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Abstract: α-Amine ketoximesilanes are proven to be effective crosslinkers in the preparation of
ketone-oxime one-component room temperature vulcanized (RTV) silicone rubber without the
use of toxic metal catalyst. This work aimed to investigate the hydrolysis kinetic of α-amine
ketoximesilanes, which is vitally important for the preparation of RTV silicone rubber. Five kinds
of α-amine ketoximesilanes, namely α-(N,N-diethyl)aminomethyltri(methylethylketoxime)silane
(DEMOS), α-(N,N-di-n-butyl)aminomethyltri(methylethylketoxime)silane (DBMOS), α-(N-n-butyl)
aminomethyltri(methylethylketoxime)silane (n-BMOS), α-(N-cyclohexyl)aminomethyltri
(methylethylketoxime)silane (CMOS) and α-(β-aminomethyl)aminomethyltri(methylethylketoxime)
silane (AEMOS), were successfully obtained and confirmed using Fourier transform infrared
spectrometer (FT-IR) and hydrogen-1 nuclear magnetic resonance (1H NMR). Kinetics of hydrolysis
reactions were measured by FT-IR and conductivity. Our results illustrated that the kinetic
constant rates ranged from 12.2 × 10−4 s−1 to 7.6 × 10−4 s−1, with the decreasing order of
DEMOS > n-BMOS > DBMOS > CMOS > AEMOS at the given temperature and humidity. Better
performances of thermal stability could be achieved when using the α-amine ketoximesilanes as
crosslinkers in the preparation of RTV silicon rubber than that of RTV silicone rubber with the use of
methyltri(methylethylketoxime)silane (MOS) as a crosslinker and organic tin as a catalyst.

Keywords: α-amine ketoximesilanes; hydrolysis reaction; self-crosslinkers; RTV silicone rubber

1. Introduction

Silicone rubber that can vulcanize at room temperature is called room temperature vulcanized
(RTV) silicone rubber. RTV silicone rubber is a kind of elastomer comprising silicone rubber gum
(linear polysiloxane, PDMS), crosslinkers (methyltriethoxysilane), catalysts (dibutyltindilaurate), fillers
(e.g., amorphoussilica), and other additives including antistatic agent [1,2]. Compared with traditional
organic rubber, RTV silicone rubber has good temperature tolerance, good chemical resistance, good
permeability, as well as excellent electrical-insulating properties [3–5]. For example, silicone rubber
consisting of PDMS and graphene oxide is not only used for high-voltage insulations, but can also be
used for high voltage field grading materials [6]. Thus, it has been widely used in aviation industry,
electrical and electronic equipment, medical treatment and air purification [7–9].
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Usually, commercial RTV silicon rubber, which is cross-linked using methyltriethoxysilane,
has low mechanical and thermal properties because of weak Si-O-Si inter-molecular interactions
in RTV silicone rubber [10]. Many studies have been launched to improve their properties including
changing silicone rubber gum molecular structure, increasing gum molecular weight, using hybrid
gum, mixing reinforcing fillers, vulcanizing auxiliaries as well as using different crosslinkers or
catalysts [11–14]. Among these affecting factors, crosslinker is an important factor influencing the
properties of RTV silicone rubber because the hydrolysis groups of crosslinker could react with
moisture to form Si-OH and then condense with Si-OH of PDMS to form three-dimensional network
structure, greatly improving their thermal and mechanical properties [15,16].

Consequently, there are many studies using various kinds of crosslinkers to improve properties
of RTV silicone rubber including γ-functional alkoxy silanes, new silanes combining polyhedral
oligomeric silsesquioxanes (POSS), dendronized silane polymers and silicon nitrogen polymers [17,18].
However, metal catalysts were needed to enhance cross-linking rate in the preparations of RTV silicone
rubber in these studies. The presences of metal catalysts would bring some drawbacks to RTV silicone
rubber, such as generating rubber yellowing, adhesive peak for uneven cross-linking reaction and
difficultly in packaging products [19,20]. Thus, it is necessary to develop a catalyst-free curing system
to prepare RTV silicone rubber.

Dow Corning Corporation reported a new self-crosslinker for the catalyst-free curing system in
the preparation of RTV silicone rubber using tri or tetra functional silanes such as R-Si-Q3 (R: alkyl
group, Q: hydrolysis groups) [21]. Our group used α-functional ketoxime silanes as self-crosslinkers
to prepare RTV silicone rubber, which exhibited better thermal and mechanical properties compared
to commercial RTV silicon rubber using metal catalyst [22]. However, the thermodynamics
parameters of α-amine ketoximesilanes hydrolysis reaction were not elaborated clearly, which will
limit the application of this novel RTV silicon rubber in industrial field because screening the best
self-crosslinking agents could save time for industrial processing in the preparation of RTV rubber.

