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Abstract: Half-Heusler (HH) compounds, with a valence electron count of 8 or 18, have gained
popularity as promising high-temperature thermoelectric (TE) materials due to their excellent
electrical properties, robust mechanical capabilities, and good high-temperature thermal stability.
With the help of first-principles calculations, great progress has been made in half-Heusler
thermoelectric materials. In this review, we summarize some representative theoretical work on
band structures and transport properties of HH compounds. We introduce how basic band-structure
calculations are used to investigate the atomic disorder in n-type MNiSb (M = Ti, Zr, Hf) compounds
and guide the band engineering to enhance TE performance in p-type FeRSb (R = V, Nb) based
systems. The calculations on electrical transport properties, especially the scattering time, and
lattice thermal conductivities are also demonstrated. The outlook for future research directions of
first-principles calculations on HH TE materials is also discussed.
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1. Introduction

Thermoelectric (TE) materials have been attracting intensive attention due to their ability of
directly converting heat into electricity, and can play an important role in improving energy efficiency.
These environmentally friendly and extremely reliable solid state devices have no moving parts,
hazardous liquids, or greenhouse emissions. A key challenge is to improve the TE conversion efficiency
in order to expand the role of TE materials and, in turn, enable new practical applications. The efficiency
of TE materials depends on the dimensionless figure of merit zT = α2σT/(κe + κL), where α, σ, T, κe,
and κL are the Seebeck coefficient, electrical conductivity, absolute temperature, and electronic and
lattice contributions to the total thermal conductivity κ, respectively [1].

Among those quantities, α, σ, and κe are related to the electronic structure of the material.
The three parameters are intercorrelated and cannot be optimized independently. For instance,
increasing α is usually accompanied by a decreasing σ; an increase in σ concomitantly leads to
an increase in κe via the Wiedemann-Franz law κe = LσT (L is the Lorenz number). One possible
way to optimize zT is to maximize the power factor (α2σ), which can be achieved by the band
engineering [2]. The band structure is one of the basic characteristics of materials, as well as the
vital tool in understanding, optimizing, and even designing novel functional materials [3]. Once the
electronic structure calculation is done, the electrical transport properties can be effectively tuned
according to the band structure–related parameters. Additionally, new TE materials with high power
factors can also be screened using the band structures combined with Boltzmann transport theory.
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For TE materials, the main characters of the band are reflected by the effective mass [4].
In degenerate semiconductors, α under parabolic band approximation is a function of the density of
states (DOS) effective mass m* [5]. According to the formula m* = Nv

2/3mb
* (Nv is the band degeneracy

and mb
* is the band effective mass), increasing both Nv and mb

* contributes to a enhanced m* and,
consequently, α [6]. However, a high mb

* always leads to a low carrier mobility µ due to µ ∝ 1/mb
*.

It has been proved that increasing Nv is beneficial to large m* without deterioration of µ, and is an
efficient strategy to improve TE performance for many materials [7–10].

The lattice thermal conductivity κL, related to its phonon vibration, is more or less independent
of the electronic transport properties. However, defects that reduce κL, such as forming solid solutions
or making composite structures, are likely to reduce µ [4]. Nevertheless, the differences between the
mean free paths of phonons and electrons open the window for nanostructuring technology at a length
scale that scatters phonons, but not electrons [11]. Alternatively, seeking promising TE materials with
low thermal conductivity attracts much attention [12–14]. Only phonon-phonon Umklapp scattering
is considered, κL ∝ MV1/3θD

3/γ2 (M is the average mass per atom, V is the average atomic volume,
θD is the Debye temperature and γ is the Grüneisen parameter) [15]. Accordingly, low M, V, θD, and
high γ contribute a low κL. Starting with this viewpoint, many good TE materials with intrinsically
low κL have been reported [16–18].

Half-Heusler (HH) compounds are ternary intermetallics with a general formula ABX, where A
and B are usually transition metals and X is a main group element [19], as shown in Figure 1a. A typical
HH compound takes the form of the MgAgAs structure type with space group F43m. It consists of
three filled interpenetrating face-centered cubic (fcc) sublattices and one vacant fcc sublattice [20].
The Heusler structure with formula AB2X is obtained by filling the vacant sublattice with B atoms,
as shown in Figure 1b. The most electronegative element X and the most electropositive element A
usually form the NaCl sublattice with octahedral coordination, leaving the all-etrahedral site to the
intermediate electronegative element B [21]. The properties of HH compounds depend strongly on the
valence electron count (VEC) of the constituent elements. HH compounds, with VEC = 8 or 18, are
usually semiconductors with excellent potential as TE materials.
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As is known, the fabrication of single-phase HH compounds is difficult, which is mainly due
to the distinct differences in the specific gravity and melting point of the constituent elements [22].
Note that even if the samples are single-phase, atomic antisite disorders in n-type MNiSn (M = Ti, Zr,
Hf) HH compounds have profound effects on TE properties [23,24]. In this regard, first-principles
calculations have played an important role in providing a theoretical basis for observed experimental
phenomena. The earliest report about structure disorder was Zr/Sn antisite defect in ZrNiSn [23].
The change in the content of the Zr/Sn disorder resulted in a significant change in the band gap and TE
properties [25]. Recently, combined with experimental studies, band structure calculations showed that
the effects on the band gap and TE properties are mainly due to Ni/vacancy disorder [26,27], instead of
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Zr/Sn antisite. In addition, band structure calculations enable the design of HH-based TE materials
through band engineering. Recently, p-type FeRSb (R = V, Nb) HH compounds are expected to exhibit
attractive TE performance [28]. A high zT has been obtained in these heavy-band semiconductors via
a band engineering approach [29].

