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Abstract: LiNi0.5Mn1.5O4 (LNMO) spinel has been extensively investigated as one of the
most promising high-voltage cathode candidates for lithium-ion batteries. The electrochemical
performance of LNMO, especially its rate performance, seems to be governed by its crystallographic
structure, which is strongly influenced by the preparation methods. Conventionally, LNMO materials
are prepared via solid-state reactions, which typically lead to microscaled particles with only limited
control over the particle size and morphology. In this work, we prepared Ni-doped LiMn2O4 (LMO)
spinel via the polyol method. The cycling stability and rate capability of the synthesized material are
found to be comparable to the ones reported in literature. Furthermore, its electronic charge transport
properties were investigated by local electrical transport measurements on individual particles by
means of a nanorobotics setup in a scanning electron microscope, as well as by performing DFT
calculations. We found that the scarcity of Mn3+ in the LNMO leads to a significant decrease in
electronic conductivity as compared to undoped LMO, which had no obvious effect on the rate
capability of the two materials. Our results suggest that the rate capability of LNMO and LMO
materials is not limited by the electronic conductivity of the fully lithiated materials.

Keywords: Lithium-ion battery; LiNi0.5Mn1.5O4 spinel; DFT calculations; rate capability;
electrical conductivity

1. Introduction

The need to involve renewable energy sources to fulfill the global energy demand necessitates
the development of large-scale energy storage systems [1,2]. In the past decades, Li-ion batteries have
attracted much attention owing to their high energy density and long cycle life [3,4].
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As one of the most promising cathode material candidates, LiMn2O4 (LMO) spinel offers
advantages such as high rate capability, good safety, low cost and nontoxicity [5–9]. However,
a significant challenge posed to the usage of this material is the capacity-fading during cycling,
especially at elevated temperature [5–9]. To overcome this challenge, several bi- or trivalent cations,
such as Co [10], Ni [11], and Fe [12], have been investigated in their role as dopants to partially
substitute the Mn in LMO. Among these materials, the Ni-doped LMO spinels, especially the
LiNi0.5Mn1.5O4 (LNMO), have been extensively studied [9,13,14].

LNMO offers a theoretical specific discharge capacity of 146.7 mAh/g and a high operating
voltage of 4.7 V vs. Li/Li+, which leads to a high energy density of approximately 700 Wh/kg [15].
Unlike undoped LMO, where the average oxidation state of Mn is +3.5, the Mn in the LNMO exhibits
an oxidation state of +4, which suppresses the Mn dissolution and Jahn–Teller (JT) distortion, and thus
leads to enhanced cycling performance [16].

Regarding the ordering of Mn and Ni cations, two possible crystallographic structures have
been reported for LNMO: the so-called “disordered” spinel phase with the space group of Fd3m and
the “ordered” spinel phase with the space group of P4332 [17–19]. Previous works have revealed
that significant amount of short-range Ni/Mn ordering may occur in LNMO materials and the
obtained LNMO materials are typically composed of both disordered and ordered phases [20–22].
The disordered spinel has been reported to show superior rate performance to the ordered
phase [17,18,23]. One of the widely accepted explanations for this is the enhanced electronic
conductivity due to the presence of Mn3+ in the disordered spinel [24,25].

However, most of the electrical investigations conducted so far are bulk measurements, such as
four-probe AC measurements or impedance spectroscopy (IS) measurements, on pressed pellets [26,27].
To densify the pellets, sintering at high temperature is generally required, which can influence the
crystallographic structure of LNMO and/or result in formation of secondary phases [28,29]. Moreover,
during the bulk measurements, it is challenging to discriminate between bulk conductivity and grain
boundary conductivity. Therefore, it is desirable to directly investigate the electrical properties of
individual micro- and nanometer-scaled particles with well-defined morphology, as already pointed
out by Moorhead-Rosenberg et al. [20], to interrelate these measurements to first principles calculations,
and to correlate the electronic charge transport properties with the electrochemical performance.

Such an approach would require the combination of experimental, theoretical, and synthetic
procedures, which, to the best of our knowledge, has not been reported yet in this particular field.

Measurements of the electrical conductivity of individual nanometer-scaled particles in a highly
flexible manner can be obtained by using a nanorobotics setup in a scanning electron microscope
(SEM), which has been successfully applied to different classes of materials and morphologies [30–33].
By using this setup, we recently performed local electrical transport measurements on single Fe-,
Ti-doped and Ru-, Ti-doped LNMO spinel crystals and demonstrated a change in the electrical
conductivity depending on the dopant, which was consistent with IS measurements on pressed pellets
of the corresponding materials [34].

Small-polaron hopping in LMO has been computationally studied in significant detail [35–37].
Although several theoretical studies have reported on the crystal and electronic structure of LNMO
materials [38,39], an investigation of the effect of Ni doping on small-polaron conductivity has not yet
been performed.

