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Abstract: Stability of cathode catalyst support material is one of the big challenges of polymer
electrolyte membrane fuel cells (PEMFC) for long term applications. Traditional carbon black (CB)
supports are not stable enough to prevent oxidation to CO2 under fuel cell operating conditions. The
feasibility of a graphitized carbon (GC) as a cathode catalyst support for low temperature PEMFC is
investigated herein. GC and CB supported Pt electrocatalysts were prepared via an already developed
polyol process. The physical characterization of the prepared catalysts was performed using
transmission electron microscope (TEM), X-ray Powder Diffraction (XRD) and inductively coupled
plasma optical emission spectrometry (ICP-OES) analysis, and their electrochemical characterizations
were conducted via cyclic voltammetry(CV), rotating disk electrode (RDE) and potential cycling,
and eventually, the catalysts were processed using membrane electrode assemblies (MEA) for single
cell performance tests. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical
microscopy (SEM) have been used as MEA diagonostic tools. GC showed superior stability over CB
in acid electrolyte under potential conditions. Single cell MEA performance of the GC-supported
catalyst is comparable with the CB-supported catalyst. A correlation of MEA performance of the
supported catalysts of different Brunauer–Emmett–Teller (BET) surface areas with the ionomer
content was also established. GC was identified as a promising candidate for catalyst support in
terms of both of the stability and the performance of fuel cell.
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1. Introduction

Polymer electrolyte membrane fuel cells (PEMFC) are considered as a viable option for future
zero emission mobility, due to their high power density and low degradation. However, long term
operation of PEMFC is hindered due to instability of the traditional carbon black type catalyst support
materials under fuel cell operating conditions. A material could be used as a noble metal supports
if it meets some general requirements, for example, high surface area, high electronic conductivity,
stable under acidic environment, uniform dispersion of noble metal nanoparticles on it, effective
metal-support interaction, and low cost [1]. Currently, carbon black (CB) is widely used. However,
the stability of CB is not high enough for long term fuel cell operation. In particular, during start
and stop cycling of the fuel cell, CB in the cathode is rigorously oxidized, which causes detachment
of Pt nanoparticles and promote agglomerations, and eventually, performance degradation [2–4].
Modified carbon, inorganic oxides, and composite materials are currently research areas of interest.
For example, Selvaganesh et al. showed that using graphitized carbon as a support for Pt and its alloy
was more stable than non-graphitized carbon [5]. Takei et al. [6] also proposed graphitized carbon
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as a cathode catalyst support. Modified graphitized carbon [7], or nitrogen and fluorine co-doped
graphite nanofibers [8], are also promising support materials. Silica coated carbon nanotube [9],
carbon nanofiber [10,11], composite of activated carbons [12], composite of xerogel-nanofiber carbon
composites [13], nitrogen-containing carbon support [14], and graphitic hollow carbon nanocages [15]
were just recently reported as stable cathode catalyst supports for PEMFC applications.

