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Abstract: Printing technologies have recently emerged in the development of novel drug
delivery systems toward personalized medicine, to improve the performance of formulations,
existing bioavailability patterns, and patients’ compliance. In the context of two-dimensional printing,
this article presents the development of buccal films that are designed to efficiently deliver a
class II compound (diclofenac sodium), according to the Biopharmaceutics Classification System
(BCS), to the oral cavity. The preparation of drug-loaded inks was carried out based on solubility
studies and evaluation of rheological properties, combining ethanol and propylene glycol as optimal
solvents. Deposition of the drug was achieved by increasing the number of printing layers onto
edible substrates, to produce formulations with dose variance. Thermal analysis, X-ray diffraction,
and infrared spectroscopy were used to characterize the developed films. Drug loading and water
uptake studies complemented the initial assessment of the films, and preliminary in vitro studies
were conducted to further evaluate their performance. The in vitro release profiles were recorded in
simulated saliva, presenting the complete release of the incorporated active in a period of 10 min.
The effect of multiple layers on the overall performance of films was completed with in vitro
permeation studies, revealing the correlation between the number of printed layers and the apparent
permeability coefficient.

Keywords: 2D printing; buccal delivery; edible films

1. Introduction

Printing technologies have emerged in the manufacture of drug delivery systems and dosage
forms in the last decade, with a great focus on thermal inkjet printing techniques [1]. The process
enables the deposition of liquid droplets containing the active pharmaceutical ingredient (API) onto an
edible substrate, while the formulation’s type is based on predesigned digital patterns. In this context,
thermal pulses generated by the printing device produce a bubble of steam, the expansion of which
forces the liquid ink through a printing nozzle. Thus, a liquid droplet is instantly formed and sprayed
onto the substrate [2]. Personalization of one’s dose regarding gender, age, and other genomic features
is a promising way to improve public healthcare [3]. Printing technologies are a useful tool in this
area, as the adjustment of the dose to the person’s needs is of great interest. In particular, printing
techniques are very promising for the fabrication of custom-made oral films as novel drug delivery
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systems in a tailored, easy, and safe way [4]. The main benefit of this procedure is the personalization
of a dose along with the formulation of an API with low solubility in the most common solvents [5].

The rheology of the liquid plays a key role in the two-dimensional (2D) printing procedure.
In particular, surface tension and viscosity are the most important parameters to be investigated in
order to achieve optimal printability [2,6]. An ink of high viscosity is difficult to be jetted due to
possible nozzle clogging, whereas very low viscosities will provoke free-flow of the ink through
the nozzle. Aqueous solutions tend to have low viscosity and large surface tension; thus, the use of
modifiers is imperative to improve these properties. Polyhydric alcohols and surfactants are commonly
used as modifying agents [7]. Moreover, polyhydric alcohols are used as solubility enhancers for
poorly soluble drugs. Prednisolone was successfully dissolved in a mixture of water—ethanol-glycerol
and printed onto polytetrafluoroethylene (PTFE)-coated fiberglass film [8], and the printability of a
folic acid nanosuspension was studied with the aid of Tween 20 [9].

There are numerous studies employing 2D printing, especially inkjet printing. Felodipine, a poorly
soluble API and an antihypertensive agent, was ejected onto a hydrophobic substrate made of glass
cover slips coated with Flutec fluid. The purpose of this work was to adjust the dosage of the
formulations to suit the individual needs of a patient [10]. Buanz et al. [11] highlighted the effect of
multiple passes of the substrate through the printer. It was noticed that the amount of salbutamol
sulphate deposited on potato starch substrate after a single pass was in agreement with the theoretical
loading. Contrariwise, the amount of the API deposited onto the substrate after multiple passes
was significantly less than the theoretical dose. The authors proposed that the substrate handling
during multiple printing passes caused a large loss of the API, originating from shearing forces.
Genina et al. [12] employed 2D printing technologies to deposit loperamide hydrochloride and caffeine
on different edible substrates (icing sheets and polyethylene terephthalate sheets). An increase of the
concentration of the APIs was achieved by altering the density of the layer which is ejected from the
nozzle. The same group [13] formulated orodispersable films by inkjet printing, loaded with rasagiline
mesylate, an API against Parkinson’s disease. Three different substrates were used to evaluate the films:
copy paper; water-impermeable transparency substrate; and a substrate consisting of HPMC, glycerol,
water, and crospovidone. The anticancer drug paclitaxel and the antiviral drug cidofovir were printed
in hydroxypropylcellulose (HPC) substrates for the management of cervical cancer, in an attempt to
avoid toxicity of the systemic chemotherapy and optimize the treatment [6]. To achieve escalating
dosage of APIs, Vakili et al. [14] used prednisolone and levothyroxine in the form of orodispersable
films. The printhead ejected the ink solution in a manner of continuous droplets, allowing the uniform
deposition of the drug onto the substrate, whereas different doses were printed by adjusting the
resolution settings of the device. Flexible doses of levothyroxine have also been developed for pediatric
use by modifying the number of printed layers and the resolution, thus attaining lower and higher
doses [15]. In another work, Kollamaram et al. [16] used hydroxypropyl methylcellulose (HPMC)
as a substrate for printing paracetamol and indomethacin. The study was aimed at the verification
of polymorphic selectivity of the APIs when printed, as well as the binding to the substrate and the
rheological compatibility of the ink solution. An alternative perspective of printing various doses
is the modification of the API's concentration in the cartridge or changing the dimensions of the
predesigned templates. The latter was applied in the case of developing orodispersible films loaded
with warfarin [17]. In addition to classical formulation approaches, a recent study presented the
perspective of combining inkjet printing with Quick Response (QR) digital technology. The aim of this
research was to manufacture smart dosage forms individualized for the person as well as to enable
the inclusion of digital information on the printing pattern: expiration date, route of administration,
batch number, and manufacturer ID [18].