Several synthesis methods, such as solid-state reactions [22], the Pechini method [24], sol-gel
method [40], co-precipitation method [41], and polymer-assisted synthesis [41–44], have been proposed
to prepare LNMO with various particle morphologies. Recently, we reported the synthesis of
nanostructured single phase LMO spinel via polyol method for utilization as cathode material [45].
During the synthesis, the polyol serves as both solvent and mild reducing agent. As soon as the
precipitation starts, the polyol adsorbs instantaneously onto the surface of the as-formed particle
nuclei, which limits the particle growth and prevents aggregation, offering remarkable control over
the particle size and morphology [8,46,47].
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In this paper, we present the polyol-mediated synthesis of LNMO and its characterization by
means of powder X-Ray diffraction (pXRD), scanning electron microscopy (SEM), selected area
electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX) as well as electrochemical
measurements. The focus of this work is the investigation of the electronic charge transport properties
of individual particles of the as-prepared LNMO measured in local electrical transport measurements
in comparison to its rate capability. To further study the electrical conductivity of LNMO and to
examine the effect of Ni doping of LMO materials on their electrical conductivity, first principles
calculations were performed on undoped LMO and LiNi0.375Mn1.625O4 to estimate the barriers for
small-polaron hopping. According to our investigations, the as-prepared LNMO exhibited cycling
stability and rate capability comparable to those of the LNMO materials reported in the literature.
The electrical conductivity of the as-prepared LNMO was about one order of magnitude lower than
the undoped LMO. Nevertheless, the difference in electronic conductivity had no effect on the rate
capability of the two materials, which suggests that the rate capability of LNMO and LMO materials is
not limited by the electronic conductivity of the materials in their fully lithiated state.

2. Materials and Methods

2.1. Polyol-Mediated Synthesis of LNMO

LNMO particles were synthesized via polyol method adopting a similar procedure as previously
described elsewhere for the undoped LMO [45]. LiOH (Merck, Darmstadt, Germany, >98%), Ni(OH)2

(Sigma-Aldrich, Steinheim, Germany, 99.2%) and electrolytic manganese oxide (EMD, grade HMR-AF,
Tosoh, Tokyo, Japan, 92.5%) were selected as metal precursors. The Li:Mn and Mn:Ni precursor
molar ratios were set as 2.12 and 2.77, respectively. As solvent and reducing agent, ethylene glycol
(EG, Steinheim, Germany, >99.5%) was used. After the reaction, the acquired precipitates were
recovered by centrifuging in 50 mL polystyrene tubes (Carl Roth, Karlsruhe, Germany) using a UniCen
MR centrifuge (Herolab, Wiesloch, Germany) with 14,000 rpm for 30 min at 20 ◦C. They were washed
twice with acetone and centrifuged with 5000 rpm for 5 min. Afterwards, the as-synthesized LNMO
powders were dried under vacuum at room temperature for 3 h, ball milled and calcined at 250 ◦C
and 800 ◦C in air. For purposes of comparison, LMO particles were also synthesized according to
Yang et al. [45], ball milled and calcined at 250 ◦C to remove the organic residual and then at 800 ◦C
for the formation of the spinel phase. A more detailed description of the sample preparation can be
found elsewhere [45].

2.2. Physicochemical Characterization

Powder XRD measurement was conducted at room temperature using a STADI P diffractometer
(Stoe & Cie GmbH, Darmstadt, Germany) operating in transmission mode with Cu Kα1 radiation
(λ = 1.54059 Å). The acquired powder XRD data were processed with the software WinXPOW Version
1.06 (Stoe & Cie GmbH).

The particle morphology of the as-prepared LNMO was analyzed using a high resolution field
emission scanning electron microscope (FE-SEM, Leo Supra 35 VP (Carl Zeiss AG, Oberkochen,
Germany). The element distribution of Mn and Ni in the LNMO particles was characterized by EDX.
To verify the chemical composition of individual particles, EDX measurements were performed in a
Libra 200 field emission transmission electron microscope (FE-TEM, Carl Zeiss AG, Oberkochen,
Germany) operated at 200 keV equipped with an XFlash 5030 EDX detector (Bruker, Billerica,
MA, USA). Prior to the measurements, the sample was deposited on TEM grids with SiO2 windows
(SiO2 thickness: 20 nm, SiMPore Inc., Rochester, NY, USA).

The local electrical transport measurements were performed in the FE-SEM mentioned above.
Prior to the measurements, the as-prepared LNMO particles were deposited on silicon wafers
with a SiO2 layer of 100 nm thickness. During the measurements, 19 LNMO particles were
addressed individually with two homemade metalized atomic force microscopy (AFM) tips (ATECNC,
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Nanosensors) via a nanorobotics system (Klocke Nanotechnik, Aachen, Germany). These tips were
uniformly coated with Pt/Ir alloy (80% Pt, 20% Ir) by RF sputtering (0.017 mbar Ar/40 W) and exhibited
a tip diameter of approximately 80 nm. A semiconductor analyzer (4156C, Agilent, Santa Clara,
CA, USA) was employed for the electrical characterization. A voltage was applied to one of the probe
tips while the other probe tip was grounded. In general, the voltage sweeps were performed from
0 V→4.5 V→0 V→−4.5 V→0 V with a voltage step width of 0.0225 V under high vacuum conditions
(10−6 mbar). For each particle, two consecutive current–voltage characteristics (I–V curves) were
recorded. The electrical conductivity was derived from the recorded I–V curves. The normality
of the measured data was tested applying the Shapiro–Wilk outlier test [48]. According to the
Shapiro–Wilk test, six out of the 19 investigated particles were determined as outliers. The mean value
and the standard deviation of the electrical conductivity were calculated excluding these outliers.
For purposes of comparison, the local electrical conductivity measurement was also performed on
LMO particles. A more detailed description of the measurement setup and procedure can be found in
the Supplementary Materials and reference [30].

To verify the crystal structure and the chemical composition of the LNMO particles investigated
by the local electrical transport measurement, selected area electron diffraction (SAED) and EDX
were performed on individual LNMO particles in the above-mentioned TEM. The simulation of the
theoretical electron diffraction patterns and the assignment of the electron diffraction patterns were
performed using the software JEMS-SAAS [49]. These analyzed LNMO particles were subjected to
local electrical conductivity measurement and the electrical conductivities of these particles were
determined. Due to the high complexity to conduct the measurements on exactly the same particles
both in TEM and in SEM, the measurements were only successfully performed on two particles so far.
For purposes of comparison, SAED was also performed on LMO particles.

