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Abbreviations:   

AAS: atomic absorption spectroscopy 

AF4-ICP-MS:  asymmetric flow field-flow fractionation inductively coupled plasma mass spectrometry; 

CARS:  coherent anti-Stokes Raman spectroscopy; 

DFOM:  dark field optical microscopy; 

DFOMS:  dark field optical microscopy and spectroscopy; 

EDX:  energy dispersive X-ray;  

EXAFS:  X-ray absorption fine structure spectroscopy; 

FAAS:  flame atomic absorption spectroscopy; 

FIB-SEM-EDX:  focused ion beam scanning microscopy coupled with energy-dispersive X-ray spectroscopy; 

FIB-SIMS:  focused ion beam secondary ion mass spectrometry; 

GF-AAS:  graphite furnace atomic absorption spectroscopy; 

HAADF-STEM:  high angle annular dark field scanning transmission electron microscopy; 

HEDFM:  hyperspectral-enhanced dark field microscopy; 

ICP-MS:  inductively coupled plasma mass spectrometry; 

ICP-OES:  inductively coupled plasma optical emission spectroscopy; 

ICP-OES:  inductively coupled plasma optical emission spectroscopy; 

LA-ICP-MS:  laser ablation inductively coupled ion mass spectrometry; 

MSIS:  multispectral imaging system; 

Nano-SIMS:  nanoscale secondary ion mass spectrometry; 

PIXE: proton induced X-ray emission; 

µ -PIXE:  micro-proton induced X-ray emission;  

SAED:  selected area electron diffraction; 

SEM:  scanning electron microscopy; 

SIMS:  secondary ion mass spectrometry; 

SP-ICP-MS:  single particle inductively coupled plasma mass spectrometry; 

STEM:  scanning transmission electron microscopy; 
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TEM:  transmission electron microscopy;  

TEM-EDX:  transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy; 

ToF-SIMS:  time of flight-secondary ion mass spectrometry; 

XANES:  X-ray absorption near edge structure spectroscopy; 

XAS:  synchrotron X-ray absorption spectroscopy; 

µ -XAS:  micro synchrotron X-ray absorption spectroscopy; 

XRF:  X-ray fluorescence; 

µ -XRF:  micro X-ray fluorescence; 

Chapter 1 

We present a detailed review of studies on the biological fate of Ag NPs in most representative 

organisms used in environmental studies. Table S1 presents existing data on the Ag NPs body burden 

and Table S2 on the body distribution and cell/tissue internalization of Ag NPs in organisms. 
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Table S1. Existing data on the Ag NPs body burden grouped according to the techniques used. Organisms are sorted according to taxonomic position.  1 

Atomic Absorption and Inductively Coupled Plasma Spectrometry 

Test organism Reported body region for Ag NPs burden Reference 

Water flea Daphnia magna Total body [1–5]  

Brine shrimp Artemia sp., Total body [6] 

Marine barnacle larvae Balanus amphitrite Total body [7] 

Freshwater snail Lymnaea stagnalis Total body [8,9]  

Freshwater snail Potamopyrgus antipodarum  Total body, soft tissue, shell [10]  

Freshwater mussel Dreissena polymorpha 

 

Soft tissue and different subcellular fractions; metal-rich 

granules (MRG), cellular debris, organelles 

[11] 

Estuarine snail Peringia ulvae Total body [9] 

Marine snail Littorina littorea Gill, kidney, stomach and visceral mass [12]  

Marine snail Crepidula onyx Total body [7] 

Marine mussel Mytilus galloprovincialis Gills, digestive glands [13,14]  

Marine mussel Macoma balthica Soft tissue and shell of clams [15]  

Marine mussel Scrobicularia plana Total body [16] 

Terrestrial snail Achatina fulica Total body [17]  

Marine worm Platynereis dumerilii  Total body [18] 

Marine worm Nereis diversicolor Total body [19]  
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Marine worm Hediste diversicolor Total body [16] 

Freshwater worm Capitella capitata  Total body, soft tissue, shell [10] 

Freshwater worm Hydroides elegans Total body [7]  

Earthworm Enchytraeus crypticus Total body [20]  

Earthworm Eisenia fetida Total body [21–24] 

Earthworm Lumbriculus variegatus Total body [5]  

Earthworm Lumbricus rubellus Total body [25,26]  

Nematode Caenorhabditis elegans Total body burden [27] 

Springtail Folsomia candida Total body [28] 

Springtail Lobella sokamensis Total body [23] 

Caterpillar Achaea Janata L.  