The aim of the current study is to develop 2D printed oral films for buccal delivery of a BCS
class I API [19]: diclofenac sodium (DNa), a nonsteroidal anti-inflammatory drug, commonly used to
treat pain and inflammation. Buccal delivery is an alternative route of administration for either local
delivery to the oral cavity or systemic release [20]. The buccal route offers the potential of delivering
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drugs with low bioavailability due to avoidance of the first pass effect [21]. Sugar-sheet substrates are
implicated in the manufacture of buccal films. To facilitate the optimization of liquid inks, studies
for solubility, viscosity, and surface tension are performed. Buccal films are formulated by altering
the number of passes through the printing device to produce various doses of the APIL The films
are initially assessed for their drug loading and water uptake capacity. Evaluation of the films is
complemented by thermal analysis, X-ray diffraction, Raman spectroscopy, and infrared spectroscopy.
The in vitro release of the API is performed in simulated saliva. Finally, in vitro permeation studies
are used to evaluate the effect of the number of printing passes on the overall performance of the
developed films.

2. Materials and Methods

2.1. Materials

Diclofenac sodium (DNa) was kindly supplied by Rontis Hellas S.A. (Marousi, Greece).
Propylene glycol (>99.5%) (PG), polyethylene glycol 400 (PEG), and ethanol (>98%) (EtOH) were
purchased from Sigma-Aldrich (Steinheim, Germany). Décor Paper Plus edible sugar sheets
(A4 dimension) were purchased from Kopyform GmbH (Beindersheim, Germany). All other materials
were of analytical grade.

2.2. Solubility Studies

Solubility studies of DNa in EtOH and distilled water as the main solvents, as well as in PG
and PEG as viscosity and surface tension modifiers, were conducted to optimize the ink composition.
In detail, 10 mL of each solvent was placed in airtight glass vials, and preweighted amounts of DNa
were gradually added until a cloudy mixture was produced, indicative of exceeding the saturation
solubility. The vials were kept under stirring (200 rpm) for 24 h. Aliquots (5 mL) of each mixture were
withdrawn, centrifuged at 4000 rcf for 30 min, and filtered through a 0.45 um Whatman Nylon filter to
remove excess amounts of the API, and the supernatant was collected. The saturation solubility of
DNa in each solvent was quantified by high-performance liquid chromatography (HPLC).

2.3. Development and Printability of Inks

The optimal solvents, providing the highest saturation solubility of the API, were mixed in various
ratios to develop drug-loaded inks with appropriate rheological properties for the efficient injection of
the ink. Thus, drug-free inks of three different solvent ratios were subjected to kinematic viscosity (v)
measurements in triplicate using a Micro Ostwald viscometer (SI Analytics GmbH, Mainz, Germany).
The fluid density (p) was measured by weighing 1 mL of each ink in triplicate, to calculate the dynamic
viscosity (1) from the equation v =1/p. Furthermore, the viscosity was recalculated for drug-loaded
inks, as the addition of API powder would alter the rheology of the liquid formulation. The surface
tension of the optimally performing sample was determined by the pendant drop method, using a
CAM 200 contact angle goniometer (KSV Instruments, Helsinki, Finland), and the data analysis was
performed with the aid of One Attension software (Biolin Scientific, Espoo, Finland).

2.4. Printing of Buccal Films

An HP D4260 thermal inkjet printer (Hewlett-Packard Hellas Ltd., Athens, Greece) was involved
in the study to prepare the buccal films. The black-ink cartridge was filled with the optimal
drug-loaded ink, and square patterns of 2 x 2 cm? were printed on the sugar-sheet substrate.
Moreover, the deposition of the drug on the sugar sheets was studied under repeated printing
conditions. The substrates were reloaded in the printer five or nine consecutive times to increase
the drug content on the square patterns. The buccal films were then carefully extracted using a
surgical blade.
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2.5. Drug Loading and Water Uptake

The obtained drug-loaded films were dispersed in 50 mL of distilled water in sealed glass vials
and kept under stirring (300 rpm) for a period of 4 h at room temperature. Samples of 5 mL were
withdrawn and centrifuged at 4000 rcf for 20 min. The supernatant of each sample was collected and
analyzed by HPLC to determine the drug loading of the films (expressed as mg/cm?). The water
absorption capacity was evaluated after immersion of the printed films in Petri dishes containing 1 mL
of simulated saliva (SS), pH 6.8 (0.8% sodium chloride, 0.019% potassium phosphate (monobasic),
and 0.238% sodium phosphate (dibasic) (w/v)) [22]. At predetermined time intervals, the films were
taken off the Petri dishes, wiped carefully to remove the excess amount of water, and weighed.
The water uptake (WU) was calculated as %WU = ((wp — wy) x 100)/w1)), where wj and wy is the
weight of each film before and after immersion in the SS medium.