It is also worth mentioning that first-principles calculations have provided the guideline for
developing new promising HH-based TE materials. Up to now, experimental investigations on HH
compounds have mainly focused on n-type MNiSn [30–34]. There is only a very small fraction of
studies on other HH systems [35,36]. Actually, more than 100 HH compounds can be found in the
Inorganic Crystal Structure Database (ICSD) [37]. Even using the criterion of VEC = 18, there are still
more than 30 HH compounds left [38]. There is no denying that the process of discovering new TE
materials is limited by the high cost and the time-consuming procedures of experiments. The situation
is more severe for HH compounds due to the difficulty in preparing single-phase samples. Recently,
ab initio-based calculations and high-throughput material screening based on some models bring
up an avenue of material discovery. Beneficial from the simple crystal structures of HH compounds,
the computer-aided material design is manipulable, computationally.

In this paper, we focus on the recent significant progress in theoretical investigation on HH-based
TE materials. In Section 2, we describe how basic band-structure calculations are used to understand
the transport properties of HH compounds and provide the guideline for developing new promising
HH compounds. In Section 3, we introduce some different treatments on relaxation time in calculating
electronic transport properties of HH compounds. In Section 4, we present some high-throughput
calculations on lattice thermal conductivities of HH compounds.

2. Manipulating the Band Structures of HH Compounds

Band structures, which reside in reciprocal space due to the periodicity of the lattice, directly
determine the electrical transport properties of materials. The accurate band structures are beneficial
for understanding the underlying transport physics and designing new TE materials. Therefore,
it is crucial to establish the connections between the electrical transport properties in real space and
the band structures in reciprocal space. The calculation of band structures became accessible with
the development of density functional theory (DFT) [39,40], which is usually used in the field of
TE materials.

2.1. Band Structures and Atomic Disorders in N-Type MNiSn

In 1995, Öğüt and Rabe [41] calculated the band structures of MNiSn alloys using DFT methods.
The indirect band gaps of ~0.5 eV were found between the Γ and X points, which are larger than
experimental ones (0.12, 0.19 and 0.22 eV for TiNiSn, ZrNiSn, and HfNiSn, respectively) [24]. Öğüt and
Rabe ascribed this difference to the Zr/Sn antisite disorder, which was firstly reported experimentally
in the ZrNiSn by Aleiv et al. [23]. The calculations for antisite defects, which were carried out using
virtual crystal approximation (VCA), showed that the band gap would be reduced by increasing the
content of Zr/Sn antisite defects until going to zero with ≈15% Zr/Sn disorder [41]. Qiu et al. also
reported the decreased band gap of ZrNiSn with the increase of antisite defects concentrations using
direct ab initio calculations [25]. By changing the degree of antisite defects with different annealing
periods, the TE properties can also be influenced greatly.

However, Larson et al. suggested that antisite defects of Ni atoms occupying the vacant sites
also exist in MNiSn compounds [42]. An analysis of the energetics of antisite defects showed that
the Ni/vacancy disorder would cause a smaller energy increase above the perfect lattice structure,
compared to the Zr/Sn antisite disorder. The N-related disorder was also proved experimentally by
the in-gap electronic states close to the Fermi energy due to the existence of two types of Ni atoms
with different electron occupancies [43,44]. Xie et al. found that there was no evidence to support
the existence of Zr/Sn antisite defects in the single-phase ZrNiSn prepared by levitation melting
and not subjecting to annealing. However, the excess charge density in Fourier map and Rietveld
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refinement analysis indicated the existence of a fractional occupancy of Ni on the vacant 4b site [26].
Douglas et al. [45] and Do et al. [27] suggested that excess Ni atoms in MNiSn compounds tend to
stay close to each other to form nanoclusters and showed the in-gap states from interstitial Ni near
the conduction band edge in the calculated band structures (Figure 2). The band gap of TiNi1+xSn is
reduced from 0.45 to 0.12 eV due to the Ni interstitial, which is consistent with the experimental gap of
0.12 eV for TiNiSn [24]. Recently, Zeier et al. ascribed the in-gap band to that Ni vacancies or excess
Ni should be largely electron neutral (effectively Ni0 by assigning bonding (NiSn)4− orbitals to Sn as
Sn4−). In this case, non-stoichiometry in the form of ZrNi1+xSn may be expected to not move the Fermi
level outside the band gap [46].
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permission [46]. Copyright 2016, Nature Publishing Group.