Besides CB, inorganic oxides, for example, TiO2, Magnéli-phase titanium oxide, and SnO2,
are considered as stable cathode catalyst supports for PEMFC [16–19] although their electrical
conductivities are too low. Metal oxides with appropriate doping can improve the electrical
conductivities to a desired level. However, the main problem of doped metal oxides is their low
Brunauer–Emmett–Teller (BET) surface areas and their low electronic conductivities compared to the
CB support. Nevertheless, Sb-doped SnO2 [20–23], Nb-doped SnO2 [24], Nb-doped TiO2 [25,26], and
In-doped TiO2 [27] are suggested as catalyst supports for PEMFC application. Catalyst supported on
carbon-doped TiO2 also showed improved stability compared to catalysts supported on CB reported
by Huang et al. [28] and Liu et al. [29]. Titanium diboride [30], titanium carbide [31], and very recently,
tungsten carbide [32], are proposed as stable cathode catalyst supports for PEMFC. Unfortunately,
most of the research work is limited to studies in liquid acid electrolyte, where the proposed supported
catalysts are stable. Yet, to get a full picture, one should study the effects on cell performance as well.
In our previous work, we showed the feasibility of using Sb doped SnO2 (ATO) as a cathode catalyst
support, in which the catalyst supported on ATO was stable in acid electrolyte, but ultimately, the
MEA single cell performance was low compared to a CB-supported material [33]. Thus, the aim of this
work is to investigate alternative carbon-based supports that are more stable, without compromising
fuel cell performances. A graphitized carbon and a traditional CB support were chosen for this
investigation. Supported catalysts were prepared via an already developed modified polyol process.
The prepared supported catalysts were annealed to increase their stability and activities [34,35], and
then characterized. For comparison, a commercial high BET surface area (800 m2/g) CB-supported Pt
electrocatalyst from Tanaka (TEC10E20E, Lot:1015-0041, Tanaka Kikinzoku Kogyo K.K. Tokyo, Japan,
19.3 wt % Pt,) was also taken as reference catalyst in this work.

2. Results

2.1. Catalysts Characterization

Pt-loaded catalysts (20 wt %) were prepared on CB and GC supports via an already developed
modified polyol process [33]. BET surface areas of the investigated CB and the GC supports were
measured as 192 and 60 m2/g, and the electrical conductivities of the supports were measured as
2.7 and 2.1 S/cm, respectively.

2.1.1. Physical Characterization of the Synthesized Catalysts

Figure 1 shows a TEM image of a CB-supported synthesized catalyst (non-annealed). It reveals
the homogeneous distributions of the Pt particles between 3 and 5 nm (average 3.9 nm). The average
Pt particle size of the same catalyst was determined to be 3.2 nm via XRD, a good compromise of
the measurement technique. Therefore, the average particle sizes of Pt for all of our synthesized
catalysts were measured by the same way via XRD using TOPAS software (version 5, Bruker AXS,
Karlsruhe, Germany).

Figure 2 shows the XRD patterns of the CB- and GC-supported catalysts before and after the
annealing process, in which the first peak at 2θ value of 25◦ belongs to carbon (or graphite) and other
reflexes at 39◦, 46◦, 68◦, 81◦, and 85◦, correspond to Pt(111), Pt(200), Pt(220), Pt(311), and Pt(222) planes,
respectively. This is a characteristic of cubic Pt crystallites [29]. After annealing, the Pt peaks intensities
are increased, while the half width at half maximum decreased, which is an indication of increasing Pt
nanoparticle sizes compared to non-annealed catalysts. The average Pt particle size of the CB- and the
GC-supported non-annealed catalysts were measured by XRD as 3.0 and 2.9 nm, respectively, and the
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annealed catalysts were measured as 5.5 and 5.8 nm, respectively. Pt nanoparticle are located closer to
each other on the supports with low BET surface areas (GC). Therefore, they have high tendency to
become mobile and agglomerate. Thus, the increase of Pt particle size on GC support is higher than
the CB support during annealing process. The average Pt particle size of the reference Tanaka catalyst
was below the detectable limit (<2 nm) via XRD.
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Figure 1. TEM image of a non-annealed 18.5 wt % Pt on CB supported synthesized catalyst (a) and
distribution of Pt nanoparticle on the support (b).
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Figure 2. XRD patterns of the catalysts (a) before annealing and (b) after annealing.

The total Pt content were respectively measured as 18.8 and 19.7 wt % from the CB- and the
GC-supported synthesized catalysts after annealing via ICP-OES analysis.