2.6. Physicochemical Characterization

Morphological assessment of the developed formulations was performed with scanning electron
microscopy (SEM) using a Zeiss SUPRA 35VP SEM microscope (Zeiss, Oberkochen, Germany).
Differential thermal calorimetry (DSC) (5 mg, aluminum pans, 20-350 °C,) of raw materials and
drug-loaded films was performed using a DSC 204 F1 Phoenix (Netzsch, Selb, Germany) instrument.
Approximately 5 mg of each sample was placed in aluminum pans and the thermograms were recorded
in the temperature range of 30-330 °C and a heating rate of 10 °C/min. Additionally, the infrared
spectra of the samples (650—4000 cm ™!, 2 em ™! resolution) were obtained using an IRPrestige-21
(Shimadzu, Kyoto, Japan) instrument. Evaluation of the samples was complemented with X-ray
diffraction (XRD) analysis on a Bruker D8-Advance diffractometer (40 kV, 40 mA, Cu Kal radiation,
0.35 s/step, Bruker, Billerica, MA, USA), and Fourier transform (FT)-Raman spectra were acquired
using a Bruker (D) FRA-106/S component attached to an EQUINOX 55 spectrometer. The excitation
source was a R510 diode-pumped Nd:YAG laser at 1064 nm, with a maximum output power
of 500 mW.

2.7. In Vitro Studies

2.7.1. Drug Release

The in vitro release experiments of DNa-loaded films were performed in SS. Printed films of
various doses were enclosed in metal grids, fixed with metal clamps, and immersed in double-walled
glass vessels containing 50 mL of SS. The vessels were kept at 37 °C under gentle agitation (100 rpm)
for 1 h. Samples of 1 mL were withdrawn at regular time intervals. The samples were centrifuged
at 4000 rcf for 20 min, filtered through a 0.45 um filter, and analyzed by HPLC. The obtained data
were analyzed in SigmaPlot v.12.5 (Systat Software, Inc., Chicago, IL, USA) with the aid of a curve fit
library (release.jfl). Two nonlinear models (Korsmeyer—Peppas and first-order kinetic) were fitted on
the release data, and the equation parameters were assessed.

2.7.2. Permeation Studies

The transport of DNa across a cellulose membrane (Dialysis Tubing, MW cut-off 14000,
Sigma-Aldrich, Steinheim, Germany) was studied in Franz diffusion cells (diffusion area 4.9 cm?,
compartment volume 20 mL). Properly treated cellulose membrane was mounted in the diffusion
cells. The acceptor and donor compartments were filled with PBS pH 7.4 and SS medium, respectively.
Permeation studies were conducted under constant stirring (110 rpm) at 37 °C. Samples of 1 mL
were withdrawn from the acceptor compartment at predetermined time intervals. The samples were
centrifuged at 4000 rcf for 20 min, filtered through a 0.45 um filter, and analyzed by HPLC. The amount
of permeated DNa was plotted against time, and the slope of the linear section of the curve determined
the steady-state flux (Jss). The apparent permeability coefficient (Papp) was determined as Papp = Jss/Cq,
where Cy4 indicates the concentration of the active in the donor compartment.
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2.8. Quantification of DNa

The samples collected from in vitro studies were analyzed in an HPLC system consisting of a
LC-10 AD VP pump, a SIL-20A HT autosampler, and a UV—-vis SPD-10A VP detector, with a Class
VP Chromatography data system v.4.3 interface (Shimadzu, Kyoto, Japan). The stationary phase
was a Discovery RP Amide C16 column (15 cm, 4.6 mm, 5 pm). The mobile phase consisted of
acetonitrile/KH,POy4 (0.025 M, pH 3) 50:50 v/v. The flow rate and injection volume were set at
1 mL/min and 10 pL, respectively. The active compound was detected at 276 nm, with a retention
time of 11 min. A linear calibration curve (R? > 0.999) of DNa was observed in the concentration range
1-100 pg/mL.

2.9. Statistical Analysis

Values of the executed studies are presented as the mean + SD. Statistical significance is indicated
by p < 0.05 values (Student’s ¢-test).

3. Results and Discussion

3.1. Solubility Studies

The solubility results of DNa in the investigated solvents are presented at Table 1 (values are
presented as mean + SD, n = 3). Solubility studies revealed that EtOH increased the solubility of the
API more than twofold compared to distilled water, whereas noticeably higher values were obtained
compared to its PEG congener. The solubility testing in PG was terminated at a content of 8 g/10 mL.
Although at this point, the solvent was capable of dissolving further amounts of the API, handling
of the solution was unfavorable due to inappropriate increase in viscosity. However, this solubility
potential showed PG to be a suitable viscosity and surface tension modifier of the ink, as well as the
overall optimal solvent for DNa.

Table 1. Solubility values of DNa investigated in various solvents.

Solvent Solubility (mg/mL)
Distilled Water 33.7+13
EtOH 743 £1.9
PEG 644 £1.38

3.2. Viscosity and Surface Tension of the Liquid Ink

Viscosity and surface tension values of inks are of paramount importance for successful printing.
Viscosity and surface tension of inks should be within certain limits: 1-30 mPa-s and 25-50 mN-m !,
respectively [6,12]. Considering the viscosity increase after addition of the API, various ratios of
drug-free solvents were studied and evaluated to select the optimal EtOH /PG ratio for the liquid
carrier with a minimum viscosity. Table 2 presents the viscosity values of 20:80, 40:60, and 50:50 (v/v)
ratios of EtOH /PG and the surface tension measurements of the optimal compositions (values are
presented as mean £ SD, n = 3). A minimum dynamic viscosity of 5.23 mPa-s was calculated in the case
of equal volumes of the two solvents. In a similar way, increasing amounts of API were added in the
solvent mixture to produce a liquid ink with appropriate viscosity. The overall optimal drug-loaded
ink was calculated at 17.64 mPa-s for EtOH/PG 50:50 (v/v) with a drug content of 227.3 mg/mL,
whereas a large content of API (375 mg/mL) produced a liquid ink with viscosity values too close
to the upper accepted limit. Surface tension of the drug-free 50:50 (v/v) sample was measured at
25.7 + 0.4 mN-m~!, increasing to 27. 94 0.5 mNm ! after addition of the APL
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Table 2. Viscosity values of the liquid inks.