Armyworm Spodoptera litura 

Total body [29] 

Midge Chironomus sp. Total body [30]  

Common carp Cyprinus carpio Liver, intestine and gallbladder [31,32] 

Rainbow trout Oncorhynchus mykiss Liver, kidney, gills and muscle [33,34]  

Atlantic salmon Salmo salar  Gills [35] 

Japanese medaka Oryzias latipes embryos  Total embryo [36] 

Zebrafish Danio rerio embryos Total body [6,37,38]  
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Zebrafish Danio rerio larvae Total larvae [39] 

Zebrafish Danio rerio adults Gills and eviscerated carcass [40]  

Mosquitofish Gambusia holbrooki Total body [30] 

Trout Oncorhynchus mykiss gill cell line  Cell [41] 

Unicellular alga  Chlamydomonas reinhardtii Total and intracellular silver content  [42]  

Unicellular alga Euglena gracilis  Cell [41]  

Duckweeed Spirodela polyrhiza Plant tissue (not further specified) [43,44] 

Rice Oryza sativa Plant tissue (not further specified) [45]  

Wheat Triticum aestivum L. Roots and shoots  [46–48] 

Alfalfa Medicago sativa Total body  [49] 

Soybean Glycine max   

 

Roots and shoots 

cell walls, organelles, and vacuoles 

[47]  

Oilseed crop Crambe abyssinica Root tissue [50] 

Ryegrass Lolium multiflorum Root tissue [51]  

Cress Arabidopsis thaliana Total body, roots and shoots [52–54]  

Poplar Populus deltoides × nigra Total body, roots and shoots [53] 

Tomato Lycopersicon esculentum seedlings Total body [55] 

Mesocosm including different plants ant and animals (Juncus effuses, Carex Total body [30] 
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lurida, Panicum virgatum, and Lobelia cardinalis 

Single Particle Inductively Coupled Plasma Spectrometry 

Earthworm Lumbriculus variegatus Total body (Homogenate)  [56]  

Soybean Glycine max  

Rice Oryza sativa L. 

Leaves  

 

[57]  

Cress Arabidopsis thaliana  Root and shoot tissue 

(middle lamella and cell walls in root tissue 

and leaves) 

[58] 

Radioactive Labeling 

Water flea Daphnia magna Gut and in the whole body [59,60]  

Harlequin fly Chironomus sp. larvae Whole body [61]  

Iceland scallop Chlamys islandica Digestive system, gills, mantle, kidney and muscle [62] 

Earthworms Eisenia fetida Total body [63]  

Medaka fish Oryzias latipes Liver, gills, kidney, heart, brain, spleen, gall bladder and 

intestine 

[64] 

Zebrafish Danio rerio Whole body [61]  

  2 
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Table S2. Review of studies on the body distribution and cell/tissue internalization of Ag NPs in organisms frequently used in environmental studies. Studies are listed 3 

according to the methods of detection. 4 

Test Organism Description of Ag NPs 

 

Method of 

Detection 

Results Explanation of NPs 

Internalizationǁ‖ 

Reference 

Waterflea 

Ceriodaphnia 

cornuta 

Synthesized, Green 

synthesis  

 

LM Ag NPs accumulate in the gastrointestinal 

tract. 

Ingestion.  [65]  

Fish Barbonymus 

gonionotus 

 

Ag NP powder , Dongyang 

(HK) International Group 

Limited, 84.60±14.38 nm† 

 

LM Ag NPs accumulate in tissues and internal 

organs. 

No explanation provided. [66] 

Protozoan 

Tetrahymena 

thermophila 

 

Ag NPs , Sigma-Aldrich 

(Buchs, Switzerland), 02 

mg/mL suspensions in 

aqueous buffer containing 

sodium citrate as a 

stabilizer 

20 nm*, 30 nm¶  

HEDFM  

 

During the 2 h of exposure, protozoan 

food vacuoles became filled with 

aggregates of Ag NPs Internalization of 

NPs was confirmed by observing different 

focal planes. 

Phagocytosis. [67] 

Nematode 

Caenorhabditis 

elegans 

Synthesized, citrate-coated,   

25 nm‡ (EPA moderately 

hard reconstituted water) 

HEDFM Ag NPs remained predominantly in the 

gut; the authors imply that they may also 

be detected in other tissues – region not 

specifically described.  

No direct documentation of 

internalization. 

 

[68] 

Fish larvae Oryzias 

latipes 

 

NanoAmor, all spherical,  

a.) PVP coated, 10 nm*, 

50.72 nm‡,# ; b.) PVP coated, 

50 nm*, 133.15 nm‡,#; c.) 

Citrate-coated, 7 nm*, 13.84 

nm‡,#; d.) Gum arabic 

coated, 6 nm*, 96.21 nm‡,#  

HEDFM Random distribution throughout the 

body. All Ag NPs were found in gill, gut 

lumina, mid-brain and liver parenchyma. 

No Ag NPs were found in epidermis, 

spine, skeletal muscle, kidney or gonad.  

Possible entry due to local 

tissue necrosis or via 

endocytosis. 