2.1.2. Carbon Corrosion in Acid Electrolyte

Figure 3 shows the degradation of the GC (Pt/GC)-, the CB (Pt/CB)-supported annealed catalyst,
and the reference Tanaka catalyst in terms of loss of electrochemical surface areas (ECSA), with
potential cycling between 1.0 V and 1.5 V vs. reversible hydrogen electrode (RHE) at 500 mV/s voltage
scan rate in 0.5 M H2SO4 at 25 ◦C [36]. The initial ECSA of the Tanaka catalyst is found to be the highest,
due to the lowest Pt particle size (<2 nm), however, after 60,000 potential cycles, the Pt/GC catalyst
shows the highest (92%) electrochemical surface area survival rate (ECSA-SR), compared to the Pt/CB
catalyst (54%) and the reference (49%) catalysts. Although the initial ECSA of both Pt/CB and Pt/GC
catalysts are the same, there is a significant decrease of ECSA of the Pt/CB catalyst under cycling
conditions which compromises its performance for long-term use, compared to the Pt/GC catalyst.
Thus, a superior long-time uniform performance can be expected from the GC-supported catalyst.
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Figure 3. Comparison of support stabilities (in terms of ECSA survival rate) of the catalysts during
potential cycle tests between 1.0 and 1.5 V vs. RHE in 0.5 M H2SO4 electrolyte at 500 mV/s voltage
scan rate at 25 ◦C.

2.1.3. Pt Corrosion in Acid Electrolyte

Aim of this test is to investigate the catalyst (Pt) durability in 0.5 M H2SO4 under stressed
conditions. Figure 4 displays the comparative Pt durability test results of the catalysts. The rates of Pt
corrosion with potential cycling between 0.6 V and 1.0 V (Pt stressed areas) at 50 mV/s voltage scan
rate are different for the supported catalysts. After 40,000 cycles, the ECSA-SR of the Pt/GC catalyst is
the highest compared to the Pt/CB and the reference catalysts under the same cycling conditions. This
could be due to the bigger particle sizes of Pt on the Pt/GC than the others [37].

Materials 2018, 11, x FOR PEER REVIEW  4 of 10 

 

 

Figure 3. Comparison of support stabilities (in terms of ECSA survival rate) of the catalysts during 

potential cycle tests between 1.0 and 1.5 V vs. RHE in 0.5 M H2SO4 electrolyte at 500 mV/s voltage 

scan rate at 25 °C. 

2.2.3. Pt Corrosion in Acid Electrolyte 

Aim of this test is to investigate the catalyst (Pt) durability in 0.5 M H2SO4 under stressed 

conditions. Figure 4 displays the comparative Pt durability test results of the catalysts. The rates of 

Pt corrosion with potential cycling between 0.6 V and 1.0 V (Pt stressed areas) at 50 mV/s voltage scan 

rate are different for the supported catalysts. After 40,000 cycles, the ECSA-SR of the Pt/GC catalyst 

is the highest compared to the Pt/CB and the reference catalysts under the same cycling conditions. 

This could be due to the bigger particle sizes of Pt on the Pt/GC than the others [37].  

 

Figure 4. Comparison of Pt stabilities on the supports (in terms of ECSA survival rate) during 

potential cycling between 0.6 V and 1.0 V vs. RHE at 50 mV/s voltage scan rate in 0.5 M H2SO4 

electrolyte at 25 °C. 

2.2.4. Oxygen Reduction Reaction (ORR) activities of the Catalysts 

The mass activities at 0.9 V vs. RHE electrode of the Pt/CB, Pt/GC, and the reference Tanaka 

catalysts are measured as 333, 205, and 451 A/g-Pt respectively (see Figure 5). Lower mass activies of 

the synthesized catalysts could be due to the bigger Pt particle sizes of the synthesized catalysts than 

the reference catalyst. However, higher specific activities of the synthesized catalyst are an indication 

of overall high ORR activities of these catalysts compared to the reference catalyst.  