Here we have to point out that the band structure calculations by Douglas et al. [45] and
Do et al. [27] were done using the GGA-PBE density functional, which is known to underestimate the
band gaps of semiconductors. For example, the calculated band gaps of TiNiSn with the GGA-PBE
density functional, HSE06 density functional and the GW0 method are 0.45, 0.62, and 0.75 eV,
respectively [47]. The differences are mainly due to that the observed relative positions of the d
levels in the transition metal atoms vary among the different methods. However, considering that
calculations using the GW0 method are very computationally expensive for defect calculations due to
the large supercells, more precise and computationally-tractable methods should be applied to the
MNi1+xSn systems.

2.2. Performance Optimization of P-Type Heavy-Band HH Using Band Engineering

FeRSb (R = V, Nb)-based HH compounds, with abundantly available constituent elements, have
attracted signfiicant attention due to a high Seebeck coefficient (approximately –200 µV K−1 at 300 K)
and a large power factor (4.5 × 10−3 W m−1 K−2 at 300 K) [48]. However, due to a relatively high
lattice thermal conductivity (10 W m−1 K−1 at 300 K), earlier studies have been focused on improving
the TE performance of n-type FeRSb by alloying [49,50] or nano-structuring [51], but only a marginal
improvement in zT (≈0.33 at 650 K) was obtained.
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Recently, band structure calculations showed that the characteristic of the valence band shows
great disparity from that of conduction band in FeRSb (Figure 3). The conduction band minimum of
FeRSb locates at point X with a band degeneracy of Nv = 3. In comparison, the valence band maximum
of FeRSb lies in point L with a higher band degeneracy of Nv = 8 [52,53], which is beneficial for TE
performance as a large DOS effective mass m* is desired for good TE materials [2,7]. According to
the formula m* = Nv

2/3mb
* and µ = 1/mb

*5/2, large Nv is beneficial for large m* without deterioration
of µ. Therefore, increasing Nv is an effective way to improve TE performance of a material without
deteriorated side effects. TE properties of p-type Ti-doped FeV0.6Nb0.4Sb solid solutions were first
investigated [28]. Combined with the high Nv of 8 and heavy mb

* of 2.5 me, a high m* of 10 me was
obtained in the p–type Fe(V0.6Nb0.4)1−xTixSb compounds, which resulted in a high Seebeck coefficient.
Although the heavy mb

* led to a low µ, the low deformation potential and alloy scattering potential
were both beneficial for a reasonably high mobility in this system. Therefore, a high power factor of
about 3 × 10−3 W m−1 K−2 was available at 900 K for Fe(V0.6Nb0.4)0.8Ti0.2Sb. Mainly due to the high
power factor, in addition to the relatively low lattice thermal conductivity among the FeRSb system,
a high zT of ≈0.8 at 900 K was achieved.
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It is obvious that the heavy mb
* leads to a low µ in Fe(V0.6Nb0.4)1−xTixSb. Based on the band

structures, the mb
* of 0.16 me for p-type FeNbSb is lower than that of 0.25 me for p-type FeVSb,

indicating that increasing Nb content may lead to a lower mb
* and, hence, higher µ (Figure 4a).

Moreover, the mb
* decrease can lower optimal carrier concentration [54]. The solubility limit of Ti in

Fe(V0.6Nb0.4)Sb was about 20%. The optimized power factor may be realized within the solubility limit
of Ti by decreasing the optimal carrier concentration (Figure 4b). The band gap of 0.54 eV for FeNbSb is
also larger than that of 0.34 eV for FeVSb, meaning that higher Nb content in Fe(V0.6Nb0.4)1−xTixSb will
broaden the band gap and consequently increases the temperature at which bipolar diffusion begins to
diminish TE performance. The enhanced carrier mobility and reduced optimal carrier concentration
result in the optimal power factor. The power factor of p-type FeNb0.8Ti0.2Sb was about 4.5× 10−3 W
m−1 K−2 at 1100 K, ~50% higher than the Fe(V0.6Nb0.4)1−xTixSb solid solutions. A higher zT value of
1.1 at 1100 K was achieved for FeNb0.8Ti0.2Sb due to the enhanced power factor [29].