[69]  

Protozoan 

Tetrahymena 

thermophila 

Ag NPs , Sigma-Aldrich 

(Buchs, Switzerland), 

sodium citrate as a 

HEDFM  

 

Ag NPs accumulated in food vacuoles.  Phagocytosis is suggested 

as an uptake mechanism. 

[67] 
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 stabilizer; 20 nm*, 30 nm¶ 

Earthworm 

Lumbriculus 

variegatus 

 

Luna PVP Ag NPs 24 ± 5 

nm†;  nanoComposix 30 ± 3 

nm†;  and 68 ± 5 nm†; 

NanoDyanmics 46 ± 15 nm† 

and  67 ± 22 nm† 

HEDFM Ag NPs detected only in the intestinal 

tract, but no NPs translocation confirmed.  

NPs are not translocated 

through the intestinal 

barrier.  

[56]  

Wheat Triticum 

aestivum  

Attostat, 10 nm*,   

7.4 nm and 60.8 nm‡ 

(dH2O),  

-37 mV¶   

TEM  Electron-dense material was observed in 

shoots, but Ag was not confirmed. Ag 

NPs aggregates were also found when 

exposed to Ag salt. 

Internalization due to local 

necrosis of tissue§.   

[48]  

Lepidopterans 

Achaea 

janata L, Spodoptera 

litura 

Sigma Aldrich, PVP coated, 

< 100 nm*, 219.5 nm‡ 

(dH2O), 22.3 ± 5.78 mV¶ 

TEM Electron-dense material in larval gut cells. 

Damage of the tissue evidenced. Ag was 

not confirmed. 

Internalization due to local 

necrosis of tissue§.   

[29] 

Unicellular 

freshwater alga 

Chlorella vulgaris 

 

Ag NPs, nanoBEE 

consortium (University of 

Birmingham) 

PVP, PEG and citrate 

coated, 10 nm*  

TEM  Ag NPs were localised in starch granules 

within the chloroplast.  

Authors suggest passive 

passage through cell wall, 

which may be enhanced 

when cells are exposed to a 

high concentration of Ag 

NPs. 

[2] 

Cress Arabidopsis 

thaliana 

 

Sigma–Aldrich (USA) 

10 nm* 

TEM Ag NPs accumulate predominantly at the 

middle lamella and cell walls in root 

tissue and some Ag NPs can be 

translocated toward the leaves. 

Authors suggest the 

intercellular passage of NPs 

through the cell wall. 

[58]  

Isopod Porcellio 

scaber 

Sigma Aldrich, spherical, 

non-coated, <100 nm*, 30-

200 nm† (dH2O),  

TEM  

EDX 

No Ag NPs were found in the digestive 

gland S-cells.   

 

Confirmed internalization 

of Ag ions only. 

[70]  

Fish Oncorhynchus 

mykiss 

Nanostructured and 

amorphous materials, 

spherical, 49 ±18.5 nm†, 589 

± 101 nm‡, -12.52 ± 2.7 mV¶ 

TEM  

EDX 

Aggregates associated with pavement 

cells at the gill surface. Ag was not 

detected by EDX. 

No internalization. [33]  

Marine worm 

Nereis diversicolor 

Citrate-capped, 30 ± 5 nm† 

(artificial estuarine water), -

TEM  

EDX  

Aggregates in the gut lumen, close to the 

microvilli, and in the extracellular matrix 

Internalization due to 

endocytosis. 

[71]  
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15 ± 2 mV¶ (endocytic pits and endosomes). 

Terrestrial plants 

Phaseolus radiates, 

Sorghum bicolor  

ABC Nanotech, spherical, 

5-25 nm† 

TEM  

EDX 

Ag NPs aggregates found in root tissue.  Internalization due to local 

necrosis of tissue§. 

[72]  

Marine mussel 

Mytilus 

galloprovincialis 

European Joint Research 

Centre  (Ispra,  Italy), 

Maltose–stabilised Ag NPs 

20, 40, 100 nm* 

TEM 

EDX 

Ag NPs of the same size as the source 

were not identified within cells.  

 

No evidence of Ag NPs 

internalization. Possibility 

of secondary NPs 

formation from released 

Ag+ is suggested.    

[14] 

Earthworm Eisenia 

andrei 

NanoAmor PVP coated: 

20 nm*, NanoComposix 

Inc., PVP coated 38.6 ± 

9.8 nm† 

TEM  

EDX 

Ag NPs were found within vacuoles of 

the tissue. 

Cross sections of body 

segments were analyzed. 

Authors suggest the Ag 

NPs earthworm uptake, but 

the mechanism is not 

discussed.   

[22] 

Alfalfa Medicago 

sativa 

PVP coated Ag0 NPs (6.3 

nm†) and Ag2S NPs (7.8 

nm†) were synthesized by 

the authors 

TEM 

EDX 

XRF 

Ag NPs mainly accumulated in the 

(columella) border cells and elongation 

zone of roots. Ag2S NPs remained largely 

adhered to the root exterior.  