To examine the effect of Ni doping of LMO materials on their conductivity via the small-polaron
hopping mechanism, first principles calculations were performed on both the undoped LMO and the
doped stoichiometric LiNi0.375Mn1.625O4 system. For these purposes, spin polarized calculations were
performed using the Vienna ab initio Simulation Package (VASP) [50,51], in which the core–valance
electron interactions were treated using the projector augmented wave (PAW) formalism [52,53].
The valence electrons considered for each kind of atom were Li(2s12p0), O(2s22p4), Mn(3d64s1) and
Ni(3d94s1), in which the electrons were treated using the semi-local PBE functionals [54]. To avoid the
interaction between the two images of the polaron due to periodic boundary conditions, we modeled
the cells using a large 56-atom supercell derived from the spinel structure. A plane-wave cutoff
energy of 480 eV was employed on a 7 × 7 × 7 Monkhorst–Pack k-point mesh using Gaussian
smearing. The most stable relaxed configuration for each of the systems were ascertained after the
change of free energy of the supercell was less than 10-4 eV. To account for strong on-site Coulomb
repulsion for the 3D electrons of the Mn and Ni atoms, the Hubbard parameter U was added to the
GGA functional in the rotationally invariant approach [55], in which only the difference (Ueff = U−J)
between the Coulomb repulsion U and screened exchange J parameters must be specified. In the
present work, we chose Ueff = 4.5 eV for both Mn and Ni, as these values have been shown to produce
reasonably good estimates in previous studies [36–38]. The calculated lattice constants and bond
lengths were benchmarked thoroughly against results from previous studies and are provided in the
Supplementary Materials.

2.3. Cathode Preparation and Cell Assembly

The cathode sheets with LMO and LNMO powders were prepared as reported in reference [45].
The active material-containing slurry was prepared by mixing and ultrasonically dispersing 81.6 wt %
of as-prepared LNMO, 10.4 wt % of super C 65 carbon (IMERYS Graphite & Carbon, Düsseldorf,
Germany) and 8.0 wt % of polyvinylidene fluoride (PVDF, Sigma-Aldrich, Steinheim, Germany) in
N-Methyl-2-pyrrolidone (NMP, Sigma-Aldrich). It was coated on aluminum foil (Western Plastics,
Calhoun, GA, USA) using a Mayer rod with a wet thickness of 50 µm. Afterwards, the coated foil was
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dried at 100 ◦C overnight, punched out with a diameter of 16 mm and transported into an argon-filled
glove box. For the electrochemical tests, ECC-Std test cells (EL-Cell GmbH, Hamburg, Germany) were
assembled in an argon-filled glove box with LMO or LNMO cathodes, lithium metal (ø = 18 mm,
Albemarle Corporation, Charlotte, NC, USA) as anode, 100 µL 1 M LiPF6 (Sigma-Aldrich) in 1:1 (w:w)
mixture of ethylene carbonate (EC, Sigma-Aldrich) and diethyl carbonate (DEC, Sigma-Aldrich)
as electrolyte and a glass fiber separator (ø = 18 mm, t = 260 µm, Whatman, Maidstone, UK).
The configuration of the test cell is illustrated in Figure S1 in the Supplementary Materials.

2.4. Electrochemical Characterization

The electrochemical tests were performed on a Basytec LAB battery tester (Basytec GmbH,
Asselfingen, Germany).

The electrochemical behavior of the as-prepared LNMO sample was characterized by CV. The cell
potential ranged from 3.5 to 5.0 V at a scan rate of 0.05 mV/s.

The specific discharge capacity of the as-prepared LNMO was measured by galvanostatic cycling
between 3.5 and 5.0 V with a constant current of C/20 for 10 cycles. The C-rate was calculated with
the theoretical capacity of LiNi0.5Mn1.5O4, i.e., 146.7 mAh/g. With the experimentally measured
specific discharge capacity, the C-rates were recalculated for further galvanostatic cycling and rate
capability tests.

To characterize the cycling stability of the as-prepared LNMO, galvanostatic cycling was
performed. After two formation cycles with C/20, the test cells were charged and discharged between
3.5 and 5.0 V with C/2 for 100 cycles.

The rate performance of the as-prepared LMO and LNMO samples was analyzed by galvanostatic
cycling with various C-rates (C/20–20C). The cut-off voltages for LMO and LNMO samples are
3.5–4.5 V and 3.5–5.0 V, respectively. The discharge current was varied from C/20 to 20C, while the
maximal charge current was set as C/2. For each C-rate, the test cells were cycled for five cycles.

3. Results and Discussion

3.1. Crystal Structure and Particle Morphology of As-Prepared LNMO

The crystallographic structure of as-prepared LNMO was analyzed by pXRD. The obtained pXRD
pattern is illustrated in Figure 1. The majority of the diffraction peaks can be indexed to cubic spinel
structure with the space group of Fd3m. Weak reflections at 2θ = 37.5◦, 43.4◦ and 63.6◦ (marked as
* in Figure 1) were observed, attributed to a rock salt MnNi6O8 secondary phase, which is reported
in the literature as a common impurity phase in LNMO materials [56–58]. As the impurity phase is
electrochemically inactive within the potential window investigated in this paper, the presence of
this phase would lead to lower specific capacity of the as-prepared LNMO, as it was also included
in the calculation of the active material [58]. The broad diffraction peak observed within 15–25◦ is a
measurement artifact caused by our experimental set-up.
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Figure 1. Powder XRD pattern of LNMO prepared via polyol-mediated synthesis.

