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Abstract: A wide-band and high gain circularly polarized (CP) graphene-based reflectarray operating
in the THz regime is proposed and theoretically investigated in this paper. The proposed reflectarray
consists of a THz CP source and several graphene-based unit-cells. Taking advantages of the
Pancharatnam Berry (PB) phase principle, the graphene-based unit-cell is capable of realizing
a tunable phase range of 360◦ in a wide-band (1.4–1.7 THz) by unit-cell rotating, overcoming the
restriction of intrinsic narrow-band resonance in graphene. Therefore, this graphene-based unit-cell
exhibits superior bandwidth and phase tunability to its previous counterparts. To demonstrate
this, a wide-band (1.4–1.7 THz) focusing metasurface based on the proposed unit-cell that exhibits
excellent focusing effect was designed. Then, according to the reversibility of the optical path, a CP
reflectarray was realized by placing a wide-band CP THz source at the focal point of the metasurface.
Numerical simulation demonstrates that this reflectarray can achieve a stable high gain up to 15 dBic
and an axial ratio around 2.1 dB over the 1.4–1.7 THz band. The good radiation performance of the
proposed CP reflectarray, as demonstrated, underlines its suitability for the THz communication
applications. Moreover, the design principle of this graphene-based reflectarray with a full 360◦

phase range tunable unit-cells provides a new pathway to design high-performance CP reflectarray
in the THz regime.

Keywords: circularly polarized; Pancharatnam Berry phase; graphene; metasurface

1. Introduction

Terahertz (THz) science and technology that is undergoing an unprecedented rapid development
has attracted considerable attention in the scientific community. As a promising technology, it has
enormous potential in applications such as communication [1], sensing [2], imaging [3], detection [4]
and spectroscopy [5]. In terms of communication applications, the THz communication system is
particularly promising as it has a sufficient bandwidth that is capable of handling high data rate up to
100 Gb/s [6]. Consequently, new requirements for THz antennas have been put forward. Generally,
high gain THz antennas are indispensable due to the intrinsic high path loss characteristic of THz waves
in free space. Besides, considering the performance deterioration of linearly polarized antennas when
they are polarization misaligned, circularly polarized (CP) antennas are often required in scenarios
where multi-path effect are prominent. Therefore, high gain CP THz antennas are highly desirable.

Reflectarrays [7–12], which consist of an array of passive cells, are well suited for high gain
THz applications [13,14]. They combine the merits of both conventional reflect and array antennas,
namely, low loss, compact profile, low cross polarization, easy manufacturing, and high efficiency.
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By controlling the phase distribution on the array surface, the far-field radiation properties can be
easily manipulated without bulky and lossy beamforming networks. In terms of CP reflectarray,
several CP reflectarrays with excellent performances have been designed at microwave or millimeter
wave frequencies [15–19]. It seems that reflectarrays can be chosen as a competitive candidate for high
gain and CP THz applications. Nevertheless, most of these reflectarrays rely on judiciously designed
metallic structures, which cannot simply scale to the THz frequencies because of the prominent
skin effect of the conventional metal.The ohm loss of the metallic will immensely affect the array
gain and radiation efficiency. Toavoid these drawbacks brought by the skin effect of metals at THz
frequencies, there is a great demand for new types of THz antenna. Fortunately, graphene has several
advantages over convention metals at the THz band. It has a high electron mobility up to 230,000
cm2/Vs at room temperature [20], and a low electrical resistivity about 10−6 Ω·cm [21,22] in THz
band, demonstrating lower loss than conventional metals. In addition, the surface plasmons resonant
frequencies of graphene are quite lower than that in metals, which are often in optical frequencies.
Meanwhile, graphene surface plasmons exhibit extremely small wavelengths (λ/10–λ/100) and tight
field confinement on the graphene sheet [23,24], while maintaining reasonably small losses in the
THz band. Furthermore, the imaginary conductivity of graphene is highly tunable via chemical
doping or electrical gating [25–31] at THz frequencies, which is impossible or inefficient if metals are
used. Based on excellent physical properties of graphene at THz frequencies, several graphene-based
THz antennas have been reported in recent years [32–41]. It evaluates the feasibility of a fixed
beam reflectarray antenna at THz based on graphene and compares its performance to a similar
implementation using gold for the first time [42]. Soon after, diverse graphene-based reflectarrays
operating at THz frequencies have been proposed [43–46]. As is well known, tunable unit-cell with
a full 360◦ reflected phase coverage is crucial for realizing a high-performance reflectarray. A small
reflected phase tunable range of the unit-cell often leads to deteriorative radiation performance, limiting
the function of the whole reflectarray. However, phase tunable ranges of unit-cells in previously
reported graphene-based reflectarrays or even metasurfaces [47] are essentially realized by tuning
physical parameters of the graphene-based structures. Thus, due to the intrinsic resonant properties
and finite losses (such asa damped oscillator) of the graphene-based material, only a narrow band
phase tunable range of 300◦ has been presented [20,42–44], which restrict their applications in scenarios
where high radiation performances are required. Especially, to the best of our knowledge, the CP
graphene-based reflectarrays have also been seldom reported in previous literature, although there
is a great demand on them at THz communications. One of the reason is that it is hard to achieve
an excellent phase tunability by using graphene-based unit-cells. Therefore, designing a unit-cell with
a wide-band tunable phase range of 360◦ is a meaningful and challenging work for the graphene-based
reflectarray design.