 

Direct uptake of small or 

partially dissolved NPs into 

the root apoplast is 

suggested. Dissolved Ag+ 

uptake and secondary 

formation of Ag NPs is 

evidenced. 

[49] 

Cress Arabidopsis 

thaliana 

Ted Pella, 20 nm*, 40 nm 

and 80 nm†, ~1 µm‡ 

(Hoagland media after 7 h)  

 

STEM 

EDX 

Ag NPs in border cells, root cap, 

columella and columella initials. 

Aapoplastic transport of Ag NPs in cell 

wall and at plasmodesmata. Ag NPs were 

also detected with Ag salt.  

Ag NPs trapped by cell 

wall architecture. 

Internalization due to local 

necrosis of tissue§. Ag NPs 

secondary formation. 

[54]  

Unicellular 

freshwater alga 

Raphidocelis 

subcapitata 

nanoComposix, 10 and 60 

nm*, polyethylenimine and 

tannic acid coating 

DFOM  

SEM  

Nano-SIMS 

The majority of the Ag NPs or their 

dissolution products were localized 

around the algal cell walls. Some Ag NPs 

entered and deposited inside the cells 

beyond the periplasmic space.  

 

No explanation provided. [73]  
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Lettuce Lactuca 

sativa 

PPG, uncoated, round-

shaped, 38.6 nm†, 47.9± 29.2 

nm (test media) ‡, -29.5 mV¶ 

SEM  

EDX  

µ-XRF 

XANES 

ToF-SIMS 

Ag NPs found in the cuticle, between the 

guard cells, the sub-stomatal chamber, the 

main vein and the cell wall thickening. Ag 

NPs aggregates were also found with Ag 

salt exposure. 

Cuticular and stomatal 

pathways of penetration. 

Local tissue necrosis 

evidenced. Ag NPs 

secondary formation. 

[74] 

Fish embryo 

Fundulus 

heteroclitus 

 

Citrate-coated, pseudo-

spherical, 3 nm†; -30 mV¶ at 

pH 7.5, 0.3-20 nm‡ (10% 

ASW$) 

µ -XRF 

XANES 

Ag NPs aggregates at the surface and 

inside of the embryo. Intake depends on 

the salinity.   

Penetration through 

chorionic channels. 

[75] 

 

Nematode 

Caenorhabditis 

elegans,  

PVP coated: 58.3 ± 12.9 nm†, 

-6.1 mV¶;Sulfidated (S-

AgNPs): 64.5 ± 19.4 nm†, -

28.1 mV¶ 

µ -XRF Similar Ag spatial distributions found in 

case of PVP-Ag NPs and Ag-salt, but not 

in case of S-Ag NPs (Ag+ was complexed 

by S). No speciation data.  

No clear evidence of 

internalization. 

[76]  

Polychaete Nereis 

virens  

Nanocomposix Inc., citrate 

coated: 29.0 ± 3.1 nm†,-41.8 

mV¶,  PVP coated: 28.7 ± 2.1 

nm†, -26,7 mV¶ 

XAS 

µ-XRF 

Ag NPs detected inside the organism. 

Location not described. The distribution 

of Ag metal, AgCl, and Ag2S species was 

coating dependent. 

No clear evidence of 

cellular internalization. 

[77]  

Duckweed 

Landoltia punctata 

PVP coated Ag0 NPs (6.3 

nm†) and Ag2S NPs (7.8 

nm†) were synthesized by 

the authors  

μ-XRF  

EXAFS  

Nanoparticulate phases of metals readily 

attach to the plants. Adhered particles are 

taken up to some degree 

into the plant root vasculature, either after 

being solubilized or as particles. 

Authors also suggest ionic 

uptake into the active 

region of the root tip and 

secondary formation of 

NPs.  

[78] 

Wheat Triticum 

aestivum L. 

NanoAmor,  

PVP coated 

52 ± 1 nm (determined by 

XRD) 

 

μ-XRF  

μ-XANES 

 

Ag NPs mostly adhered to the epidermis 

of roots and accumulated preferentially in 

discontinuities between root epidermal 

cells. No Ag0 was found inside roots. 

Transfer of NPs due to local 

damage of roots.  Root 

hairs also considered as 

potential points of entry of 

NPs, due to thin cell walls 

and role in nutrient 

acquisition. Symplastic and 

apoplastic transfer of Ag+ is 

possible.   Secondary Ag 

NPs were also identified. 

[46] 

Unicellular algae AMEPOX; 3– 8 nm*,  alkane CARS Large aggregates of NPs detected external No evidence of NPs [4] 
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Raphidocelis 

subcapitata 

coating  to the algae cells. internalization. 