Previous studies revealed that the crystallographic structure of LNMO is strongly influenced by
the preparation methods, especially by the annealing conditions. Samples synthesized at temperatures
higher than 700 ◦C exhibit the disordered phase, whereas prolonged annealing at 700 ◦C favors the
formation of the ordered phase [16,20,59]. Kunduraci et al. [24] showed that the ordered/disordered
phase transition is driven by the oxygen deficiency in the spinel and is accompanied by the formation
of a rock salt secondary phase. The ordered/disordered phase can be also tuned by precise control of
the cooling rate immediately after calcination at high temperature, which determines the amount of
oxygen uptake for the LNMO at around 700 ◦C [22,60]. Since the as-prepared LNMO was calcined at
800 ◦C for 24 h with a slow cooling process, we suggest that an oxygen- and Ni-deficient disordered
structure was dominant in the as-prepared LNMO, where short-range Ni/Mn ordering could be
expected [22,60].

The particle size and morphology of the as-prepared LNMO were analyzed by SEM. Figure 2
shows the SEM micrographs of the as-prepared LNMO. As can be seen in Figure 2a,b, most of the
particles in the sample exhibited octahedral shape with the particle size of 0.5–3 µm, whereas a small
fraction of octahedral particles with the size of about 100–200 nm can be observed as well. According to
Chemelewski et al. [59,61], the octahedral particles consist of {111} family of planes on the particle
surface. In addition, particles with irregular shape are also visible, as illustrated in Figure 2c.

Figure 2. SEM micrographs of as-prepared LNMO: (b,c) the particle morphologies of the octahedral
particles and the particles with irregular shape, respectively, with higher magnification than (a).

To further investigate the chemical composition of the octahedral particles and the particles with
irregular shape, an agglomerate with relatively high amount of particles with irregular shape was
selected and an EDX line scan was performed in the region, where particles with both morphologies
were observed. As can be seen in Figure 3b, the Mn:Ni intensity ratio of the particles with
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octahedral shape was approximately 2–3 times higher than that of the particles with irregular shape,
which indicates that the Mn:Ni molar ratio was higher in octahedral particles than in the particles
with irregular shape. In addition, EDX measurements (Table S1 in the Supplementary Materials) on
individual particles in TEM revealed that the particles with irregular shape exhibited significantly
lower Mn:Ni molar ratios in comparison to the octahedral particles, which indicates that these particles
are richer in Ni content than the octahedral ones. The pXRD results discussed above confirmed that
cubic spinel phase and secondary MnNi6O8 phase coexisted in the as-prepared LNMO. Therefore, it is
assumed that octahedral particles exhibited the spinel phase, whereas the secondary MnNi6O8 phase
was dominant in the particles with irregular shape.

Figure 3. SEM micrograph (a); and EDX line scan in the same region with Mn in red and Ni in turquoise
(b) of as-prepared LNMO.

3.2. Electronic Charge Transport Properties of As-Prepared LNMO

The electrical conductivity of individual LNMO particles was analyzed by local electrical transport
measurement using a nanorobotics setup in an SEM. During the measurements, I–V curves were
recorded on 19 individual particles with octahedral shape. The electrical conductivities of these
particles were derived from the I–V curves measured by the local electrical transport measurements.
Further details on the process for determination of the electrical conductivity are given in the
Supplementary Materials.

An I–V curve of one individual LNMO particle is plotted exemplarily in Figure S3 in the
Supplementary Materials. The individual LNMO particles exhibited nonlinear I–V curves, which is
characteristic for semiconductors [62]. It has to be noted that the nonlinearity of the recorded I–V
curves may also be attributed to the potential barrier at the interface between the metallic probe tips
and the LMO particle, i.e., the Schottky barrier [63]. The experimental conditions, i.e., the process of
particle addressing, the contact pressure, etc., were kept constant during each measurement, so that
interfacial effects, such as the Schottky barrier, should be the same in all measurements and were thus
not further evaluated.

After evaluation under the Shapiro–Wilk test, data from six out of 19 measured particles were
excluded for the calculation of the mean value and the standard deviation of the electrical conductivity.
The electrical conductivity of the as-prepared LNMO was thus determined as (1.1 ± 0.8) × 10−4 S/cm,
which is about one order of magnitude higher than the electrical conductivity values of LNMO
materials reported in the literature (1.7 × 10−5 − 3.2 × 10−6 S/cm) [24–26]. The difference between
the electrical conductivity values from this work compared with those reported in the literature is due
to the different measurement setups.

For purposes of comparison, the electrical conductivity of as-prepared LMO was also determined.
It exhibited an electrical conductivity of (1.3 ± 1.0) ×·10−3 S/cm, which was about one order of
magnitude higher than the electrical conductivity of the individual LNMO particles. Previous work
revealed that the electronic conduction mechanism in both LMO and LNMO materials is small-polaron
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hopping [26,64]. As the polaron states are localized at the Mn3+ sites, the electronic conductivity of
the materials is assumingly determined mainly by the Mn3+ content in the material. A lower Mn3+

content in the spinel would thus result in a lower electrical conductivity. As the average oxidation state
of Mn in the spinel increases upon Ni substitution, it is suggested that the as-prepared LNMO will
exhibit lower amount of Mn3+ than the as-prepared LMO. On this basis, a lower measured electrical
conductivity for the as-prepared LNMO in comparison to the as-prepared LMO can be rationalized.
In agreement with this hypothesis, Molenda et al. observed a decrease of electronic conductivity with
increasing Ni content in the Ni-doped LMO materials as well [26].