In this article, we propose a graphene-based wide-band CP reflectarray operating in the THz
regime. The proposed reflectarray consists of a THz CP source and several graphene-based unit-cells.
Based on PB phase principle [48], the graphene-based unit-cell is designed to obtain a wide-band
(1.4–1.7 THz) tunable phase range of 360◦, which overcomes the restriction of intrinsic narrow band
resonant in graphene. Therefore, the graphene-based unit-cell exhibits superior bandwidth and phase
tunability to its previous counterparts. Based on the proposed graphene-based unit-cell, a focusing
metasurface operating in 1.4–1.7 THz bands is demonstrated firstly, which exhibits prominent focusing
effect. Then, according to the reversibility of the optical path, we realize a CP reflectarray by placing
a wide-band CP THz source at the focal point of the metasurface. Numerical simulation demonstrates
that this reflectarray can achieve a stable high gain up to 15 dBic and an axial ratio around 2.1
dB over the 1.4–1.7 THz bands. The good radiation performance of the proposed CP reflectarray,
as demonstrated, underlines its suitability for the THz communication applications.
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2. PB Principle

To have a clear physical insight of the proposed CP reflectarray, firstly, we have deduced the
principle of PB phase, obtaining the necessary phase requirement of the unit cell. As shown in Figure 1,
we apply a rectangle to represent a PB unit cell. In Figure 1a, a right-handed CP (RHCP) incident wave
normally (along the −z direction) illuminates the surface, with an incident electric field expression

Einc = (
→
x + j

→
y )ej

→
k
→
z (1)

and the electric field of reflected wave will be

Eref = (rx
→
x ejϕx + jry

→
y ejϕy)e−j

→
k
→
z (2)

where
→
k denotes the wavenumber in free space. rx and ry represent the reflectivity of x-polarized

and y-polarized waves, respectively. Similarly, ϕx and ϕy are the reflected phases of x-polarized and
y-polarized waves, respectively.
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Figure 1. Illustration of PB phase unit-cell: (a) PB phase unit-cell in the xy coordinate; (b) PB phase
unit-cell in the uv coordinate, which is transformed by an θ anticlockwise rotation of the original xy
coordinate. Both coordinates have the same original point.

As shown in Figure 1b, when the unit cell is anticlockwise rotated with an angle of θ,
the relationship between the uv coordinate and the xy coordinate can be represented by{ →

x =
→
u cos θ −→v sin θ

→
y =

→
u sin θ +

→
v cos θ

(3)

Thus, in the uvz coordinate, we substitute Equation (3) into Equation (1), and the incident waves
can be expressed as

Einc = (
→
u + j

→
v )ej

→
k
→
z ejθ (4)

and, corresponding reflected waves are

Eref = (ru
→
u ejϕu + jrv

→
v ejϕv)e−j

→
k
→
z ejθ (5)

From Figure 1, we can easily obtain that the reflectivity ru and reflected phase ϕu in the uvz
coordinate are equal to the reflectivity rx and reflected phase ϕx in the xyz coordinate, respectively.
In a similar way, the reflectivity rv and reflected phase ϕv in the uvz coordinate are equal to the



Materials 2018, 11, 956 4 of 13

reflectivity ry and reflected phase ϕy in the xyz coordinate, respectively. Therefore, ru = rx, ϕu = ϕx,
rv = ry, and ϕv = ϕy. Then, Equation (5) can be expressed as

Eref =
1
2
[(rx

→
x − jry

→
y )(ejϕx − ejϕy)ej2θ + (rx

→
x + jry

→
y )(ejϕx − ejϕy)]e−j

→
k
→
z (6)

From Equation (6), if rx = ry, it is found that the reflected waves consist of two components, RHCP
and left hand CP (LHCP), respectively.