0

20

40

60

80

0 20 40 60

E
C

S
A

 [
m

2
/g

-P
t]

Number of cycles Thousands

Pt/GC Pt/CB Tanaka

0

25

50

75

100

initial-ECSA Final-ECSA ECSA-SR

E
C

S
A

 [
m

2
/g

-P
t]

; 
E

C
S

A
-S

R
 [

%
]

Pt/CB Pt/GC Tanaka

Figure 4. Comparison of Pt stabilities on the supports (in terms of ECSA survival rate) during potential
cycling between 0.6 V and 1.0 V vs. RHE at 50 mV/s voltage scan rate in 0.5 M H2SO4 electrolyte at
25 ◦C.

2.1.4. Oxygen Reduction Reaction (ORR) activities of the Catalysts

The mass activities at 0.9 V vs. RHE electrode of the Pt/CB, Pt/GC, and the reference Tanaka
catalysts are measured as 333, 205, and 451 A/g-Pt respectively (see Figure 5). Lower mass activies of
the synthesized catalysts could be due to the bigger Pt particle sizes of the synthesized catalysts than
the reference catalyst. However, higher specific activities of the synthesized catalyst are an indication
of overall high ORR activities of these catalysts compared to the reference catalyst.



Materials 2018, 11, 907 5 of 10Materials 2018, 11, x FOR PEER REVIEW  5 of 10 

 

 

Figure 5. ORR activities of the supported catalysts at 0.9 V vs. RHE electrode in 0.1 M HClO4 

electrolyte at 50 mV/s scan rate at room temperature. 

2.2.5. MEA Single Cell Performances 

It has been shown in our previous work that each catalyst needed different amounts of ionomer 

on the catalyst layers in order to get the optimum performances [33]. It very much dependent on the 

BET surface areas of the support materials. Thus, optimization of the ionomer content on the catalyst 

layer for each catalyst was performed. Figure 6 shows the optimized results of MEA single cell tests 

in which optimum 37.5 wt % ionomer for Tanaka (carbon/ionomer = 0.74), 40 wt % ionomer for Pt/CB 

(carbon/ionomer = 0.82), and 29 wt % ionomer for Pt/GC (carbon/ionomer = 0.51) on the cathode 

catalysts layers have been used. All of the performance tests were carried out with using pure H2 as 

fuel, and air as oxidant. For up to 1 A/cm2 current densities, the Tanaka catalyst showed high voltages 

compared to the other catalysts, however, at high current densities, the Pt/GC catalyst showed higher 

voltages. For up to 0.5 A/cm2 current densities, MEAs with both Pt/CB and Pt/GC catalysts were 

operating at almost the same voltages, and eventually, larger ohmic drops and mass transport losses 

are observed from the Pt/CB catalyst than the Pt/GC catalyst.  

 

Figure 6. Comparative I–V characteristic curves of the MEAs using a Nafion® NR212 membrane with 

Pt/CB, Pt/GC, and Tanaka catalysts. 

The Nyquist plots from impedance measurements uncover additional information of the MEAs 

diagonystics. Figure 7 shows that both at low (0.16 A/cm2) and at high (1.36 A/cm2) current densities, 

the MEA resistances of both CB- and GC-supported catalysts are the same. However, at high current 

density, the arc diameter, which is thought to be diffusion resistance, is significantly increased for the 

MEA prepared with the CB-supported catalyst, as well as the commercial Tanaka catalyst, which is 

probably the cause of low performances of these catalysts at high current densities, as we observed 

in the I–V characteristic curve.  

333

582

205

539

451 435

MA (A/g-Pt) Sp.A (µA/cm2-Pt)

Pt/CB Pt/GC Tanaka

0

0.3

0.6

0.9

1.2

0 0.5 1 1.5 2

V
 [

V
]

I [A/cm²]

Operating Conditions:

T cell =80°C, A. dp=C.dp=80°C

A.stoi=1.3, C.stoi=2.5,150kPa

Tanaka

Pt/CB

Pt/GC

Figure 5. ORR activities of the supported catalysts at 0.9 V vs. RHE electrode in 0.1 M HClO4 electrolyte
at 50 mV/s scan rate at room temperature.