It must be noted that the electronic conductivity of LNMO materials has been reported to be
influenced by its crystallographic structure as well [24,25]. The electronic conductivity of disordered
LNMO materials can be as much as 2.5 orders of magnitude higher than that of ordered LNMO
materials [24,25]. Nevertheless, the influence of the crystallographic structure on the electronic
conductivity was significantly more pronounced for LNMO materials with dominantly ordered
structure than for those with dominantly disordered structure [25]. Moreover, the lower electronic
conductivity of ordered LNMO materials was attributed to their lower Mn3+ content than the
disordered LNMO materials [24,25]. Accordingly, we suggest that the electronic conductivity of
LNMO materials with dominantly disordered structure is mainly determined by its Mn3+ content.

To investigate the crystallographic structure and chemical composition of the LNMO particles
with octahedral shape, individual octahedral particles were selected in the SEM (as exemplarily
shown in Figure S4 in the Supplementary Materials). These individual octahedral particles were
subjected to SAED and EDX in the TEM. Afterwards, they were transported into the SEM and local
electrical transport measurements were performed. Due to the high complexity involved in the chain
of processes necessary for conducting the measurements on exactly the same particles both in TEM
and in SEM, the measurements were only successfully performed on two particles so far.

A TEM micrograph and a measured SAED pattern of one of the individual octahedral LNMO
particles are exemplarily depicted in Figure 4.

Figure 4. SAED pattern of as-prepared LNMO: (a) TEM micrograph of individual LNMO particle;
and (b) inverted SAED pattern measured in the region of the red-circled area in (a).

As exemplarily shown in Figure 4b, periodically arranged diffraction spots were measured for
both individual particles in SAED. This indicates that the particles were single crystalline. Due to the
thickness of the particles, only the lower order diffraction spots could be observed. The diffraction
spots in Figure 4b can be indexed to the {111} zone axis of cubic spinel LiNi0.5Mn1.5O4 (ICSD No.
182947) with the space group of Fd3m. The slight deviation between the measured and theoretical
SEAD patterns is due to the different lattice parameter, which may be caused by slight various Ni
content in the LNMO. Nevertheless, with contrast enhancement, several additional weak diffraction
spots could be observed, which can be assigned to LNMO with the space group of P4332 (see Figure S5
in Supplementary Materials) [17]. This indicates that the investigated LNMO particle showed signature
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of partial ordering. Similar SAED pattern was observed by Zheng et al. for their LNMO material
prepared with a cooling rate of 1 ◦C/min [22], which was also applied in this work. They revealed
that during the slow cooling process (<3 ◦C/min), oxygen deficiency is reduced by the oxygen intake
and short-range Ni/Mn ordering occurs. Nonetheless, since the intensity of the additional diffraction
spots was very low, we assume that the structure of our as-prepared LNMO particles was dominantly
disordered. The SAED pattern of the other individual LNMO particle is shown in Figure S6 in the
Supplementary Materials. Accordingly, it is assumed that all the octahedral LNMO particles were
single crystalline with dominantly disordered spinel phase.

SAED was also performed on LMO particles. The obtained electron diffraction pattern is
exemplarily shown in Figure S7 in the Supplementary Materials. Similar to the LNMO particles,
periodically arranged diffraction spots were measured, indicating that the particles were single
crystalline. As reported in reference [45], the as-prepared LMO only exhibited particles with octahedral
shape in a size range of 0.5–3 µm. Therefore, we assume that all the octahedral LMO particles were
single crystalline.

The Mn and Ni in the individual LNMO particles were analyzed by EDX in the TEM, as listed in
Table 1. The stoichiometry of the individual LNMO particles was calculated based on the EDX results
assuming the Li and O contents in the stoichiometry are 1 and 4, respectively. In both investigated
particles, a Ni stoichiometry smaller than 0.5 was measured. This indicates that the individual LNMO
particles were Ni-deficient, which resulted from the formation of the Ni-rich secondary phase and is in
accordance with the pXRD results.

Table 1. Stoichiometry of individual LNMO particles based on EDX measurements in TEM.

Particle Mn Content (At %) Ni Content (At %) Stoichiometry

1 81 19 LiNi0.38Mn1.62O4
2 80 20 LiNi0.40Mn1.60O4

These analyzed individual octahedral LNMO particles were subjected to the local electrical
transport measurement in the SEM. The determined electrical conductivities of these individual
LNMO particles lay in the range of the measured electrical conductivities of the 19 LNMO particles
described above, which validated that our local electrical measurements indeed revealed the intrinsic
properties of the as-prepared LNMO spinel.

To examine the effect of Ni doping of LMO materials on their conductivity, first principles
calculations were performed on both the undoped LMO and the doped LiNi0.375Mn1.625O4 system,
which was stoichiometrically very similar to the system obtained from our experimental analysis.
The mechanism of the electronic conduction in LMO has been proposed to be in form of the hopping
of a Jahn–Teller (JT) small-polaron [64], which is transferred across the structure in form of distortions
in the Mn-O bonds surrounding the polaron-carrying Mn3+ ions.

Undoped LMO is known to exhibit cubic spinel structure at room temperature, which undergoes
phase transition to an orthorhombic phase at around 230 K [35]. In the present work, however, the LMO
system was optimized with an orthorhombic Fddd structural model, which has been argued to be
the right theoretical strategy in several previous studies [36,65]. The room temperature cubic phase
results from the existing Mn3+/Mn4+ disorder, which is captured very poorly by DFT calculations on
such systems. The stoichiometric LMO supercell of 56 atoms considered in this work consisted of 8 Li,
16 Mn and 32 O atoms, resulting in a theoretical 8:8 ratio of Mn3+/Mn4+.