Eref(RHCP) =
1
2

rx(
→
x − j

→
y )(ejϕx − ejϕy)ej2θe−j

→
k
→
z (7)

Eref(LHCP) =
1
2

rx(
→
x + j

→
y )(ejϕx + ejϕy)e−j

→
k
→
z (8)

and when |ϕx − ϕy| = π, Equations (7) and (8) change to

Eref(RHCP) =
1
2

rx(
→
x − j

→
y )ejϕx e−j

→
k
→
z ej2θ (9)

Eref(LHCP) = 0 (10)

Obviously, there is only an RHCP component inside the reflected wave, and the phase variation
is 2θ, equal to two times of the rotation angle. Contrary to the metallic plate, the reflected waves of the
PB unit-cell based metasurface only contain the co-polarized components. It is worth noting that the
conditions of |ϕx − ϕy| ≈ π and rx ≈ ry must be fulfilled.

3. Graphene Based PB Unit-Cell

Graphene can strongly interact with electromagnetic waves in THz regime through plasmonic
resonance [23,24]. However, for practical applications, wave-graphene interactions have to be further
improved. In this paper, a graphene-based PB phase unit-cell is proposed, as shown in Figure 2b.
The structure of the unit-cell consists of a top layer rectangular graphene patch and a square grounded
quartz glass (SiO2) substrate. When we extend these unit-cells periodically along both the x and
y directions, a 2-D graphene-based metasurface can be obtained, as shown in Figure 2a. Incident
terahertz waves can excite the plasmonic resonances of the graphene patches, and can be totally
reflected by the bottom metallic ground. The top layer graphene-patches work as a partially reflecting
mirror, and the bottom metallic ground operates as a fully reflecting mirror, respectively. Because of
the rectangular shape of the graphene patch, the phases of the reflected waves can be independently
manipulated by changing w or l, as shown in Figure 2d. The reason is that the Ex component of
the incident wave can only excite the plasmonic resonance in the x direction, and Ey component
of the incident wave can only excite the plasmonic resonance in the y direction [49]. Based on this
characteristic, we can easily design a unit-cell fulfilling the conditions of |ϕx−ϕy| ≈ π and rx ≈ ry.

The modeling method of the graphene-based unit-cell is given in the following section. In the
terahertz frequencies, the complex surface conductivity of graphene is determined by intraband
transition. It can be approximated by a semi-classical Drude model [50]

σ(ω) =
2e2

π}2 kBT ln[2 cosh(
E f

2kBT
)]

i
ω + iτ−1 (11)

where e is the elementary charge, kB is the Boltzmann’s constant, } is the reduced Plank’s constant, T is
temperature, τ is the relaxation time, ω is the radian frequency, and Ef is the Fermi energy. When Ef is
much larger than the thermal energy kB T, the complex conductivity of graphene can be simplified to

σ(ω) =
e2E f
π}2

i
ω+iτ−1 . The electron relaxation time τ is the function of the carrier mobility µ, the Fermi

energy Ef, and Fermi velocity vf. It can be expressed as τ =
E f µ

ev f
2 , which implies that increasing
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µ will reduce the loss and enhance the efficiency of the device. The carrier mobility µ often has
a variation range from ~1000 cm2/Vs to ~230,000 cm2/Vs with varied fabricated technologies [20].
In our simulation, according to the experimental results in Ref. [51], it is reasonable to assume that the
Fermi energy Ef = 0.64 eV (corresponding to electron concentration of n = 3 × 1013 cm−2 in Ref. [51]),
carrier mobility µ = 10,000 cm2/Vs, temperature T = 300 K and Fermi velocity vf = 106 m/s.
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Figure 2. (a) Schematic of the proposed graphene-based reflectarray, which is composed of a focusing
graphene metasurface and a CP THz source. (b) The PB unit-cell, which is composed of a rectangular
graphene patch and a grounded quartz glass (SiO2) substrate. The side lengths of the rectangle are
w and l, in x and y direction, respectively. p represents the side length of the unit-cell, which can
be extended in both x and y direction, forming a 2-D metasurface. (c) Side view of the proposed
PB unit-cell. Geometric parameters t and d denote the thickness of the ground plate and substrate,
respectively. (d) Simulated reflected phases under the normal illumination of the x-and y-polarized
plane waves. Fixing l = 3.2 µm, the variation range of parameter w is from 2 µm to 13 µm, at 1.52 THz.