EtOH:PG DNa Kinematic Density Dynamic Surface
Ratio (% ofv)  (mgmL-1)  ViScosity (g-cm—?) Viscosity Tension
& (mm?2-s—1) 8 (mPa-s) (mN-m~1)
20:80 - 1916 £ 0.03 0923+ 0.009  17.68 + 0.04 -
40:60 - 9.084004 090240010 819 + 0.03 -
50:50 - 6034007 0868+ 0.008 523+ 0.03 25.7 + 0.4
50:50 375.0 29204005 0982+ 0.008  28.67 + 0.04 -
50:50 273 1829+ 0.04 0965+ 0007 17.64+006 279405

3.3. Drug Content and Water Uptake of the Developed Films

The ink cartridges were filled with the optimal drug-loaded liquid ink to develop buccal films,
with deposition of the drug on edible sugar sheets. Increasing doses were produced by varying
the number of substrate passes through the printing device. Regarding the printing repetitions,
quantification by HPLC presented an increase in the drug content of films. In accordance with previous
findings [11], the doses were not proportionally increased, revealing possible drug losses that occur due
to the applied shearing forces on the sheets from the printer’s parts during reloading and reprinting.
Thus, the DNa content deposited on the developed films was 151 & 2 pg/cm?, 451 + 4 pg/cm?,
and 602 £+ 4 pg/ cm? (mean £ SD, n = 3), for 1, 5, and 9 repetitions of printing, respectively. The water
uptake results are illustrated in Figure 1 (values are presented as mean =+ SD, n = 3). The investigation
of film capability to absorb SS molecules was feasible for times up to 20 s, as immersion in the medium
for a longer time period resulted in deformation of the film structure. Independently of the number of
prints (p > 0.05), the water absorption capacity for all formulations was in the range of 12-15% at 10 s
and 17-19% at 20 s.

20
3% ~ 4 | print .
> .
= 5 prints
i A
8 —a— 9 prints =
©
(&)
2104
[
=
%)
0+
I J I
0 10 20

Time (sec)

Figure 1. The water uptake capacity of films with a varying number of consecutive prints.
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3.4. Physicochemical Characterization

Figure 2 shows SEM micrographs of the upper and side views of sugar-sheet formulations. In both
plain and nine-pass (9)-printed films, the material structure presented a rough surface and an extended
pore network. Similarities in the micrographs indicate the fact that the printing process did not affect
the overall morphological characteristics of the sugar-sheet matrix. At this point, it is also important
to mention that thermal inkjet printing deposits the API onto the substrate rather than dispersing it,
so the printed films uphold their mechanical properties and their stability over time [23].

The physicochemical properties of empty and drug-loaded films are illustrated in Figure 3.
Figure 3A depicts the thermograms of plain materials (sugar sheet, DNa) and printed films under
1, 5, and 9 passes. A sharp endothermic peak, corresponding to the melting point, was observed
at 295 °C for DNa, followed by an exothermic peak at 310 °C that implies decomposition of the
API [24,25]. In accordance with the composition of substrates reported by the manufacturer and
by previous studies [26,27], the plain sugar sheet presented two distinct broad endotherms in the
temperature range of 50250 °C, revealing the presence of bound water content and following the
endothermic patterns of maltodextrin and sugar monosaccharides. Similar patterns were observed
for printed formulations. In the case of one-pass-printed films, the absence of the DNa heat capacity
minimum indicated that the drug content is either under the detection limit of the device or exists in a
noncrystalline state. At 5- and 9-prints, the featured sharp endothermic peak of the API was present at
lower temperatures (250 °C) with an inverted sequence of the exotherm, indicating partial molecular
dispersion of DNa in the sugar-sheet matrix [28,29].

Figure 2. SEM micrographs of the upper and side surfaces of plain (A,B) and nine-pass (9)-printed
(C,D) sugar sheets.
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Figure 3. (A) DSC thermograms and (B) FTIR spectra of pure components and drug-loaded formulations.

The FTIR spectra of the studied materials are illustrated in Figure 3B. Similar to thermal analysis,
the distinct vibration of the substrate in the areas of 3000-3500 cm~! and 1250-600 cm~! is present
in all formulations. DNa exhibits characteristic bands at 1572-1401 cm ™!, which are associated with
the symmetric and asymmetric stretching mode of the carboxylate group [24,30,31]. This vibration
exists in both 5- and 9-printed films, indicating the total or partial presence of the APl in a crystalline
state. In the spectrum of the 1-printed film, no characteristic bands of DNa are observed, so it was
hypothesized that the drug content is either under the detection limit of the device or molecularly
dissolved in the substrate matrix.

The X-ray diffractograms of the raw materials and suggested formulations are shown in
Figure 4. Characteristic sharp peaks at 23°, 24°, 26°, and 27° were observed in the pattern of DNa.
Similar diffraction profiles were obtained from the formulated films. Herein, the solvation capacity of
PG for DNa is key to the decreasing intensity under multiple prints. The more the layers were printed,
the more PG was deposited onto the substrate and consequently absorbed into the matrix, maintaining
a large amount of DNa in the amorphous state (considering the high solvation capacity of PG and
evaporation of EtOH), while partial crystallinity of the API was observed. On the contrary, although
the 1-printed film contains the minimum amount of drug, the diffractogram exhibits higher intensity
and thus a higher fraction of APl in a crystalline state, due to the minimum amount of PG as well.