Although the valence band of FeNbSb is sharper than that of FeVSb, the m* of 6.9 me for
FeNb1−xTixSb is also higher than that of 0.3 me and 1.3 me for conventional PbTe-based and
Bi2Te3-based materials, respectively [54,55]. The large mb

* in these Fe-containing p-type TE materials is
due to the spatially localized nature of transition metal 3d orbitals [56]. It has been reported that p-type
skutterudites containing 4d transition metal, such as Ru, possess low mb

* at the valence band [57],
which is beneficial for high carrier mobility. Therefore, Ru-based HH alloys may also be promising TE
materials with low band effective mass. The calculated band structures showed that the valence bands
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of Ru-based HH alloys are lighter than that of Fe-based compounds (Figure 5a) [58]. The power factors
of p-type RuNbSb and RuTaSb are about 100% higher than that of p-type FeNbSb due to the lower mb

*

and hence higher µ (Figure 5b). Moreover, the lattice thermal conductivities of RuNbSb and RuTaSb
are also lower than FeNbSb, exhibiting high potential for high-temperature TE power generation.
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Actually, filled skuterudites and HH compounds, usually containing transition metal elements
with localized d states, are heavy-band materials due to the flat valence band maximum or conduction
band minimum [38,56]. Typically, the m* of these heavy-band materials are in the range of 2 me–10
me [59] (Figure 6a). Accordingly, higher carrier concentrations, which demands for higher contents of
dopants, are necessary to optimize the power factors. Even though these heavy-band TE materials
have low µ, their optimal power factors are 2–3 times higher than that the state-of-the-art light-band
PbTe (Figure 6b). Combined with the strong point-defect phonon scattering due to a high content of
dopant, high power factors make these heavy-band TEs promising for power generation. Therefore,
the tradeoff between the band effective mass and carrier mobility is crucial to the TE performance of
these heavy-band semiconductors.
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3. Electronic Transport Properties of HH Compounds

The Boltzmann transport theory is usually an appropriate description for electrical transport in TE
materials, due to their relatively high operating temperatures and macroscopic sizes of the samples [60].
The electronic transport coefficients of TE materials (α, σ, and κe) are ultimately determined by the
transport distribution function [61], Σ(E) = v2τg (where E is the energy, v, τ, and g are the group
velocity, the relaxation time, and the density of states, respectively). Currently, the greatest challenge
for computations is to capture the relaxation time τ, which is affected by many scattering mechanisms
and difficult to calculate accurately [62]. The energy dependence of τ impedes the direct evaluation for
large sets of TE materials. Thus, several approximations for τ have been proposed for quantifying the
TE performance of materials.

3.1. Constant Relaxation Time Approximation

Constant relaxation time (CRT) approximation is the most common approach in solving the
Boltzmann transport equations [63]. In this approximation, τ is assumed to be energy independent,
leading to a computationally manipulable form of the equations for electronic transport coefficients.
The calculations of electronic transport properties within the CRT approximation are most commonly
performed using the BoltzTraP code [64], which combines electronic structure calculations and the
Boltzmann transport theory.

In one of the earliest applications of BoltzTraP to screen for TE materials, the electronic structures
and electronic transport properties of 36 HH compounds were systematically investigated [38].
Calculated band structures showed that the band gaps of these HH compounds depend sensitively
on transition metals, whose d-states are the dominant electronic states around band gaps. Therefore,
changing elements at X positions does not substantially affect the gap value. Additionally, there is no
strong correlation between the band gap and the corresponding elemental electronegativity differences.
The maximum power factor and the corresponding optimal n-type and p-type doping levels were also
determined. The calculated optimal doping levels and the corresponding Seebeck coefficients exhibited
reasonable agreement with experiments for five previously-studied HH compounds. Figure 7 shows the
relationship between the maximum power factor and the corresponding optimal carrier concentration
for both p- and n-type HH compounds. For p-type materials, the HH compounds containing Co, Fe, and
Rh usually possess relatively high power factors (Figure 7a). The corresponding carrier concentrations
are over 1021 cm−3. Based on the estimated n-type power factors, IIIB-(Ni, Pd) and some Co-containing
HH compounds show reasonable n-type performance and their carrier concentrations fall in the range
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of 1020–1021 cm−3 (Figure 7b). Recently, Fu et al. have proved that p-type FeNb(V)Sb are promising
HH-based TE materials, verifying the CRT approximation in the study of HH compounds.
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Given that τ is dependent on energy, treating τ as an energy-independent constant is a severe
limitation of CRT approximation. However, for the compounds with the same crystal structures and
similar chemical compositions, CRT approximation is expected to provide a systematic evaluation
about their relative performance.

3.2. Constant Mean Free Path Approximation

An alternative approach is the constant mean free path (λ) approximation (CMFP) [65]. Within
this approximation, τ becomes energy-dependent (v(E)τ(E) = λ) and λ is constant for different material
systems. To ensure the same λ, it is necessary to assume that materials are nanostructured, with λ limited
by the grain size. Furthermore, the grain size needs to be smaller than the smallest λ in the considered
materials. Although this approach is not suitable for materials with intrinsically long λ, it may be able to
evaluate the electrical transport properties for systems with naturally low µ and, hence, λ.