The reflectivity and phases of the proposed unit-cell were full-wave simulated using Ansoft HFSS
2017 software (Ansoft, Pittsburgh, PA, USA). The unit-cell depicted in Figure 2b,c is modeled with
a graphene patch on the top layer, then it was deposited on a square grounded SiO2 substrate. The SiO2

substrate has a relative permittivity of εr = 3.75, and a loss tangent tanδ = 0.0184. The parameter w and
l are the width and length of the graphene patch in the x and y directions, respectively, and p = 15 µm
denotes unit-cell side-length which also equal to a periodicity to form the 2-D metasurface. Besides,
t = 10 nm and d = 26 µm are the thickness of the metallic ground and quartz glass (SiO2) substrate,
respectively. In our simulation, the master and slaver boundary condition was added to the unit-cell to
modeling an infinite array. Meanwhile, Floquet port is placed at z = 6d and utilized to interact with
the periodic unit-cell structure. In addition, the reflectivity and phases are obtained by the parametric
sweep module of HFSS solver. The center frequency is set to 1.52 THz.

Such a PB unit cell can be looked as an anisotropic scatterer, which has a polarization dependent
response. In normally incident case, we optimize the geometric parameters of the unit-cell, and choose
the geometric parameters w = 13.39 µm, and l = 3.2 µm. Figure 3a displays the reflectivity and reflected
phases of the x- and y-polarized waves, respectively. The reflectivity of x- and y-polarized waves are
almost equal, with values near 1, indicating high efficiency. A nearly constant 180◦ reflected phase
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difference between the x- and y-polarized incident waves can be achieved in a wide frequency band
(1.4–1.7 THz), realizing exactly 180◦ at 1.52 THz, as shown in Figure 3b.

According to the principle of PB phase, the proposed graphene-based unit-cell can realize
co-polarized conversion, which can convert the illuminated CP wave into a co-polarized CP wave
efficiently. Figure 3c gives the co-polarized and cross-polarized conversion ratios when there is
a normally RHCP incident wave, verifying the co-polarized conversion. In 1.4–1.7 THz bands,
high-efficiency co-polarized transformation has been achieved. Parameters rRR and rLR indicate
the co-polarized conversion ratio and cross-polarized conversion ratio, respectively.

Materials 2018, 11, x FOR PEER REVIEW  6 of 13 

 

According to the principle of PB phase, the proposed graphene-based unit-cell can realize 

co-polarized conversion, which can convert the illuminated CP wave into a co-polarized CP wave 

efficiently. Figure 3c gives the co-polarized and cross-polarized conversion ratios when there is a 

normally RHCP incident wave, verifying the co-polarized conversion. In 1.4–1.7 THz bands, 

high-efficiency co-polarized transformation has been achieved. Parameters rRR and rLR indicate the 

co-polarized conversion ratio and cross-polarized conversion ratio, respectively. 

 

Figure 3. (a) Simulated reflection performance of the PB unit-cell under the normal illumination of 

x-and y-polarized plane waves. The red and blue curves represent the amplitude and phase of the 

reflected wave, respectively. Optimizing geometric parameters w = 13.39 µm and l = 3.2 µm are 

chosen in the simulation. (b) Simulated phase differences of the x-and y-polarized reflected waves. 

Yellow area in the figure demonstrates the frequency range of a nearly 180° phase difference. (c) 

Simulated co-polarized and cross-polarized conversion ratios under the normal RHCP incident 

plane wave. The blue and red curves represent the co-polarized conversion ratio and cross-polarized 

conversion ratio, respectively. 

4. Graphene Metasurface for Focusing 

After verifying the wide-band high efficiency co-polarized converting capability of the 

proposed PB unit-cell, we can compensate arbitrary phase in a range of 0°–360° by element rotating.  