Earthworm  

Lumbricus rubellus 

NanoTrade Ltd 

50 nm* 

XANES Ag NPs confirmed in the chloragogenous 

tissue, within the typhlosole, around the 

basal intestinal surface, nephridial tubules 

and near the base of setae. 

Internalization to local 

hotspot, potentially as 

intact NPs, via endocytosis 

pathways in intestinal 

epithelia. 

[26] 

Zebrafish Danio 

reiro embryos 

Ag NPs (41.6 ± 9.1 nm†) 

were synthesized by the 

authors 

DFOMS Diffusion and transport of single Ag NPs 

in embryos. 

Penetration through 

chorionic pores.  

[72] 

Nematode 

Caenorhabditis 

elegans 

Sigma Aldrich, <100 nm*, 20 

nm†, 14-20 nm‡ (growth 

medium)  

DFOMS Electron-dense material found around 

uterine area, but Ag was not confirmed.  

Penetration through vulva 

to reach uterine area. 

[79]  

Zebrafish Danio 

reiro 

PlasmaChem GmbH 

(Berlin, Germany) 

20 nm* 

hydrodynamic diameters 

> 100 nm 

SIMS Ag hot spots were found mainly around 

liver blood vessels and in the interstitial 

tissue between the intestine and the liver. 

Authors do not explicitly say that Ag NPs 

were detected, but refer to »Ag hot spots«.  

Authors suggest that Ag 

NPs cross the skin of 

zebrafish larvae and 

accumulate in blood 

vessels. However, no 

discussion regarding the 

passage of dissolved Ag+ is 

given.   

[80] 

Zebrafish Danio 

reiro 

PVP  and sodium citrate 

stabilized Ag NPs, 

hydrodynamic diameter 

117 ± 24 nm  

LA-ICP-MS Ag NPs detected in the chorion and the 

perivitelline space, whereas only minor 

amounts reach the embryo.  

Not discussed. [81] 

Zebrafish Danio 

rerio embryos  

Synthesized, citrate coated, 

spherical, 41.6 ± 9.1 nm*, 

45.5 ± 9.8 nm‡,˜  

DFOMS 

MSIS 

Ag NPs found in the inner mass of 

embryos.   

 

Penetration through 

chorionic channels. 

[82]  

Unicellular alga 

Chlamydomonas 

reinhardtii 

Synthesized,   

11.7  ±  1.9 nm† 

Nano-SIMS 

HAADF-

STEM 

XAS  

EDX 

The observations with all listed methods 

collectively confirmed the internalization 

of Ag NPs into the periplasmic space of C. 

reinhardtii. 

 

No explanation is provided 

for the internalization of Ag 

NPs into the periplasmic 

space. Possibility of 

secondary NPs formation 

[83] 
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SAED from released Ag+ is 

suggested.    
*Data by supplier, †TEM/SEM, ‡Hydrodynamic diameter (DLS), ¶Zeta potential, § according to Larue et al., 2014, ǁ‖this is our explanation of obtained results, #fish test medium 5 

after 1 h, $ASW: Artificial Sea Water, ˜zebrafish egg water.  6 

 7 
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Chapter 2: Supplementary Description of Methods For NPs Body Burden, NPs Body Distribution 

and Cellular Internalisation 

Studying interactions between nanomaterials and organisms is a multi-disciplinary approach 

where experts in biology, physiology and nanomaterials should be complemented with 

understanding of the performance of instruments and data processing. There are several review 

papers presenting techniques appropriate for nanomaterials detection in biological samples [84–87].  

However, they are mostly focused on technical characteristics of those methods, but much less on 

biological nature of a sample and the purpose of using these techniques. In this section we prepared a 

detailed review of characteristics of the methods applied to study the biological fate of NPs. First, we 

briefly describe the basic principle of each method. The main focus is to describe the specificity of each 

method to separate NPs from ions. The limitations of each method are discussed along. These data 

were the basis to extract the summary of methods characteristics presented in the main body of the 

manuscript (Table 1, Figure 1).    

2.1. Atomic absorption spectrometry (AAS) and inductively coupled plasma spectrometry (ICP-MS)   

Basic principle: The basic difference between AAS and ICP-MS is that AAS relies on the atomic absorption 

process while ICP-MS is an atomic/ionic emission spectroscopic technique. A combustion flame or graphite 

furnace is typically used for AAS while ICP uses plasma for atomic or ionic species generation. Detection limit by 

ICP is more than three orders of magnitude lower than by AAS [88]. Most frequently used techniques for 

elemental analyses of animal or plant tissue include flame atomic absorption spectroscopy (FAAS), graphite 

furnace atomic absorption spectroscopy (GF-AAS), inductively coupled plasma optical emission spectroscopy 

(ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS).  