Carrete et al. used the CMFP approximation to investigate 75 nanograined HH compounds,
screened from 79,057 HH compounds included in the AFLOWLIB.org consortium repository [66].
The selection criteria were including formation enthalpy, phonon dispersion, ternary phase diagrams,
and spin-polarized calculations. Then ab initio modeling of zT was performed for 75 nanograined
compounds. The calculated zT values of many HH compounds are higher than those of nanograined
IV and III-V semiconductors. Especially remarkable are the values of zT in excess of 2 achieved
for about 15% of them at T > 600 K. Although the zT values of best n-type doped compounds are
comparable with those of the best p-type doped ones, the general trend is that a typical p-type doped
HH shows a higher zT than a typical n-type doped HH. This phenomenon is mainly due to the fact that
for 65% of compounds the effective mass of holes (mh

*) is higher than that of electrons (me
*) according

to their band structure calculations. Using the Spearman rank correlation coefficient Σ [67], power
factor is found to be a better predictor of zT than lattice thermal conductivity. At both room and high
temperatures, the power factor depends most markedly on the band effective mass and band gap.
Carrete et al. also provided simple rules to determine if nanograined HH compounds are likely to be
good TE materials through machine learning techniques. In this work, they only considered a few
elements’ properties, such as atomic numbers and masses, positions in the periodic table, atomic radii,
Pauling electronegativities [68], and Pettifor’s chemical scales [69]. Five promising HH compounds
were ultimately identified for room temperature and high-temperature applications. BiBaK, AuAlHf,
and CoBiZr are the best candidates at both temperatures. Unfortunately, the accuracy of this approach
cannot be verified since the predicted candidates have not been investigated experimentally.
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3.3. Calculations of Relaxation Times

Despite that CMFP approximation treats τ as energy-dependent, the small grain sizes (the order
of several nanometers) impede its widespread application. Therefore, CRT approximation becomes
the most used approach to calculate the electronic transport properties of TE materials even with
some uncertainties. In this approximation, α is independent of τ, whereas σ and κe are both directly
proportional to τ. An actual value of τ is still needed to calculate the power factor and zT. The simplified
zT (zTe = α2σT/κe) has been used to identify candidate TE materials [70]. This method does not require
knowledge of the value of τ, but zTe is always greater than zT, since the lattice thermal conductivity κL

is treated as zero. Alternatively, an approximate value τ from the experimental electrical conductivity
can also be used to compute zT, assuming that τ is direction independent and a constant at a certain
specific temperature and carrier concentration [71].

Recently, Hong et al. reported that deformation potential (DP) theory combined with the effective
mass approximation is accurate to calculate τ of FeNbSb HH compounds [72]. In this method,
τ ~cii/(mb

*3/2 Ξ2) (where cii and Ξ are elastic constant and DP constant, respectively), in which mb
*

is very important to calculate τ. In their work, the mb
* at all k points in the first Brillouin zone has

been calculated, and then the average of the effective masses at all specific energies can be obtained.
The calculated mb

* near the VBM is ~1.87 me, a little higher than the experimental value of 1.6 me [29].
The calculated values of σ are a little higher than the experimental values of FeNb1−xTixSb (x = 0.04,
0.06 and 0.08) at low temperatures (Figure 8a). This discrepancy can be partially ascribed to other
scattering processes (grain boundary scattering and so on), which cannot be ignored at low temperatures.
A good agreement between the calculated and experimental σ at high temperatures indicates that the
carrier scattering processes can be neglected. Due to the overestimation of σ, the calculated zT values
are larger than the experimental ones at low temperatures (Figure 8b). However, the difference in zT
between the calculation and experiment is even greater at high temperatures, which may be due to
the underestimation of κL. The calculated κL is smaller than the measured one at high temperature,
which results in the contribution from optical phonon to thermal conductivity being neglected in the
calculation. As is known, the TE properties depend substantially on the microstructures and associated
defects. There are many carrier and phonon scattering processes in p–type FeNbSb-based samples [73].
Only the electron-phonon interaction for the carrier and phonon-phonon Umklapp and point-defect
scatter for the phonon were considered in their scheme. Substantial uncertainties may arise and,
predictably, the electrical conductivity and thermal conductivity show deviations from the measured
results. However, accurate descriptions for a variety of scattering processes is difficult. Considering the
approximations used and the uncertainties in experimental data, the agreement between calculated and
experimental results is reasonable and acceptable.
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4. Lattice Thermal Conductivities of HH Compounds

Above the Debye temperature, the lattice thermal conductivity is mainly dominated by
phonon-phonon Umklapp scattering. Actually, other phonon-scattering processes, including point
defect scattering and grain boundary scattering, also contribute to the lattice thermal conductivity.
The most widely used model for predicting κL is the Debye-Callaway model [74]. In this model,
Grüneisen parameter (γ), which describes the strength of lattice anharmonicity, is set to be a constant.
The predicted κL using this model showed fairly good agreement with experimental values at room
temperature [75].