2 2 2

0

0

2π
φ( x, y ) ( x y f f ) φ

λ
= + + − +  (12) 

To focus the reflected CP wave of a normally incident plane wave, a phase distribution must 

be fulfilled, where f represents focal length, λ0 represents wavelength in free space, φ0 represents 

initial phase at the original point. Following Equation (12), we design a focusing graphene 

metasurface with 51 × 51 unit-cells at 1.52 THz, and the focal length is set to 190 μm. The phase 

distribution is illustrated in Figure 4a, and corresponding unit-cell distribution is plotted in Figure 

4b. In the numerical simulation, a normally RHCP incident wave is placed along the −z direction, 

obtaining energy distribution in the xoz plane at 1.4, 1.52, 1.6 and 1.7 THz, respectively, as depicted 

in Figure 5a–d. From these results, the prominent focusing effect can be observed, verifying our 

design. Furthermore, as the frequency increases, the focal length increases proportional, in accord 

with Equation (12). It is worth noting that a full 360° reflected phase range is quite important for 

generating such focusing metasurface. If narrower phase range is applied, as presented by previous 

studies [20,42,43], focusing performances will be degraded because of out of phase values in some 

positions of the metasurface. 

Figure 3. (a) Simulated reflection performance of the PB unit-cell under the normal illumination of
x-and y-polarized plane waves. The red and blue curves represent the amplitude and phase of the
reflected wave, respectively. Optimizing geometric parameters w = 13.39 µm and l = 3.2 µm are chosen
in the simulation. (b) Simulated phase differences of the x-and y-polarized reflected waves. Yellow
area in the figure demonstrates the frequency range of a nearly 180◦ phase difference. (c) Simulated
co-polarized and cross-polarized conversion ratios under the normal RHCP incident plane wave.
The blue and red curves represent the co-polarized conversion ratio and cross-polarized conversion
ratio, respectively.

4. Graphene Metasurface for Focusing

After verifying the wide-band high efficiency co-polarized converting capability of the proposed
PB unit-cell, we can compensate arbitrary phase in a range of 0◦–360◦ by element rotating.

ϕ(x, y) =
2π

λ0
(
√

x2 + y2 + f 2 − f ) + ϕ0 (12)

To focus the reflected CP wave of a normally incident plane wave, a phase distribution must be
fulfilled, where f represents focal length, λ0 represents wavelength in free space, ϕ0 represents initial
phase at the original point. Following Equation (12), we design a focusing graphene metasurface
with 51 × 51 unit-cells at 1.52 THz, and the focal length is set to 190 µm. The phase distribution
is illustrated in Figure 4a, and corresponding unit-cell distribution is plotted in Figure 4b. In the
numerical simulation, a normally RHCP incident wave is placed along the −z direction, obtaining
energy distribution in the xoz plane at 1.4, 1.52, 1.6 and 1.7 THz, respectively, as depicted in Figure 5a–d.
From these results, the prominent focusing effect can be observed, verifying our design. Furthermore,
as the frequency increases, the focal length increases proportional, in accord with Equation (12). It is
worth noting that a full 360◦ reflected phase range is quite important for generating such focusing
metasurface. If narrower phase range is applied, as presented by previous studies [20,42,43], focusing
performances will be degraded because of out of phase values in some positions of the metasurface.
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Figure 5. (a) Normalized energy distribution in xoz plane at 1.4 THz, the center z position of the focal
point is less than 190 µm. (b) Normalized energy distribution in xoz plane at 1.52 THz, the center z
position of the focal point is almost 190 µm. (c) Normalized energy distribution in xoz plane at 1.6 THz,
the center z position of the focal point is a little larger than 190 µm. (d) Normalized energy distribution
in xoz plane at 1.7 THz, the center z position of the focal point is quite larger than 190 µm.