2.1.5. MEA Single Cell Performances

It has been shown in our previous work that each catalyst needed different amounts of ionomer
on the catalyst layers in order to get the optimum performances [33]. It very much dependent on the
BET surface areas of the support materials. Thus, optimization of the ionomer content on the catalyst
layer for each catalyst was performed. Figure 6 shows the optimized results of MEA single cell tests in
which optimum 37.5 wt % ionomer for Tanaka (carbon/ionomer = 0.74), 40 wt % ionomer for Pt/CB
(carbon/ionomer = 0.82), and 29 wt % ionomer for Pt/GC (carbon/ionomer = 0.51) on the cathode
catalysts layers have been used. All of the performance tests were carried out with using pure H2 as
fuel, and air as oxidant. For up to 1 A/cm2 current densities, the Tanaka catalyst showed high voltages
compared to the other catalysts, however, at high current densities, the Pt/GC catalyst showed higher
voltages. For up to 0.5 A/cm2 current densities, MEAs with both Pt/CB and Pt/GC catalysts were
operating at almost the same voltages, and eventually, larger ohmic drops and mass transport losses
are observed from the Pt/CB catalyst than the Pt/GC catalyst.
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Figure 6. Comparative I–V characteristic curves of the MEAs using a Nafion®NR212 membrane with
Pt/CB, Pt/GC, and Tanaka catalysts.

The Nyquist plots from impedance measurements uncover additional information of the MEAs
diagonystics. Figure 7 shows that both at low (0.16 A/cm2) and at high (1.36 A/cm2) current densities,
the MEA resistances of both CB- and GC-supported catalysts are the same. However, at high current
density, the arc diameter, which is thought to be diffusion resistance, is significantly increased for the
MEA prepared with the CB-supported catalyst, as well as the commercial Tanaka catalyst, which is
probably the cause of low performances of these catalysts at high current densities, as we observed in
the I–V characteristic curve.
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Figure 7. Nyquist plots at 0.16 and 1.36 A/cm2 current densities of the MEAs with Pt/CB, Pt/GC, and
Tanaka catalysts under the same operation conditions as performance tests.

SEM images of the cross section of the cathodes also disclose the superiority of the MEA with
Pt/GC catalyst in terms of electrode thickness and the morphologies (see Figure 8). Lower electrode
thickness of the MEA with Pt/GC (26 µm) could be another reason for the improved mass transport
phenomena, compared to the MEA with Pt/CB (34 µm) and the Tanaka (48 µm) catalysts.
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3. Discussion

In this work, the comparative performance stabilities of supported Pt electrocatalysts on a typical
CB and GC support were investigated. Pt nanoparticles of almost the same particle sizes were
successfully deposited on the GC and the CB supports using the already developed modified polyol
process. The total Pt loadings of the supported catalysts were also within good ranges, while the target
was 20 wt % Pt-supported catalysts.

After 60,000 potential cycles between 1.0 V and 1.5 V vs. RHE in 0.5 M H2SO4 at 500 mV/s scan
rate at 25 ◦C, the ECSA-SR of the Pt/GC catalyst was higher than both of Pt/CB and the reference
Tanaka catalysts.

Pt stability is mainly dependent on the particle sizes of Pt. However, metal support interactions
have some influence on Pt stability, as we found in our previous work [33]. In this work, Pt stability
on GC in 0.5 M H2SO4 was found to be slightly higher than on the traditional CB support after
40,000 potential cycles between 0.6 V and 1.0 V vs. RHE at 50 mV/s at 25 ◦C, probably due to the effect
of Pt particle sizes.

ORR activity of Pt/GC is found to be lower than both of the Pt/CB and the Tanaka catalysts.
Nevertheless, MEA single cell performance of the former is highly comparable with commercial
Tanaka catalyst. Due to low electrode thickness and high porosity, mass transport resistance of the
GC-supported catalyst was improved. Thus, it showed promising performance among all other
catalysts which were investigated.