Considering the existence of lattice anharmonicity, third-order anharmonic force constants
are computationally necessary to determine τ. Using second- and third-order interatomic force
constants as inputs, κL can be calculated via solving the phonon Boltzmann transport equation.
Using this fully ab initio approach, Andrea et al. reported the κL of 15.4, 13.3, and 15.8 W m−1 K−1

at 300 K for TiNiSn, ZrNiSn and HfNiSn, respectively [76]. The calculated values of κL were
different from the experimental ones, which may be due to the different defects within the samples.
Katre et al. revealed that Ni/vacancy antisites are the dominant defects affecting thermal transport
in ZrNiSn [77]. The calculated temperature and concentration dependence of thermal conductivities
were in quantitative agreement with the published experimental results.

Even though the fully ab initio approach is accurate, it cannot be implemented in
high-throughput studies due to the computational requirements of third-order force constants.
In this case, some semi-empirical models for high-throughput calculations are more simplistic and
computationally tractable.

Recently, Carrete et al. predicted the κL of 75 thermodynamically-stable ordered HH alloys
based on a combination of machine learning algorithms and automatic ab initio calculations [78].
Three approaches were used in the calculations of κL. The first method is based on the empirical
observation that the force constants show a high degree of transferability between compounds sharing
a crystal structure [79]. They calculated approximated κtransf with anharmonic force constants from
Mg2Si, since it shares the HH lattice with sites A and B occupied by Mg atoms. For cross-validation,
the anharmonic force constants and κω of 32 HH systems were also computed using the fully ab initio
approach. The second proposed approach is calculating κforest via random-forest regression algorithm
by leveraging the fully calculated κω of 32 HH compounds as a training set. The third method presents
a new machine-learning descriptor of κω that integrates only the crucial pieces of the anharmonic
properties of the solid. They calculated κanh with four exact anharmonic force constants and a linear
model for the rest. The lattice thermal conductivities calculated with different methods for TiNiSn,
ZrNiSn and HfNiSn are shown in Table 1. It is clear that κforest and κanh quantitatively agree well with
κω and κL calculated using the fully ab initio approach, while κtransf shows an obvious discrepancy
with κω and κL.

Table 1. The lattice thermal conductivities calculated with different methods for TiNiSn, ZrNiSn, and
HfNiSn. Unit: W m−1 K−1. κω: lattice thermal conductivity from fully ab initio calculation; κtransf:
approximated κω with anharmonic force constants from Mg2Si; κforest: κω obtained random-forest
regression; κanh: κω obtained with four exact anharmonic force constants and a linear model for the
rest; κL: lattice thermal conductivity form fully ab initio calculation in [76].

Materials κω κtransf κforest κanh κL

TiNiSn 17.9 57.1 20.3 16.8 15.4
ZrNiSn 19.6 73.3 20.7 17.5 13.3
HfNiSn - 75.4 22.1 19.5 15.8

Subsequently, Toher et al. also calculated the κL
AGL of 75 thermodynamically-stable ordered

HH alloys using a quasiharmonic Debye model, which includes anharmonic contributions to a
certain extent [80]. The difference between κL

AGL and κL
anh (κω in Table 1) of 32 HH compounds
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is acceptable except the values of FeNbP and NiPbTe (Figure 9a), and the corresponding Spearman
correlation is 0.810. However, the values of κL

AGL do not agree with those of κL
ML (κanh in Table 1),

as shown in Figure 9b. The corresponding Spearman correlation is 0.706. Additionally, the predicted
values of FeVSb and CoZrSb show deviations of almost an order of magnitude from the measured
room-temperature values. Typically, the κL

AGL of TiNiSn, ZrNiSn, and HfNiSn are 10.7, 10.22, and
12.97 W m−1 K−1, respectively. These values are much lower than κω and κL in Table 1. Therefore,
the accuracy of high-throughput calculations varies with the different models used. Although the
fully ab initio approach to calculating lattice thermal conductivity is more accurate, the calculation of
third-order force constants is computationally costly. Moreover, the accuracy of calculations using some
simpler models is comparable to that of ab initio calculations. Therefore, high-throughput calculations
can guide the search on new TE materials with low lattice thermal conductivity to some extent.
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5. Conclusions and Outlook

HH compounds, containing hundreds of semiconductors, are a vital group of materials for high
temperature thermoelectrics. Recent progress in TE performance optimization achieved high zT values
above 1000 K for both n-type MNiSb (M = Ti, Zr, Hf) and p-type FeRSb (R = V, Nb) HH compounds.
Indeed, the first-principles calculations have helped with the understanding of experimental results
and the rationalization of experimental approaches and speeding up the new investigation of TE
materials. Basic band structure calculations are beneficial for the deep understanding of intrinsic
defects in n-type MNiSb compounds and the rational design and development of p-type FeRSb HH
alloys. By density functional theory, combined with Boltzmann transport theory, electronic transport
properties of some types of HH compounds have been calculated to screen new promising TE materials
with excellent electrical properties. Lattice thermal conductivities of HH compounds have also been
investigated via fully ab initio or high-throughput calculations based on some semi-empirical models.