5. High Gain CP Graphene-Based Reflectarray

Previously, we have proposed a graphene metasurface which has prominent focusing capability
in a wide-band of 1.4–1.7 THz. Then, according to the principle of optical path reversibility [52], we can
place a wide-band CP THz source at the focal point of the metasurface. Thus, the incident spherical
wave from the THz source can be converted to reflected plane wave with enhanced gain. In our
simulation, we choose a THz CP horn antenna as the feeding sourceand optimize its radiation pattern
(−10 dB beam width) for effective illumination. Simulated radiation patterns and axial ratios of the
proposed feeding source at 1.4, 1.52, 1.6, and 1.7 THz are demonstrated in Figures 6 and 7, respectively.
Obviously, a stable −10 dB RHCP beam-width around 120◦ can be achieved, as shown in the figures.
According to the calculated radiation angle, center feeding distance 190 µm is chosen, in keeping with
the focal length f = 190 µm of the proposed metasurface.
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Figure 6. (a) Simulated 2-D radiation pattern of the feeding horn antenna at 1.4 THz. (b) The simulated
2-D radiation pattern of the feeding horn antenna at 1.52 THz. (c) The simulated 2-D radiation pattern
of the feeding horn antenna at 1.6 THz. (d) The simulated 2-D radiation pattern of the feeding horn
antenna at 1.7 THz. In all panels the gain of RHCP and LHCP components in ϕ = 0◦ plane and ϕ = 90◦

plane are demonstrated, respectively.
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Figure 7. (a) Simulated axial ratio of the feeding horn antenna at 1.4 THz. (b) Simulated axial ratio of
the feeding horn antenna at 1.52 THz. (c) Simulated axial ratio of the feeding horn antenna at 1.6 THz.
(d) Simulated axial ratio of the feeding horn antenna at 1.7 THz. In all panels the axial ratios in ϕ = 0◦

plane and ϕ = 90◦ plane are demonstrated, respectively.

Figure 8a–l presents the radiation pattern of the reflectarray at 1.4, 1.52, 1.6 and 1.7 THz,
respectively. It is shown that the enhanced gains produced by the proposed reflectarray are 14.32, 15.34,
14.95 and 14.70 dBic, at 1.4, 1.52, 1.6 and 1.7 THz, respectively. Besides, the cross-polarization levels are
at least 15 dB lower than the co-polarization levels all across the 1.4–1.7 THz bands, demonstrating
good CP properties. It is worth noting that the co-polarization radiation patterns have little asymmetric
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feature. Due to the center-feeding regime [53,54] of the proposed reflectarray, the CP feeding horn will
inevitably interact with the reflected waves, causing distortion of the radiation pattern. Thus, we have
to optimize the design parameters to maximally reduce the blockage effect of the feeding structure.
Besides, we can alleviate such interaction by off-axial feeding regime. Furthermore, wide-band
gain and axial ratio results are displayed in Figure 9, stable gain around 15 dBic and axial ratio
around 2.1 dB can be achieved in the whole 1.4–1.7 THz bands, exhibiting both high gain and CP
capability, simultaneously.
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Figure 8. (a) 3-D radiation pattern of the proposed reflectarray at 1.4 THz. (b) 2-D radiation pattern
of the proposed reflectarray at 1.4 THz in φ = 0◦ plane. (c) 2-D radiation pattern of the proposed
reflectarray at 1.4 THz in φ = 90◦ plane. (d) 3-D radiation pattern of the proposed reflectarray at
1.52 THz. (e) 2-D radiation pattern of the proposed reflectarray at 1.52 THz in φ = 0◦ plane. (f) 2-D
radiation pattern of the proposed reflectarray at 1.52 THz in φ = 90◦ plane. (g) 3-D radiation pattern of
the proposed reflectarray at 1.6 THz. (h) 2-D radiation pattern of the proposed reflectarray at 1.6 THz
in φ = 0◦ plane. (i) 2-D radiation pattern of the proposed reflectarray at 1.6 THz in φ = 90◦ plane. (j) 3-D
radiation pattern of the proposed reflectarray at 1.7 THz. (k) 2-D radiation pattern of the proposed
reflectarray at 1.7 THz in φ = 0◦ plane. (l) 2-D radiation pattern of the proposed reflectarray at 1.7 THz
in φ = 90◦ plane.



Materials 2018, 11, 956 10 of 13
Materials 2018, 11, x FOR PEER REVIEW  10 of 13 

 

 

Figure 9. Simulated RHCP gain and axial ratio of the proposed reflectarray. The red and the blue 

curves represent the RHCP gain and axial ratio, respectively. 