The LiNi0.375Mn1.625O4 supercell, on the other hand, was modeled with a the cubic disordered
Fd3m phase, which is known to be the most stable phase for a similar LiNi0.5Mn1.5O4 system [38,39]
and was also verified by SAED to be dominant in our as-prepared LNMO. The stoichiometric
LiNi0.375Mn1.625O4 supercell of 56 atoms considered in this work consisted of 8 Li, 3 Ni, 13 Mn
and 32 O atoms. Assuming an ideal +2 oxidation state of Ni ions, the Mn3+/Mn4+ ratio would
ideally be 2:11, which implies a significant drop in the polaron carrier density within the unit cell as
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compared to that of LMO. Achieving a perfectly disordered phase is computationally not possible
within the framework of periodic DFT calculations and, therefore, 31 different configurations exploring
all possibilities of doping of three Ni atoms at 16 possible positions in the supercell were considered
to establish the most stable unit cell configuration. The difference between the most stable and least
stable configurations and that between the most stable and the second most stable configurations were
found to be approximately 1.1 and 0.1 eV/cell, respectively, both of which were well above the 25 meV
room temperature thermal fluctuation limit. These observations validate our choice of the most stable
system for further calculations of polaron hopping. Further, it was observed that the distribution of Ni
in the supercell was very uniform, corroborating the fact that such a uniform structure would yield the
highest configurational entropy, and would thus be most stable [66,67].

Finally, hopping barriers for small-polaron hopping were calculated for both LMO and
LiNi0.375Mn1.625O4 using the climbing image Nudged elastic Band method (CI-NEB), which attempts
to locate the transition state at a saddle point along the reaction coordinate on the potential energy
surface [68]. At first, several configurations for each of the two systems were tried to locate the most
stable orientation and location of the polarons in form of JT distortions. Seven intermediate states
along the reaction coordinate were considered in our case to capture any of the fine features of the
hopping curve or any other metastable intermediate states.

As can be seen in Figure 5, the barrier for polaron hopping for the undoped case was found to be
∆E(0Ni) = 0.305 eV (Reaction Coordinate 3), which is in excellent agreement with a previous work by
Ouyang et al. [37] on the same system. To ascertain oxidation states of Mn atoms, Bader charge analysis
was performed, wherein the extent of an atom is determined based on its electronic charge density,
which is decided by zero flux surfaces that are used to divide atoms [69]. For Bader charge analysis of
the most stable LMO state, Mn atoms were classified as either in +3 or +4 oxidation state, depending
on whether they had higher or lower electronic charge than the average charge on Mn atoms. It was
clearly observed that eight Mn atoms in the supercell had an average of 0.29 electronic charge more
than the other eight Mn atoms. Hence, the calculated stoichiometric ratio between Mn3+/Mn4+ was
1/1 in LMO, which is what is expected.

Figure 5. First principles calculated polaron hopping barriers for LMO (peach) and LiNi0.375Mn1.625O4

(teal). The system energy values are normalized and mentioned per supercell. Reaction Coordinate 0 is
the initial and 8 is the final stable state for each of the cases.

The initial and final geometric structures of the two most stable LMO polaron states are shown
in Figure 6a,b, respectively. The initial (Reaction Coordinate 0) and final (Reaction Coordinate 8)
locations of the JT distortion centered Mn3+ ions were also depicted in the same figure. The most
stable location of the polarons (Reaction Coordinate 8 in Figures 5 and 6b) was found to have columnar
ordering of Mn3+ and Mn4+ as seen from the JT distortion analysis, which is also in agreement with
previous studies [35]. The specific bond lengths for the initial and final states can be found in the
Supplementary Materials.
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Figure 6. Geometric structures of the initial (a) and final (b) stable states for LMO polaron hopping.
The selected Mn and O atoms, and Mn-O bonds (matte finish) depict the elongated bonds, in this case
along the a-axis. The Mn atom marked 0 is the atom centered at the JT distortion in the initial state,
which hops to the Mn atom marked 8 in the final stable state. Li (green), Mn (purple), O (red).

The polaron hopping simulations for LiNi0.375Mn1.625O4 system revealed several unique features.
Unlike for the case of LMO, several metastable cases were encountered on the path of hopping, as seen
in Figure 5. On careful post-analysis of the geometry at each of the positions along the reaction
coordinate, it was confirmed that all new metastable polaron states converged to the nearest stable
states along the reaction coordinate. The barrier of hopping for the new polaron state was found to be
∆E(3Ni) = 1.992 eV (Reaction Coordinate 5), which is six-fold higher than that for LMO.

Unlike LMO, a more continuous distribution of oxidation states was found from Bader charge
analysis in this case. Three Mn atoms were found to have an average of 0.33 higher electronic charge
than the other ten Mn atoms. Hence, the calculated stoichiometric ratio between Mn3+/Mn4+ was
3/10 in LiNi0.375Mn1.625O4, which is very close to the ideal value of 2/11. It must be noted that the
computational localization of electrons using even the DFT+U approach is not failsafe, and could be
the reason for these deviations and continuous charge distribution.

The initial and final geometric structures of the two most stable LiNi0.375Mn1.625O4 polaron states
are shown in Figure 7a,b, respectively. The initial state shown in Figure 7a had six elongated Mn-O
bonds, all on one single Mn atom (Reaction Coordinate 0). The slightly more stable final state had
the JT distortion centered on two different Mn atoms, with the other atom (Reaction Coordinate 8)
encircled in Figure 7b. The specific bond lengths for the initial and final states can be found in the
Supplementary Materials.