Although first-principles calculations have been widely used in the research of HH-based TE
materials, the limitations of first-principles cannot be ignored. There are some approximations and
semi-empirical models in the calculations. Therefore, the predicted transport properties of individual
materials will have some intrinsic uncertainty. However, for a class of materials with the similar
structures, the calculated results are expected to be comparable with each other and could provide
a systematic evaluation about their transport properties. Certainly, assessing prediction accuracy
from experimental work is also needed. It is a significant challenge to obtain relevant experimental
results in a timely manner for each candidate identified in a first-principles calculation. Typically, the
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intrinsic defects may be present in many cases and the solubility limit of extrinsic dopants need to be
identified to control the carrier concentration. Therefore, assessing the dopability of new TE materials
is imperative [81,82].

Due to the very large influence of the valence electron count on the electronic structure and
physical properties of HH compounds, the 18-electron rule is widely used in the exploration of
new promising HH phases [83]. Recently, some non-18 electron compounds have been reported to
show good TE performance [84]. Typically, Zeier et al. reported that nominal 19-electron NbCoSb
actually contains a HH phase with the composition Nb0.84CoSb using synchrotron X-ray diffraction
and DFT calculations [85]. After that single-phased HH compounds Nb0.8+δCoSb (0 ≤ δ < 0.05), with
a remarkable enhancement on TE performance, have been successfully synthesized by levitation
melting [86]. Recently, Anand et al. proposed a valence-balanced rule to understand the ground state
stability of HH compounds. In other words, their ground state structures always have a common net
valence of 0, regardless of stoichiometry and nominal electron count (8, 18, or 19) [87]. Using this rule,
16 nominal 19-electron HH compounds, which have not been reported previously, were predicted.
The newly-predicted off-stoichiometric HH compound Ti0.75+xPtSb was successfully synthesized and
confirmed using X-ray studies. The work on nominal 19-electron compounds opens a new avenue
to search for potential HH-based TE materials theorically and experimentally. Also worth noting
is that Tang et al. reported a narrow solubility range on the Ti-Ni-Sn phase diagram primarily in
the range of TiNi1+xSn (0 ≤ x ≤ 0.06) at 1223 K using phase boundary mapping, which explains the
large discrepancy of the literature data on the thermoelectric properties of TiNiSn within a unified
phase diagram framework [88]. This work also suggests a direction of research on HH thermoelectric
materials by the interplay of theory and experiment.
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41. Öğüt, S.; Rabe, K.M. Band gap and stability in the ternary intermetallic compounds NiSnM(M = Ti,Zr,Hf):

A first-principles study. Phys. Rev. B 1995, 51, 10443–10453. [CrossRef]
42. Larson, P.; Mahanti, S.D.; Kanatzidis, M.G. Structural stability of Ni-containing half-Heusler compounds.

Phys. Rev. B 2000, 62, 12754–12762. [CrossRef]
43. Miyamoto, K.; Kimura, A.; Sakamoto, K.; Ye, M.; Cui, Y.; Shimada, K.; Namatame, H.; Taniguchi, M.;

Fujimori, S.-I.; Saitoh, Y.; et al. In-gap Electronic states responsible for the excellent thermoelectric properties
of Ni-based half-Heusler alloys. Appl. Phys. Express 2008, 1, 081901. [CrossRef]

44. Hazama, H.; Matsubara, M.; Asahi, R.; Takeuchi, T. Improvement of thermoelectric properties for
half-Heusler TiNiSn by interstitial Ni defects. J. Appl. Phys. 2011, 110, 063710. [CrossRef]

45. Douglas, J.E.; Chater, P.A.; Brown, C.M.; Pollock, T.M.; Seshadri, R. Nanoscale structural heterogeneity in
Ni-rich half-Heusler TiNiSn. J. Appl. Phys. 2014, 116, 163514. [CrossRef]

46. Zeier, W.G.; Schmitt, J.; Hautier, G.; Aydemir, U.; Gibbs, Z.M.; Felser, C.; Snyder, G.J. Engineering half-Heusler
thermoelectric materials using Zintl chemistry. Nat. Rev. Mater. 2016, 1, 16032. [CrossRef]

47. Zahedifar, M.; Kratzer, P. Band structure and thermoelectric properties of half-Heusler semiconductors from
many-body perturbation theory. Phys. Rev. B 2018, 97, 035204. [CrossRef]

48. Fu, C.; Xie, H.; Liu, Y.; Zhu, T.J.; Xie, J.; Zhao, X.B. Thermoelectric properties of FeVSb half-Heusler
compounds by levitation melting and spark plasma sintering. Intermetallics 2013, 32, 39–43. [CrossRef]