6. Conclusions 

We have systematically investigated the spectral responses of graphene-based PB phase 

unit-cell and demonstrated a practical implementation of wide-band high gain CP reflectarray 

based on this configuration in the THz regime. Based on PB phase principle, an arbitrary reflected 

phase controlling can be realized, extremely extending the phase modulated ability of conventional 

graphene-based unit-cells that only have a phase controlling range of 300°. Finally, a focusing 

graphene-based metasurface and a reflectarray were designed, simulated and optimized. 

Simulation results exhibit excellent performances as theoretical expectations. The proposed 

reflectarray has a stable gain of 15 dBic and axial ratio of 2 dB over the 1.4–1.7 THz bands, 

demonstrating high gain and CP characteristics, simultaneously. This reflectarray may have a 

promising application in future THz communications. Meanwhile, for practical fabrication, we can 

design the graphene-based unit-cell which is consist of five layers, such as graphene layer, alumina 

layer, polysilicon layer, quartz glass layer, and ground. The polysilicon can be applied as an 

electrode. The Fermi energy is related to the conductivity of graphene, and can be dynamically 

tuned by varying the DC voltage (VDC) between the graphene and the polysilicon. Detailed 

techniques to fabricate these kinds of graphene reflectarray can be found in Reference [55], 

supporting the feasibility of our design. In addition, it is worth noting that the general technical 

procedure formulated herein facilitates further production of such graphene-based devices for 

various applications. 

Author Contributions: L.D. proposed the idea and designed the structure; Y.Z. and J.Z. analyzed the data; and 

L.D. and C.Z. wrote the paper. 

Funding: This research was funded by National Natural Science Foundation of China (No. 61601040). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Petrov, V.; Komarov, M.; Moltchanov, D.; Jornet, J.M.; Koucheryavy, Y. Interference and SINR in 

millimeter waveand terahertz communication systems with blocking and directional antennas. IEEE 

Trans. Wirel. Commun. 2017, 16, 1791–1808. 

2. Singh, L.; Xie, L.; Chen, M.; Xu, N.; Singh, R.; Zhang, W. Terahertz sensing of highly absorptive 

water-methanol mixtures with multiple resonances in metamaterials. Opt. Express 2017, 25, 14089–14097. 

3. Suen, J.Y.; Fan, K.; Padilla, W.J.; Liu, X. All-dielectric metasurface absorbers for uncooled terahertz 

imaging. Optica 2017, 4, 601. 

4. Murano, K.I.; Watanabe, A.; Kasamatsu, S.; Suzuki, M. Low-profile terahertz radar based on broadband 

leaky-wave beam steering. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 60–69. 

5. Chopra, N.; Yang, K.; Abbasi, Q.H.; Qaraqe, K.A.; Philpott, M.; Alomainy, A. THz time-domain 

spectroscopy ofhuman skin tissue for in-body nanonetworks. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 

803–809. 

Figure 9. Simulated RHCP gain and axial ratio of the proposed reflectarray. The red and the blue
curves represent the RHCP gain and axial ratio, respectively.

6. Conclusions

We have systematically investigated the spectral responses of graphene-based PB phase unit-cell
and demonstrated a practical implementation of wide-band high gain CP reflectarray based on this
configuration in the THz regime. Based on PB phase principle, an arbitrary reflected phase controlling
can be realized, extremely extending the phase modulated ability of conventional graphene-based
unit-cells that only have a phase controlling range of 300◦. Finally, a focusing graphene-based
metasurface and a reflectarray were designed, simulated and optimized. Simulation results exhibit
excellent performances as theoretical expectations. The proposed reflectarray has a stable gain
of 15 dBic and axial ratio of 2 dB over the 1.4–1.7 THz bands, demonstrating high gain and CP
characteristics, simultaneously. This reflectarray may have a promising application in future THz
communications. Meanwhile, for practical fabrication, we can design the graphene-based unit-cell
which is consist of five layers, such as graphene layer, alumina layer, polysilicon layer, quartz glass
layer, and ground. The polysilicon can be applied as an electrode. The Fermi energy is related to the
conductivity of graphene, and can be dynamically tuned by varying the DC voltage (VDC) between
the graphene and the polysilicon. Detailed techniques to fabricate these kinds of graphene reflectarray
can be found in Reference [55], supporting the feasibility of our design. In addition, it is worth
noting that the general technical procedure formulated herein facilitates further production of such
graphene-based devices for various applications.
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