ where data for all three growth rates is included.

Figure S5: Backscattered electron image of a silicide in as-cast CM1-OFZ grown at 150 mm/hr and X-ray maps of the elements in the alloy.

Figure S6: X ray diffractograms of heat treated CM1-OFZ grown at 12, 60 and 150 mm/h