Specificity: All of the above techniques do not discriminate between ions and particulate matter as they are 

applied to decomposed samples. Both AAS and ICP-MS can provide data for tissue level if enough tissue is 

available for separate analyses of different body parts.  

Limitations: Biological matrices contain abundant organic matter that must be oxidized prior to analysis to 

release the bound metal and reduce the physical interference from solid matter during analysis. For this purpose, 

acid digestion and microwave heating are usually used [89]. During this pre-analysis step, NPs are decomposed, 

and element of interest is released [90]. Discrimination of different chemical species is thus not possible.  

2.2. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS)  

Basic principle: Liquid sample is introduced into the ICP-MS instrument by using a nebulization system, which 

produces an aerosol of polydisperse droplets. Once the droplets are in the plasma, the solvent evaporates forming 

solid particles, which in turn are vaporized and their elements atomized and ionized. Ions are extracted through 

the interface into the mass spectrometer, where they are separated according to their mass/charge ratio and 

detected [58,91]. The intensity of each pulse is proportional to the mass of the element (i.e. number of atoms) in 
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each detected NP [91]. This method is suited for the analysis of body, organ/tissue NP burden and allows a 

simultaneous determination of elemental chemical composition, concentration, number concentration, size, and 

the number size distribution of NPs [91].  

Specificity: SP-ICP-MS can differentiate the particle of interest from other incidental particles of the same size, 

but of different composition [92].  

Limitations: SP-ICP-MS is not able to distinguish among particles, aggregates and agglomerates. It is particularly 

suitable for NPs consisting of one element only and sizes higher than 20 nm [92]. At the moment, the application 

of this method for biological samples is still under development and a number of questions need to be resolved. 

An important aspect is how to store the samples prior to analysis to avoid NPs transformation. It needs to be 

considered that approaches required to digest and clean-up the samples may lead to misidentification of specific 

elements and may cause transformation of NPs (our personal experience, unpublished data).  

   

2.3. Asymmetrical flow field-flow fractionation inductively coupled plasma mass spectrometry (AF4-ICP-MS)  

Basic principle: AF4-ICP-MS is a separation technique where metal species are size-separated in a thin open 

channel with laminar flow under the influence of a perpendicular external field (separation force). Separation 

system is based on asymmetrical flow field of particles [92]. The elemental analysis is done in the ICP-MS. This 

technique is also suitable for body, organ/tissue burden analyses and has a better resolution than the SP-ICP-MS. 

The enrichment of the nanoparticle fraction and simultaneous reduction of the ionic background via AF4 results 

in a clearly improved ICP-MS detection sensitivity, which enables a more refined identification and size 

characterization of the migrated ion species. 

Specificity: It gives mass and element specific information and can detect smaller (2-50 nm) particles than SP-

ICP-MS. As all ICP-MS, it has element specific capabilities, including mixed metals analysis [92]. Coupling of AF4 

to SP-ICP-MS results in improved SP-ICP-MS sensitivity. AF4 and SP-ICP-MS are used to determine number and 

size of NPs in a mixture. In this combination, AF4 is essential for providing sample sub-streams that are 

sufficiently purified and simplified for the SP-ICP-MS analysis [93].   

Limitations: There may be difficulties in sample separation due to particle aggregation within the channels and 

particle interactions with the membrane of the analyser. 

2.4. Tracing labelled NPs 

Basic principle: Nanoparticles can be labelled with radioactive isotopes, stable isotopes or florescent dyes. They 

are detected in tissue homogenates using spectrophotometric approach or by fluorescent or radioactive imaging 

[62,94]. Stable isotope labelling has been successfully used in conjunction with multiple-collector-inductively-

coupled-plasma-mass-spectrometry (MC-ICP-MS) [9,95].  

Specificity: Labelling of NPs with radioactive or stable isotopes is a useful tool for the highly sensitive and 

selective detection of NPs in the environment and organisms, thus enabling the tracing of their uptake, 

distribution and clearance with high sensitivity [9,95,96]. Radiolabelled Ag NPs have been prepared using 

different approaches, including the following: (i) de novo synthesis using gamma radioisotope 110mAgNO3 as a 
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precursor [62,64,97], (ii) the adsorption of 110mAgNO3 onto existing Ag NPs [59], or (iii) the neutron activation of 

Ag NPs [98]. Measurements can be done on tissue level and localisation can reveal the presence of Ag NPs at the 

cellular level (autoradiography).  

Limitations: These methods can modify the NP surface chemistry and might alter its behaviour, but the general 

problem is that they are not able to differentiate between particulate or ionic dissolved forms of NPs after 

entering the tissue [12,64]. Radioactive labelling demands purpose-built laboratory and equipment. Stable isotope 

labelling is not beset with the problems of other methods such as fluorescent dyes or radioactive isotope labelling, 

where the label may be lost as a result of dissociation or radioactive decay [9].  