9 prints

i

T r
20 25 30 35 40 45 50

2 Theta (degrees)

Intensity (a.u.)

Figure 4. X-ray diffractograms of pure components and formulations.



Materials 2018, 11, 864 9of 14

The FT-Raman spectra of pure DNa; sugar sheets; and films printed with 1, 5, and 9 passes are
shown in Figure 5. DNa exhibits characteristic peaks at 1073 and 1046 cm~!, which are assigned to
breathing vibrations of dichlorophenyl (ring 1) and phenylacetate (ring 2), respectively. The bands
present at 1584 and 1602 cm ™! are attributed to stretching vibrations of ring 1 and ring 2, respectively.
The bands located at 1235, 1250, and 1281 cm ! are associated with rocking vibrations of the CH
groups of both rings. The peaks at 2929, 2961, 2971, and 3054 cm ! are due to CH stretching vibrations
in ring 2, while the peak at 3068 cm ! corresponds to the respective vibration in ring 1 [32]. The peaks
at 1584, 1602, and 3068 cm ! that can be clearly distinguished on the printed substrates indicated the
presence of DNa. The sugar sheet is composed of many ingredients, especially sugars, polysaccharides,
emulsifiers, and pigments. Furthermore, since sugars can exist in anhydrous or hydrated states or
even form polymorphs, the interpretation of the corresponding FT-Raman spectrum is very complex.
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Intensity (a.u.)
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©
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Figure 5. FT-Raman spectra in the range of 250-1800 cm ™1 (A) and 2500-3500 cm ™~ (B) of DNa; plain
sugar sheet (0); and films printed with 1, 5, and 9 passes.
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3.5. In Vitro Release

Drug release was monitored in SS for 1 h. Figure 6 presents the typical HPLC spectra of DNa
calibration standard analysis. Similar release profiles were obtained for both 1-, 5-, and 9-printed films,
as depicted in Figure 7 (values are presented as mean =+ SD, n = 3). All formulations released a large
amount of the drug within 5 min: 85%, 97%, and 98%, in the order of increasing number of times the
layer was printed. Almost all the amount of API was identified as being released within 10 min, and the
profiles plateaued for the rest of the time period of the study. Negligible differences of the percentage
of release values for each formulation in every time point were seen to be insignificant (p > 0.05).
Assessment of fitting the implemented models is presented in Table 3. In all cases, the first-order
kinetic model was optimally fit on the release profiles of the developed formulations, compared to the
Korsmeyer-Peppas model, with R? values in the range of 0.9714-0.9978 and 0.8108-0.9909, respectively.

150 A 150
2,500,000 1
e
100 2,000,000 L 100
$ 1,500,000 ~ m
m 1,500,000
v s e Intercept : v
E"-“UU’”““' /_/ 2,851.0226 s
50 -
500,000 1 - Slope :
0. 23,074.3291
25 50 75 100 R? : 0.99998
0 concentration (ug/mL) o
v
0 Minutes 10 13
150 B 150
100 100
m m
v Vv
50 20
0 0
0 Minutes 10 15

Figure 6. (A) HPLC spectrum of a representative diclofenac sodium calibration standard: concentration
100 pg/mL and fitting parameters of the respective calibration curve; (B) HPLC spectrum of a
representative sample analysis during release experiments.
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Figure 7. Release profiles of the developed formulations in simulated saliva.

T T
20

30 40

Time (min)

Table 3. Curve fitting parameters.

) First Order Model Korsmeyer—-Peppas Model
Formulation
k R2 k n R2
1-printed 1.687 0.9952 88.20 0.0537 0.9909
5-printed 0.826 0.9978 74.26 0.1112 0.9364
9-printed 0.387 0.9714 52.08 0.2115 0.9108

3.6. Drug Permeation

11 0f 14

The in vitro permeation profiles of 1-, 5-, and 9-printed films are illustrated in Figure 8.
In accordance with the drug load of each film, a significant increase of the cumulative amount that
permeated the cellulose membrane was observed at each time point of the study, corresponding to the
increasing printing-pass order of the films. In detail, the cumulative amount of the active transported
through the membrane after 24 h from the 9-printed film was 1.5-fold and 2-fold greater than the
measured values of the 5- and 1-printed films, respectively (p < 0.05). Table 4 shows the permeation
parameters of the study. Variations of the drug content in the donor compartment resulted in different
concentration gradients through the cellulose membrane. Thus, significant increases on the calculated
steady-state flux and apparent permeability coefficient of each formulation (p < 0.05) were observed,
with the latter presenting a gradual increase from 6.672 cm-h~! to 12.386 cm-h~! and finally 14.371
cm-h~1 for the 1-, 5-, and 9-printed films, respectively.

Table 4. Permeation parameters for multiple printed films.

Printed Layers

Jss (ug-cm—2-h~1) P-10~% (cm-h™1)

1
5
9

0.806 £ 0.014
4.469 + 0.193
6.921 £ 0.248

6.672 £ 0.142
12.386 £ 0.655
14.371 £ 0.631




Materials 2018, 11, 864 12 of 14

350

300

250

200

Cumulative amount permeated (ug/cm?)

150 l/ ,
[ P2 —o— 1 print
T / Sy —e— 9 prints
100—1 F 4 5 prints
o
50
! T L T Y T Y T T T L T
0 4 8 12 16 20 24

Time (h)
Figure 8. Cumulative transport of DNa across the cellulose membrane.