Figure 7. Geometric structures of the initial (a) and final (b) stable states for LiNi0.375Mn1.625O4 polaron
hopping. The selected Mn and O atoms, and Mn-O bonds (matte finish) depict the elongated bonds,
in this case along all axes. The Mn atom marked 0 is the atom centered at the JT distortion in the initial
state, which then hops to and is shared with the Mn atom marked 8 in the final stable state. Li (green),
Ni (silver), Mn (purple), O (red).

It must be noted, however, that the DFT band gap for the undoped system was found to be
0.39 eV and for the doped system it was found to be 0.58 eV, which cannot preclude the possibility
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that band conduction might have a role in determining the electrical conductivity of the two systems.
DFT calculations are, however, known to severely underestimate band-gaps even with the Hubbard
U corrections, which implies that the contribution of band conduction in both cases will probably be
equally negligible. In any case, our simulations clearly indicated that the scarcity of Mn3+ in the doped
case would lead to a decrease in its electronic conductivity via small-polaron hopping as compared to
that of the undoped system.

3.3. Electrochemical Performance of As-Prepared LNMO

The electrochemical properties of the as-prepared LNMO were evaluated by CV. The obtained
cyclic voltammogram is plotted in Figure 8.

Two pairs of well-resolved, sharp redox peaks were recorded at around 4.7 V vs. Li/Li+,
corresponding to the Ni2+/Ni3+ and Ni3+/Ni4+ redox processes [9,70]. The potential difference
between the oxidation and the reduction peaks (∆Ep) for the Ni2+/Ni3+ and Ni3+/Ni4+ redox
processes were determined as 0.09 V and 0.10 V, respectively. These very small ∆Eps indicate fast Li+

extraction/insertion kinetics in the as-prepared LNMO [23]. A pair of small redox peaks, which is
attributed to the Mn3+/Mn4+ redox process, can also be observed at about 4 V vs. Li/Li+. This indicates
that a small amount of Mn3+ was present in the as-prepared LNMO, which is in agreement with the
pXRD results. Another minor pair of redox peaks can be observed at approximately 4.9 V vs. Li/Li+,
the origin of which is still unclear. Similar voltammograms were also reported by Yang et al. [71].
They attributed these redox peaks at about 4.9 V vs. Li/Li+ to decomposition of the electrolyte.
Caballero et al. observed an oxidation peak at about 5.1 V and ascribed this peak to the release of
oxygen from the spinel framework [72]. According to previous studies [9,17,24,73], the features of
the obtained cyclic voltammogram indicates that the as-prepared LNMO exhibited dominantly the
disordered structure, which is in accordance to the SAED result.

Figure 8. Cyclic voltammogram of as-prepared LNMO.

The specific discharge capacity of the as-prepared LNMO was determined by galvanostatic cycling
between 3.5 V and 5.0 V with a constant current of C/20 for 10 cycles. The C-rate was calculated with
the theoretical capacity of LiNi0.5Mn1.5O4, i.e., 146.7 mAh/g. Figure 9 illustrates the discharge curves
of the as-prepared LNMO. At the 10th cycle, the as-prepared LNMO exhibited a specific discharge
capacity of around 97 mAh/g. As revealed by the pXRD result, MnNi6O8 impurity phase was present
in the as-prepared LNMO material, which is electrochemically inactive [58] in the investigated potential
window but was included in the calculation of the active material. Thus, the specific discharge capacity
of the as-prepared LNMO material is lower than the values reported in the literature [11,22,40,41].
Two voltage plateaus were observed at around 4.7 V vs. Li/Li+, which are attributed to the Ni2+/Ni3+

and Ni3+/Ni4+ redox processes [70]. A small voltage shoulder at around 4 V vs. Li/Li+ could be
observed as well, which is contributed by the Mn3+/Mn4+ redox process [24]. The presence of a voltage
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shoulder at around 4 V vs. Li/Li+ indicates that the as-prepared LNMO exhibited a certain amount
of Mn3+, which is in accordance with the pXRD and the CV results. The Mn3+ percentage contents
(p(Mn3+)4V) in the sample can be indicated by the ratio between the discharge capacity recorded
between 4.5 V and 3.5 V and the total discharge capacity of the 2nd cycle [25]:

p(Mn3+)4V = (Q3.5-4.5V/Qtotal) × 100%

The p(Mn3+)4V of the as-prepared LNMO was characterized as 15.1%.

Figure 9. Discharge curves of the as-prepared LNMO with a constant current of C/20.

The cycling stability of the as-prepared LNMO samples was characterized by galvanostatic
cycling. Figure 10 illustrates the discharge capacity retention of the as-prepared LNMO over 100 cycles.
After 100 cycles, it exhibited a capacity retention of 95%, indicating a very stable cycling behavior.
The coulombic efficiency of the sample increased in the first several cycles, which was probably due to
electrolyte decomposition and solid electrolyte interface (SEI) formation [74]. Afterwards, it remained
constant at approximately 95%. This reveals that there was an irreversible capacity loss on each cycle,
which might be attributed to the decomposition of the electrolyte and the formation of an unstable
SEI layer [74].

Figure 10. Cycling stability of the as-prepared LNMO.

Previous investigations revealed that the capacity fading observed in LNMO materials is probably
due to the Mn and Ni dissolution, which results from the electrochemical oxidation of the electrolyte at
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voltages above 4.2 V vs. Li/Li+ [75–77]. When Mn3+ is present in the material, Mn disproportionation
may occur as well, which leads to further Mn dissolution and thus capacity fading.

Nevertheless, the cycling stability of LNMO is not only determined by the presence of
Mn3+. Recent computational [78,79] and experimental [59,61,80,81] studies revealed that LMO
and LNMO materials with octahedral shape and {111} family of planes on the surface showed
superior cycling stability to the other particle morphologies. As described in the SEM section above,
our as-prepared LNMO exhibited octahedral shape. Therefore, we suggest that the high stability of the
as-prepared LNMO might be accredited to its particle morphology, which preponderated the negative
influence of Mn3+.