2.5. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 

Basic principle: The upper layer of a dry sample (whole organism or lyophilised slices) mounted on sample 

holder is sputtered by laser ablation and subsequently correlates the measured ion signals with one of the matrix 

elements by inductively coupled plasma mass spectrometry [99–101]. 

Specificity: The advantage of this method is the tissue mapping for elemental distribution, but it does not 

distinguish between ionic or particulate form of investigated element. The quantitative imaging by LA-ICP-MS 

requires the external matrix-matched calibration which is not trivial [100]. 

Limitations: One disadvantage of LA-ICP-MS is the occurrence of nonstoichiometric effects in the transient 

signals, defined as elemental fractionation. The internal standards are needed for quantitative analysis [99]. 

2.6. Secondary ion mass spectroscopy (SIMS) 

Basic principle: Secondary ion mass spectroscopy (SIMS) is well established as a surface analytical method for 

advanced material research of composition of solid surfaces and thin films by sputtering the surface of the 

specimen with a focused primary ion beam and collecting and analysing the ejected secondary ions. In generated 

charged molecules or molecule fragments their mass-to-charge ratios are measured. Recent advances in the 

instrumentation have made these techniques even more powerful and applicable to biological research as well 

[102]. It utilizes a tightly focused primary ion beam to desorb chemical species from a solid matrix. A variety of 

different SIMS instrumentation has been used for imaging at nanoscale, among them ToF-SIMS, FIB-SIMS and 

Nano-SIMS [103]. In case of TOF-SIMS the detached particles are then accelerated into a flight tube and their 

mass is determined by measuring the exact time at which they reach the detector [104]. The main advantage of 

Nano-SIMS over TOF-SIMS and other generations of SIMS is the ability of Nano-SIMS to operate at nanoscale 

resolution, whilst maintaining both excellent signal transmission and high spatial resolution [105].  

Specificity: SIMS offers information on elements present in the sample, but detailed molecular information can 

also be gained with high sensitivity [106]. The information on elemental composition of the sample is provided in 

the form of a mass spectrum and as elemental maps. An approximate range of 30-50 nm was provided for lateral 

resolution for ToF- and Nano-SIMS [73,103].  

Limitations: The analysis of the obtained data is complex. Generally, it does not produce quantitative data. 

Quantification is possible with the use of standards. Optical capabilities are typically limited, which presents a 

difficulty for finding specific regions of interest for analysis. Charging may also be a problem in some samples 
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[104]. Limitations of SIMS are complex sample preparation, difficult to differentiate NP from localized ions and 

ultrahigh vacuum required [73,103].  

2.7. Dark-field single nanoparticle optical microscopy and spectroscopy (DFOMS) 

Basic principle: Dark-field light microscopy, which captures scattered light from the sample, is ideal for 

identifying strongly scattering objects such as Ag NPs in low scattering matrices i.e. dark background [107]. 

DFOMS enables imaging on tissue level on slices or even in small organisms (mm range). 

Specificity: It provides in vivo imaging in real-time [108].  

Limitations: With this method only very bright NPs can be detected - noble metals NPs, NPs with highest 

quantum yield (QY) of Rayleigh scattering. Very small particles cannot be detected [109]. DFOMS is known for 

limited spatial resolution [73].  

2.8. Hyperspectral enhanced dark-field imaging (HEDFM) 

Basic principle: Hyperspectral enhanced dark-field imaging is an optimized dark field microscopy. It allows 

tissue level or small organism (in the mm range) investigation. In case of NP imaging, an analysis is based on 

optical signals from resonant light scattering and a spectral signature library for NP of interest. Under enhanced 

dark field conditions, particles appear 150-fold brighter due to Koehler illumination and the critical illumination 

by a collimated light source at oblique angles [110]. The HEDFM spectrometer has the ability to acquire the 

optical spectrum for all points in a microscope image and couple it with specialized spectra [110]. In HEDFM, 

spectral information of each pixel of the image is added as a third dimension of values to the two-dimensional 

spatial image, generating a three-dimensional data cube, sometimes referred to as hypercube data or as an image 

cube.  It is possible to use dark field microscopy for the detection of metallic nanoparticles, since due to their 

plasmonic properties NPs with dimensions larger than 50 nm scatter light strongly at a particular resonant 

wavelength [111]. 

Specificity: It is possible to distinguish between ions and NPs, because they produce different signals 

[69,112,113]. 

Limitations: Detection of very small NPs (below 50 nm) is possible, but requires increasing illumination intensity. 

Biological media may significantly affect the surface characteristics of NPs due to the formation of a corona, 

which in turn affects the signal [111]. Therefore, the effects of biological media on NPs must be well known to 

properly interpret the obtained spectral imaging signal.  