4. Conclusions

An edible buccal film (sugar sheet-based) containing the nonsteroidal anti-inflammatory drug
diclofenac sodium has been developed by means of 2D printing technology. This technique offers a
new and relatively safe way for handling potent drugs as well as creating sophisticated model delivery
systems. Formulations made of multiple layers, coating materials, or APIs can be easily manufactured
by 2D printing. Furthermore, substrates used in inkjet printing offer stability and adhesive properties
enhancing the bioavailability of the drug [7].

Solubility studies showed that the greatest solubility of the API was achieved in mixtures of
EtOH/PG, fulfilling at the same time the ideal rheological properties of liquid inks. Ethanol is
evaporated after the printing procedure, and PG is a nontoxic, safe, and low-cost solvent [33] in which
DNa is dissolved freely, offering the advantage of adjusting the dose and achieving very high or very
low concentrations.

Diclofenac sodium is available on the market in certain doses. However, having the drug product
predisposed to inkjet printing expands the variety of dosage forms, simultaneously improving the
level of patient care in the context of personalized dosing [4]. Increasing doses of the active were
produced by varying the number of substrate passes through the printing device. Physicochemical
characterization of the films revealed that the API shifts to an amorphous state by increasing the
number of passes through the printer.

A main concern in buccal delivery is the residence time of the formulation in the oral cavity,
as saliva flow, chewing, swallowing, and speech may cause shearing in the oral cavity and obstruct
the adhesion to the oral mucosa, resulting in low or no effectiveness to the patient. Burst release of
the drug improves the kinetic profile of the API, as it is rapidly diffused from its carrier and can be
easily absorbed from the mucus [34]. The in vitro release studies have shown a rapid release of the
active within 10 min, whereas in vitro permeation studies revealed an increased apparent permeability
versus the number of printed layers.



Materials 2018, 11, 864 13 of 14

Author Contributions: D.G.F. and G.K.E. conceived and designed the experiments; G.K.E., PK.M., N.B. performed
the experiments; G.K.E and PK.M. analyzed the data; G.K.E. and D.G.F. wrote the paper.

Acknowledgments: The authors wish to thank Rontis S.A. Hellas for kindly supplying Diclofenac sodium and
Spyros Yannopoulos and Theodora Romiou from FORTH/ICEHT for the FT-Raman measurements.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Alomari, M.; Mohamed, EH.; Basit, A.W.; Gaisford, S. Personalised dosing: Printing a dose of one’s own
medicine. Int. . Pharm. 2015, 494, 568-577. [CrossRef] [PubMed]

Magdassi, S. The Chemistry of Inkjet Inks; World Scientific Publishers: Singapore, 2010; Volume 16,
ISBN 9789812818218.

Dudley, J.T.; Listgarten, J.; Stegle, O.; Brenner, S.E.; Parts, L. Personalized medicine: From genotypes,
molecular phenotypes and the quantified self, towrds improved medicine. In Biocomputing 2015;
World Scientific: Singapore, 2014; pp. 342-346.

Preis, M.; Breitkreutz, J.; Sandler, N. Perspective: Concepts of printing technologies for oral film formulations.
Int. J. Pharm. 2015, 494, 578-584. [CrossRef] [PubMed]

Kolakovic, R.; Viitala, T.; Ihalainen, P.; Genina, N.; Peltonen, J.; Sandler, N. Printing technologies in fabrication
of drug delivery systems. Expert Opin. Drug Deliv. 2013, 10, 1711-1723. [CrossRef] [PubMed]

Varan, C.; Wickstrom, H.; Sandler, N.; Aktas, Y.; Bilensoy, E. Inkjet printing of antiviral PCL nanoparticles and
anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration. Int. J. Pharm.
2017, 531, 701-713. [CrossRef] [PubMed]

Daly, R.; Harrington, T.S.; Martin, G.D.; Hutchings, .M. Inkjet printing for pharmaceutics—A review of
research and manufacturing. Int. J. Pharm. 2015, 494, 554-567. [CrossRef] [PubMed]

Meléndez, P.A.; Kane, KM.; Ashvar, C.S.; Albrecht, M.; Smith, P.A. Thermal Inkjet Application in the
Preparation of Oral Dosage Forms: Dispensing of Prednisolone Solutions and Polymorphic Characterization
by Solid-State Spectroscopic Techniques. J. Pharm. Sci. 2008, 97, 2619-2636. [CrossRef] [PubMed]

Pardeike, J.; Strohmeier, D.M.; Schrodl, N.; Voura, C.; Gruber, M.; Khinast, ].G.; Zimmer, A. Nanosuspensions
as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int. J. Pharm.
2011, 420, 93-100. [CrossRef] [PubMed]

Scoutaris, N.; Alexander, M.R.; Gellert, PR.; Roberts, C.J. Inkjet printing as a novel medicine formulation
technique. J. Control. Release 2011, 156, 179-185. [CrossRef] [PubMed]

Buanz, A.B.M.; Saunders, M.H.; Basit, A.W.; Gaisford, S. Preparation of Personalized-dose Salbutamol
Sulphate Oral Films with Thermal Ink-Jet Printing. Pharm. Res. 2011, 28, 2386-2392. [CrossRef] [PubMed]
Genina, N.; Fors, D.; Palo, M.; Peltonen, J.; Sandler, N. Behavior of printable formulations of loperamide and
caffeine on different substrates—Effect of print density in inkjet printing. Int. J. Pharm. 2013, 453, 488—497.
[CrossRef] [PubMed]