To study the rate capability of the as-prepared LNMO, galvanostatic cycling at various C-rates was
performed. For purposes of comparison, the as-prepared LMO was also investigated. It must be noted
that due to the difference in specific capacity of the as-prepared LMO and LNMO, the discharge capacity
retention instead of the specific discharge capacity is illustrated to avoid misleading information.
The discharge capacity retention was determined as the ratio of the discharge capacity at a certain
cycle to the one at the 5th cycle at C/20, taking into accounts the SEI formation during the first several
cycles. The discharge capacity retention of the as-prepared LMO and LNMO at various C-rates is
plotted in Figure 11.

The as-prepared LNMO exhibited 100% discharge capacity retention at low C-rates (C/20–C/2).
When the C-rate was increased from C/2 to 5 C, it showed discharge capacity retentions larger than
95%. At high C-rates (10 C and 20 C), it delivered high discharge capacity retention of 91% and 84%,
respectively. When the C-rate was reduced to C/20, the as-prepared LNMO exhibited a discharge
capacity retention of 98%, indicating that the irreversible damage to the material caused by the fast
discharge was negligible. The result is comparable to the results of disordered LNMO materials
with various particle sizes and morphologies reported in the literature [19,20]. Similar to cycling
stability, the rate capability of LNMO materials with octahedral shape and {111} family of planes on the
surface was also reported to be superior to that of materials with other particle morphologies [59,61,80].
Therefore, we suggest that the favorable surface orientation of the as-prepared LNMO could be
supportive for the observed high rate capability.

Figure 11. Rate capability of as-prepared LMO and LNMO.

Comparing the as-prepared LNMO to the as-prepared LMO, it appears that the discharge capacity
retentions of the as-prepared LMO at high C-rates are, in most instances, only slightly higher than
the ones of the as-prepared LNMO. Taking the measurement error in account, this difference is not
significant. This indicates that the rate capability of LMO is similar to that of LNMO, although the
local electrical transport measurements revealed an order of magnitude higher electronic conductivity
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for LMO than for LNMO. A recent study from Moorhead-Rosenberg et al. [20] challenges the belief
that the Mn3+ content is responsible for the rate capability of LNMO materials. They emphasized
that Mn3+ is only present in the (almost) fully lithiated spinel. For most of the charge/discharge
cycles, charges are carried by Ni ions (Ni2+, Ni3+ and Ni4+). Our result supports their argumentation
to the extent that the rate capability of LNMO and LMO materials is not limited by the electronic
conductivity of the fully lithiated materials, which is mainly influenced by the Mn3+ content in the
materials. To investigate whether the electronic conductivity of the materials during charging and
discharging is related to the rate capability, local electrical transport measurements on partially and
fully delithiated LNMO materials should be performed in the future.

4. Conclusions

In this work, we successfully prepared Ni-doped LiMn2O4 spinel via polyol-mediated
synthesis and investigated its electronic charge transport properties and electrochemical performance.
The as-prepared LNMO showed dominantly disordered structure and exhibited advanced cycling
stability as well as rate capability. Local electrical transport measurements on individual particles
demonstrated that the electrical conductivity of the as-prepared LNMO was about one order of
magnitude lower than that of the undoped LMO. The DFT calculations also indicated that the energy
barrier for polaron hopping in LNMO was much higher than that in LMO, which could be possibly
related to the scarcity of available Mn3+ due to Ni doping. Nevertheless, similar rate capability was
observed for both LMO and LNMO materials, which challenges the belief that the Mn3+ content is
responsible for the rate capability of LNMO materials. Our work demonstrated the significance of
investigations on the individual particle level on the micro- and nanometer scale and offers new insights
into the intrinsic properties of LNMO. It should be pointed out that our experimental results give no
indication about the Mn3+ content and the charge status change of Mn during cycling, which was
predicted by DFT calculations for only completely lithiated states. This would require operando X-ray
Absorption Spectroscopy measurements at different state of charge accompanied by DFT calculation
results, which will be part of our future works.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/5/806/s1,
Figure S1: Cell configuration of an ECC-Std test cell designed by EL-Cell GmbH; Figure S2: Scheme of the
experimental setup (a); exemplary SEM micrograph shows an individual particle addressed by two probe tips
(b); Figure S3: Exemplary I–V curve recorded on one individual LNMO particle; Figure S4: Exemplary SEM
micrograph of an individual LNMO particle; Figure S5: Inverted SAED pattern of LNMO particle 1 with contrast
enhancement. Additional weak diffraction spots, which can be assigned to LNMO with space group of P4332,
could be observed; Figure S6: SAED pattern of as-prepared LNMO (particle 2). (a) TEM micrograph of individual
LNMO particle; (b) inverted SAED pattern measured in the region of the red-circled area in (a) The diffraction
spots can be indexed to the [111] zone axis of cubic spinel LiNi0.5Mn1.5O4 (ICSD No. 182947) with the space
group of Fd3m; (c) inverted SAED with contrast enhancement. Additional weak diffraction spots, which can
be assigned to LNMO with space group of P4332, could be observed; Figure S7: SAED pattern of as-prepared
LMO. (a) TEM micrograph of individual LMO particle; (b) inverted SAED pattern measured in the region of the
red-circled area in (a). The diffraction spots can be indexed to the [323] zone axis of cubic spinel Li1.09Mn1.91O3.99
(ICSD No. 55738) with the space group of Fd3m; Table S1: Stoichiometry of individual particles with different
particle morphologies based on EDX measurements in TEM.
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