In this work, stable cathode catalyst supports were investigated. The use of the same support as
anode will be the next part of our continuous development plan.

4. Materials and Methods

In this work, a CB support (Vulcan XC72, Cabot Corporation, Billerica, MA, USA) and a GC
support (Timcal-167, Imerys Graphite & Carbon, Bodio, Switzerland) were chosen for investigation.
As received GC was hydrophobic with low BET surface area. In order to increase its surface properties,
oxidation at 600 ◦C for 90 min in an air oven was performed. CB material was used without any
further treatment. The BET surface areas of the materials were measured using a Sorptomatic 1990
instrument (Thermo Scientific Inc, Waltham, MA, USA), while N2 was used as adsorbent. The electronic
conductivities of the materials were measured via our homemade four-point measuring device, by
passing through AC current and measuring the voltage in a known thickness of the materials. The
supported Pt electrocatalysts of targeted 20 wt % Pt loading were prepared by using an already
developed modified polyol process [33]. An X-ray diffraction technique with a Siemens D5000 (Bruker
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AXS, Karlsruhe, Germany) and TOPAS software (version 5) were used to determine the Pt particle size
of the synthesized catalysts. The contents of Pt on the supported catalysts were measured via ICP-OES
analysis (Acros FHS12, Spectro Analytical Instruments GmbH, Kleve Germany).

Degradation test of the supports and the Pt were performed in 0.5 M H2SO4 at 25 ◦C in a
three-electrode configuration, using a Zahner IM6 potentiostat (Zahner-elektrik GmbH & Co. KG,
Kronach, Germany) while using Hg/HgSO4 as reference electrode, Pt wire as counter electrode, and 10
µg Pt-loaded working electrode (WE). The WE was prepared by placing the required amount of ink on
a glassy carbon disk and drying it in air. Ink for the WE was prepared by taking 10 mg catalyst powder
and 5 mL solvent (0.02 wt % Nafion® in water) in a glass vial with a magnetic stirrer, which was then
stirred for 2 min, followed by sonication for 15 min. Initially, the electrode surface was cleaned via
potential cycling between 0.05 V and 1.2 V vs. RHE at 200 mV/s scan rate until getting a reproducible
CV, followed by taking CV at 50 mV/s within the same ranges to measure initial electrochemical
surface areas (ECSA). The support corrosion test was performed by potential cycling between 1.0 V
and 1.5 V vs. RHE at 500 mV/s voltage scan rate [36], while the Pt corrosion test was performed by
potential cycling between 0.6 V and 1.0 V vs. RHE at 50 mV/s voltage scan rate [33].

A rotating disk electrode (RDE) setup with a biologic potentiostat (SP-150) and an RDE 710 rotator
(Gamry instruments, Warminster, PA, USA) were used to measure the ORR activities of the catalysts.
The measurement was performed in 0.1 M HClO4 at 50 mV/s voltage scan rate at room temperature
while using Hg/HgSO4 as RE, Pt wire as CE, and 1.4 µg Pt-loaded gold electrode as WE. The
measurement procedure was the same as reference [33].

MEAs were prepared via catalyst-coating membrane techniques in a Nafion®NR212 (50.8 µm)
membrane [38]. Cathodes of the MEAs were prepared with the supported catalysts to be investigated
while keeping the anodes unchanged with a commercial Tanaka catalyst (19.3 wt % Pt on CB) for all
MEAs. The Pt loading on both electrodes were 0.3 mg/cm2. A standard FC technology single cell with
triple serpentine flow fields and 25 cm2 active surface areas was used to conduct MEA performance
tests. The MEA performances and EIS measurements were carried out using an already developed
testing procedure [38]. After the tests, the MEAs were cut using N2 freezing in order to investigate
the cross-sectional morphology of the electrodes via scanning electron microscopy (Zeiss SEM/FIB
NVision 40, Zeiss, Oberkochen, Germany).
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