Genina, N.; Janflen, E.M.; Breitenbach, A.; Breitkreutz, J.; Sandler, N. Evaluation of different substrates for
inkjet printing of rasagiline mesylate. Eur. J. Pharm. Biopharm. 2013, 85, 1075-1083. [CrossRef] [PubMed]
Vakili, H.; Wickstrom, H.; Desai, D.; Preis, M.; Sandler, N. Application of a handheld NIR spectrometer
in prediction of drug content in inkjet printed orodispersible formulations containing prednisolone and
levothyroxine. Int. |. Pharm. 2017, 524, 414-423. [CrossRef] [PubMed]

Wickstrom, H.; Broos, A.; Nyman, J.O.; Kortesméki, E.; Eklund, P; de Beer, T.; Preis, M.; Sandler, N.
Handheld colorimeter as quality control tool for inkjet printed flexible levothyroxine doses for pediatric use.
Int. ]. Pharm. 2018, 536, 508-509. [CrossRef]

Kollamaram, G.; Hopkins, S.C.; Glowacki, B.A.; Croker, D.M.; Walker, G.M. Inkjet printing of paracetamol
and indomethacin using electromagnetic technology: Rheological compatibility and polymorphic selectivity.
Eur. J. Pharm. Sci. 2018, 115, 248-257. [CrossRef] [PubMed]

Vuddanda, P.R.; Alomari, M.; Dodoo, C.C.; Trenfield, S.J.; Velaga, S.; Basit, A.W.; Gaisford, S.
Personalisation of warfarin therapy using thermal ink-jet printing. Eur. ]. Pharm. Sci. 2018, 117, 80-87.
[CrossRef] [PubMed]

Edinger, M.; Bar-Shalom, D.; Sandler, N.; Rantanen, J.; Genina, N. QR encoded smart oral dosage forms by
inkjet printing. Int. |. Pharm. 2018, 536, 138-145. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.ijpharm.2014.12.006
http://www.ncbi.nlm.nih.gov/pubmed/25498157
http://dx.doi.org/10.1016/j.ijpharm.2015.02.032
http://www.ncbi.nlm.nih.gov/pubmed/25683143
http://dx.doi.org/10.1517/17425247.2013.859134
http://www.ncbi.nlm.nih.gov/pubmed/24256326
http://dx.doi.org/10.1016/j.ijpharm.2017.04.036
http://www.ncbi.nlm.nih.gov/pubmed/28432016
http://dx.doi.org/10.1016/j.ijpharm.2015.03.017
http://www.ncbi.nlm.nih.gov/pubmed/25772419
http://dx.doi.org/10.1002/jps.21189
http://www.ncbi.nlm.nih.gov/pubmed/17876767
http://dx.doi.org/10.1016/j.ijpharm.2011.08.033
http://www.ncbi.nlm.nih.gov/pubmed/21889582
http://dx.doi.org/10.1016/j.jconrel.2011.07.033
http://www.ncbi.nlm.nih.gov/pubmed/21827800
http://dx.doi.org/10.1007/s11095-011-0450-5
http://www.ncbi.nlm.nih.gov/pubmed/21544688
http://dx.doi.org/10.1016/j.ijpharm.2013.06.003
http://www.ncbi.nlm.nih.gov/pubmed/23769992
http://dx.doi.org/10.1016/j.ejpb.2013.03.017
http://www.ncbi.nlm.nih.gov/pubmed/23563101
http://dx.doi.org/10.1016/j.ijpharm.2017.04.014
http://www.ncbi.nlm.nih.gov/pubmed/28396245
http://dx.doi.org/10.1016/j.ijpharm.2017.08.036
http://dx.doi.org/10.1016/j.ejps.2018.01.036
http://www.ncbi.nlm.nih.gov/pubmed/29366961
http://dx.doi.org/10.1016/j.ejps.2018.02.002
http://www.ncbi.nlm.nih.gov/pubmed/29414676
http://dx.doi.org/10.1016/j.ijpharm.2017.11.052
http://www.ncbi.nlm.nih.gov/pubmed/29183858

Materials 2018, 11, 864 14 of 14

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Chuasuwan, B.; Binjesoh, V.; Polli, ].E.; Zhang, H.; Amidon, G.L.; Junginger, H.E.; Midha, K.K.; Shah, V.P;
Stavchansky, S.; Dressman, J.B.; et al. Biowaiver Monographs for Immediate Release Solid Oral Dosage
Forms: Diclofenac Sodium and Diclofenac Potassium. J. Pharm. Sci. 2009, 98, 1206-1219. [CrossRef]
[PubMed]

Calixto, G.; Garcia, M.; Cilli, E.; Chiavacci, L.; Chorilli, M. Design and Characterization of a Novel p1025
Peptide-Loaded Liquid Crystalline System for the Treatment of Dental Caries. Molecules 2016, 21, 158.
[CrossRef] [PubMed]

Khan, S.; Boateng, J. Effects of Cyclodextrins ( and y) and I-Arginine on Stability and Functional Properties
of Mucoadhesive Buccal Films Loaded with Omeprazole for Pediatric Patients. Polymers 2018, 10, 157.
[CrossRef]

Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated Biological Fluids with Possible Application in
Dissolution Testing. Dissolut. Technol. 2011, 18, 15-28. [CrossRef]

Buanz, A.B.M.; Belaunde, C.C.; Soutari, N.; Tuleu, C.; Gul, M.O.; Gaisford, S. Ink-jet printing versus solvent
casting to prepare oral films: Effect on mechanical properties and physical stability. Int. J. Pharm. 2015, 494,
611-618. [CrossRef] [PubMed]

Yazdi, A.K,; Smyth, H.D.C. Hollow crystalline straws of diclofenac for high-dose and carrier-free dry powder
inhaler formulations. Int. J. Pharm. 2016, 502, 170-180. [CrossRef] [PubMed]