49. Fu, C.; Xie, H.; Zhu, T.J.; Xie, J.; Zhao, X.B. Enhanced phonon scattering by mass and strain field fluctuations
in Nb substituted FeVSb half-Heusler thermoelectric materials. J. Appl. Phys. 2012, 112, 124915. [CrossRef]

50. Fu, C.; Liu, Y.; Xie, H.; Liu, X.; Zhao, X.; Jeffrey Snyder, G.; Xie, J.; Zhu, T. Electron and phonon transport in
Co-doped FeV0.6Nb0.4Sb half-Heusler thermoelectric materials. J. Appl. Phys. 2013, 114, 134905. [CrossRef]

51. Zou, M.; Li, J.F.; Guo, P.; Kita, T. Synthesis and thermoelectric properties of fine-grained FeVSb system
half-Heusler compound polycrystals with high phase purity. J. Phys. D Appl. Phys. 2010, 43, 415403.
[CrossRef]

52. Jodin, L.; Tobola, J.; Pecheur, P.; Scherrer, H.; Kaprzyk, S. Effect of substitutions and defects in half-Heusler
FeVSb studied by electron transport measurements and KKR-CPA electronic structure calculations. Phys.
Rev. B 2004, 70, 184207. [CrossRef]

53. Fang, T.; Zheng, S.; Chen, H.; Cheng, H.; Wang, L.; Zhang, P. Electronic structure and thermoelectric
properties of p-type half-Heusler compound NbFeSb: A first-principles study. RSC Adv. 2016, 6, 10507–10512.
[CrossRef]

54. Pei, Y.; LaLonde, A.D.; Wang, H.; Snyder, G.J. Low effective mass leading to high thermoelectric performance.
Energy Environ. Sci. 2012, 5, 7963–7969. [CrossRef]

55. Hu, L.P.; Zhu, T.J.; Wang, Y.G.; Xie, H.H.; Xu, Z.J.; Zhao, X.B. Shifting up the optimum figure of merit
of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic
conduction. NPG Asia Mater. 2014, 6, e88. [CrossRef]

http://dx.doi.org/10.1063/1.3531662
http://dx.doi.org/10.1002/adfm.201300663
http://dx.doi.org/10.1021/acs.chemmater.6b04898
http://dx.doi.org/10.1103/PhysRevB.64.155103
http://icsd.ill.eu/icsd/
http://dx.doi.org/10.1002/adfm.200701369
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevB.51.10443
http://dx.doi.org/10.1103/PhysRevB.62.12754
http://dx.doi.org/10.1143/APEX.1.081901
http://dx.doi.org/10.1063/1.3633518
http://dx.doi.org/10.1063/1.4900497
http://dx.doi.org/10.1038/natrevmats.2016.32
http://dx.doi.org/10.1103/PhysRevB.97.035204
http://dx.doi.org/10.1016/j.intermet.2012.07.037
http://dx.doi.org/10.1063/1.4772605
http://dx.doi.org/10.1063/1.4823859
http://dx.doi.org/10.1088/0022-3727/43/41/415403
http://dx.doi.org/10.1103/PhysRevB.70.184207
http://dx.doi.org/10.1039/C5RA23091H
http://dx.doi.org/10.1039/c2ee21536e
http://dx.doi.org/10.1038/am.2013.86


Materials 2018, 11, 847 15 of 16

56. Yang, J.; Qiu, P.; Liu, R.; Xi, L.; Zheng, S.; Zhang, W.; Chen, L.; Singh, D.J.; Yang, J. Trends in electrical
transport of p-type skutterudites RFe4Sb12 (R = Na, K, Ca, Sr, Ba, La, Ce, Pr, Yb) from first-principles
calculations and Boltzmann transport theory. Phys. Rev. B 2011, 84, 235205. [CrossRef]

57. Yang, J.; Liu, R.; Chen, Z.; Xi, L.; Yang, J.; Zhang, W.; Chen, L. Power factor enhancement in light valence
band p-type skutterudites. Appl. Phys. Lett. 2012, 101, 022101. [CrossRef]

58. Fang, T.; Zheng, S.; Zhou, T.; Yan, L.; Zhang, P. Computational prediction of high thermoelectric performance
in p-type half-Heusler compounds with low band effective mass. Phys. Chem. Chem. Phys. 2017, 19,
4411–4417. [CrossRef] [PubMed]

59. Fu, C.; Bai, S.; Liu, Y.; Tang, Y.; Chen, L.; Zhao, X.; Zhu, T. Realizing high figure of merit in heavy-band
p-type half-Heusler thermoelectric materials. Nat. Commun. 2015, 6, 8144. [CrossRef] [PubMed]

60. Askerov, B.M. Electron Transport Phenomena in Semiconductors; World Scientific Press: Singapore, 1994.
61. Mahan, G.D.; Sofo, J.O. The best thermoelectric. Proc. Natl. Acad. Sci. USA 1996, 93, 7436–7439. [CrossRef]

[PubMed]
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