2.9. Transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM-EDX) 

Basic principle: In transmission electron microscopy (TEM) a beam of electrons is transmitted through a 

specimen, it interacts with specimen and forms an image by emitting electrons. When a beam of electrons 

interacts with the sample being studied, characteristic X-rays are also emitted [48,79]. TEM can thus be used for 

intracellular imaging and as well as chemical analyses. 

Specificity: TEM-EDX provides high lateral resolution (<10 nm) of resin embedded sections (<100 nm) [114]. 
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Limitations: Conventional TEM, although powerful in terms of lateral resolution, is limited by low signal 

intensity due to thin samples (low interaction volume) [115]. Also, electron dense deposits seen in the sample may 

be artefacts from osmium or uranium crystals formed during sample preparation [116] or any other electron-

dense cellular structure. It is therefore crucial, that EDX is applied to identify the nature of the observed spots. In 

the case of un-sectioned samples (for example bacteria) it is difficult to confirm that material is internalized and 

not adsorbed to the cell surface or any other extracellular material [117].  

2.10. Focused ion beam scanning microscopy coupled with energy-dispersive X-ray spectroscopy (FIB-SEM-

EDX) 

Basic principle: FIB-SEM-EDX is a scanning microscope with an electron column and an ion column embedded 

in the same specimen chamber where both beams are aiming at the same point on the specimen surface. FIB-SEM-

EDX is imaging and analytical technique which permits simultaneous sectioning, electron imaging of selected 

region and EDX analyses at any desired location [118,119]. 

Specificity: This type of microscopy allows imaging and elemental analyses of FIB exposed regions. The FIB-SEM 

investigation can be applied to bulk samples, prepared for conventional SEM at any chosen site or to bulk resin-

embedded specimens, prepared for conventional TEM. The FIB-SEM allows the 3D imaging of NPs in a single 

cell, albeit at lower spatial resolution than in TEM. As a result, the absolute amount of NPs per cell could be 

estimated which is not possible by any other tool [120]. 

Limitations: FIB-SEM-EDX cannot distinguish between ions and NPs. 

2.11. Particle induced X-ray emission (PIXE) 

Basic principle: PIXE technique provides a multi-elemental imaging for small biological samples. A beam of 

protons is accelerated to an energy of a few mega-electron-volts that excites characteristic X-rays in the atoms of 

the specimen [121]. It allows the investigation of samples up to 50 µm thick.  

Specificity: The elemental distribution and concentration at the tissue level is provided with the lateral resolution 

in the micron range [70]. With this method, imaging and X-rays based identification of elemental composition is 

possible.  

Limitations: The system is not as sensitive for higher-Z elements, hence not all elements can be measured. It is 

also a destructive imaging technique which induces stronger beam damage to the specimen than other X-ray-

induced methods described before [70,122]. Exessive damages can be avoided by using lower beam intensities. 

2.12. X-ray absorption spectroscopy (XAS) and micro-X-ray fluorescence (XRF) 

Basic principle: X-ray absorption micro spectroscopy (XAS) technique provides information on the chemical state 

of the metal-rich particles detected by micro-X-ray Fluorescence (XRF) mapping [123]. With both methods it is 

possible to generate chemical maps of an element in relation to its oxidation state and chemical bonding. X-rays 

are absorbed in matter and the energy of the X-rays is converted into fluorescent X-rays. The incident X-ray 

energy finally becomes the thermal energy of the absorber. The X-ray absorption spectra of condensed matter 

near the threshold energy have fine structures (X-ray absorption near edge structure spectroscopy (XANES)), 
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observable at energies less than the threshold energy. Obtained spectra show both the line shape modification 

and chemical shift of the absorption edge or peak [124]. With XANES, complete maps of the chemical forms can 

be derived, sometimes revealing details which would remain hidden using only μ-XRF and μ-XAS. Additionally, 

irradiation durations and the elapsed time between the start and completion of data collection for each pixel are 

significantly reduced [125]. Sensitivity of these methods is very high if the light source is a synchrotron [126]. 

Synchrotron X-rays are often preferred to desktop-generated X-rays as they offer a significantly higher resolution, 

a better signal-to-noise ratio, short acquisition times and quantitative reconstructions and provide phase contrast 

in addition to absorption contrast imaging [127]. 

Specificity: Besides elemental characterization, this technique enables also the analysis of the chemical (e.g. 

oxidation) state of the element of interest [128]. The technique provides subcellular analyses. 

Limitations: Beam damage of samples can occur. Effects of radiation damage can vary from subtle changes in 

spectra to, in extreme cases, total sample destruction [125]. Areas within a thin specimen, which are denser or 

thicker, will provide a more intense signal even if the element of interest is homogeneously distributed. In the 

elemental map, elements can appear co-localised, when in fact could be located at different depths within the 

sample [126]. Another limitation is the inability to distinguish between scattering atoms with little difference in 

atomic number. It is difficult to use for light elements [129]. 
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