Balogh, A.; Horvathova, T.; Fulop, Z.; Loftsson, T.; Harasztos, A.H.; Marosi, G.; Nagy, Z.K. Electroblowing
and electrospinning of fibrous diclofenac sodium-cyclodextrin complex-based reconstitution injection.
J. Drug Deliv. Sci. Technol. 2015, 26, 28-34. [CrossRef]

Elnaggar, Y.S.R.; El-Massik, M.A.; Abdallah, O.Y.; Ebian, A.E.R. Maltodextrin: A Novel Excipient Used
in Sugar-Based Orally Disintegrating Tablets and Phase Transition Process. AAPS PharmSciTech 2010, 11,
645-651. [CrossRef] [PubMed]

Ruiz-Cabrera, M.A.; Schmidt, S.J. Determination of glass transition temperatures during cooling and heating
of low-moisture amorphous sugar mixtures. J. Food Eng. 2015, 146, 36—43. [CrossRef]

AL-Kahtani, A.A.; Sherigara, B.S. Controlled release of diclofenac sodium through acrylamide grafted
hydroxyethyl cellulose and sodium alginate. Carbohydr. Polym. 2014, 104, 151-157. [CrossRef] [PubMed]
Barzegar-Jalali, M.; Alaei-Beirami, M.; Javadzadeh, Y.; Mohammadi, G.; Hamidi, A.; Andalib, S.; Adibkia, K.
Comparison of physicochemical characteristics and drug release of diclofenac sodium-eudragit® RS100
nanoparticles and solid dispersions. Powder Technol. 2012, 219, 211-216. [CrossRef]

Bukara, K.; Drvenica, I; Ili¢, V,; Stanci¢, A.; Misi¢, D.; Vasié, B.; Gaji¢, R.; Vuceti¢, D.; Kiekens, F.; Bugarski, B.
Comparative studies on osmosis based encapsulation of sodium diclofenac in porcine and outdated human
erythrocyte ghosts. J. Biotechnol. 2016, 240, 14-22. [CrossRef] [PubMed]

Gaitano, R.O.; Calvo, N.L.; Narda, G.E.; Kaufman, T.S.; Maggio, R.M.; Brusau, E.V. Preparation and Physical
Characterization of a Diclofenac-Ranitidine Co-precipitate for Improving the Dissolution of Diclofenac.
J. Pharm. Sci. 2016, 105, 1258-1268. [CrossRef] [PubMed]

Iliescu, T.; Baia, M.; Miclaus, V. A Raman spectroscopic study of the diclofenac sodium—p-cyclodextrin
interaction. Eur. J. Pharm. Sci. 2004, 22, 487-495. [CrossRef] [PubMed]

Shayanfar, A.; Acree, W.E.; Jouyban, A. Solubility of Lamotrigine, Diazepam, Clonazepam, and Phenobarbital
in Propylene Glycol + Water Mixtures at 298.15 K. J. Chem. Eng. Data 2009, 54, 1153-1157. [CrossRef]
Fonseca-Santos, B.; Chorilli, M. An overview of polymeric dosage forms in buccal drug delivery: State of
art, design of formulations and their in vivo performance evaluation. Mater. Sci. Eng. C 2018, 86, 129-143.
[CrossRef] [PubMed]

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1002/jps.21525
http://www.ncbi.nlm.nih.gov/pubmed/18752289
http://dx.doi.org/10.3390/molecules21020158
http://www.ncbi.nlm.nih.gov/pubmed/26828470
http://dx.doi.org/10.3390/polym10020157
http://dx.doi.org/10.14227/DT180311P15
http://dx.doi.org/10.1016/j.ijpharm.2014.12.032
http://www.ncbi.nlm.nih.gov/pubmed/25526674
http://dx.doi.org/10.1016/j.ijpharm.2016.02.030
http://www.ncbi.nlm.nih.gov/pubmed/26911418
http://dx.doi.org/10.1016/j.jddst.2015.02.003
http://dx.doi.org/10.1208/s12249-010-9423-y
http://www.ncbi.nlm.nih.gov/pubmed/20405257
http://dx.doi.org/10.1016/j.jfoodeng.2014.08.023
http://dx.doi.org/10.1016/j.carbpol.2014.01.018
http://www.ncbi.nlm.nih.gov/pubmed/24607172
http://dx.doi.org/10.1016/j.powtec.2011.12.046
http://dx.doi.org/10.1016/j.jbiotec.2016.10.017
http://www.ncbi.nlm.nih.gov/pubmed/27773756
http://dx.doi.org/10.1016/j.xphs.2016.01.001
http://www.ncbi.nlm.nih.gov/pubmed/26886308
http://dx.doi.org/10.1016/j.ejps.2004.05.003
http://www.ncbi.nlm.nih.gov/pubmed/15265519
http://dx.doi.org/10.1021/je800931z
http://dx.doi.org/10.1016/j.msec.2017.12.022
http://www.ncbi.nlm.nih.gov/pubmed/29525088
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Solubility Studies 
	Development and Printability of Inks 
	Printing of Buccal Films 
	Drug Loading and Water Uptake 
	Physicochemical Characterization 
	In Vitro Studies 
	Drug Release 
	Permeation Studies 

	Quantification of DNa 
	Statistical Analysis 

	Results and Discussion 
	Solubility Studies 
	Viscosity and Surface Tension of the Liquid Ink 
	Drug Content and Water Uptake of the Developed Films 
	Physicochemical Characterization 
	In Vitro Release 
	Drug Permeation 

	Conclusions 
	References