Here, we synthesized five kinds of α-functional ketoxime silanes and discussed the impacts of
different functional groups on the hydrolysis activities in the preparations of RTV silicon rubber. Our
work could provide hydrolysis kinetic data of self-crosslinkers for this catalyst-free curing system,
which is essential for its practical use in industry.

2. Experimental

2.1. Materials

Chloromethyltrichlorosilane (Industrial grade, Huai’an Debang Chemical Co. Ltd., Huai’an,
China) were received without further purification. The following reagents were of analytical grade
and used as supplied: methylethylketoxime (MOS, Energy Chemical Co. Ltd., Jinan, China), n-hexane,
triethylamine, methylethylketoxime, dichloromethane, tetrahydrofuran, diethylamine, acetonitrile
(Tianjin Guangcheng Chemical Reagent Co. Ltd., Tianjin, China), polydimethylsiloxane (PDMS,
Mw = 23,700, Jinan Hailan Chemical Co. Ltd., Jinan, China), dibutyltindilaurate (DBTDL, Aladdin
Reagent Co., Shanghai, China), n-butylamine, di-n-butylamine, methyltri(methylethylketoxime)silane
(MOS, Chengdu Xiya Reagent Co. Ltd., Chengdu, China), ethanol(Jinan Hailan Chemical Co. Ltd.,
Jinan, China) and ultra pure water (18 MΩ·cm−1).

2.2. Instruments

The Fourier transform infrared spectroscopy (FT-IR) of KBr pellets of the materials were
obtained with a Bruker Tensor-27 spectrometer (Bruker International AG, Rheinstetten, Germany)
with the range of 400–4000 cm−1 at a resolution of 4 cm−1. 1H NMR was conducted on BrukerAV
300 MHz and BrukerAV 400 MHz Ultra Shield TM magnet spectrometer (Bruker International AG,
Rheinstetten, Germany) using CDCl3 as a solvent. Tetramethylsilane was selected as an internal
standard (δ = 0.00 ppm). Conductivity was measured by Shanghai Lei Ci DDS-307 conductivity
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meter (Shanghai Electronics Science Instrument Co., Ltd., Shanghai, China) under the given condition.
Weight-loss measurement was conducted in a Mettler Toledo SDTA-854 thermogravimetric analyzer
(TGA, Mettler Toledo, Greifensee, Switzerland) under a nitrogen atmosphere from 80 ◦C to 800 ◦C at a
heating rate of 20 ◦C·min−1.

2.3. Synthesis of α-Amine Ketoximesilanes

Scheme 1 illustrates the synthetic routes of α-(N,N-diethyl)aminomethyltri(methylethylketoxime)
silane (DEMOS), α-(N,N-di-n-butyl)aminomethyltri(methylethylketoxime)silane (DBMOS),
α-(N-n-butyl)aminomethyltri(methylethylketoxime)silane (n-BMOS), α-(N-cyclohexyl)aminomethyltri
(methylethylketoxime)silane (CMOS) and α-(β-aminomethyl)aminomethyltri(methylethylketoxime)silane
(AEMOS). Chloromethyltri (methylethylketoxime)silane was obtained with methylethylketoxime and
n-hexane. In a four-port flask under nitrogen atmosphere, the chloromethyltrichlorosilane (37.06 g) was
added into the mixture of methylethylketoxime (105 g) and n-hexane (120 mL) at room temperature
under nitrogen atmosphere. After 3 h reaction, the mixture was neutralized with triethylamine and the
un-reacted volatile oligomers were removed using reduced pressure distillation. Five kinds of α-amine
ketoximesilanes were synthesized using chloromethyltri(methylethylketoxime)silane and five amines
(i.e., diethylamine, di-n-butylamine, n-butylamine, cyclohexylamine and β-ethylenediamine). The
α-amine ketoximesilanes were added into the mixture of chloromethyltri(methylethylketoxime)silane
and acetonitrile with a condensing tube and a stirring system under nitrogen atmosphere. The reaction
lasted for 6 h at the temperature of 35 ◦C. After the reaction, the products were purified by distillation
under reduced pressure to remove the unreacted chemicals.
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Scheme 1. Synthetic routes of α-amine ketoximesilanes. 
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Scheme 1. Synthetic routes of α-amine ketoximesilanes.

2.4. α-Amine Ketoximesilanes Hydrolysis

Five α-amine ketoximesilanes, DEMOS, DBMOS, n-BMOS, CMOS, and AEMOS, were placed in
the acidic solution (pH = 6) of water and ethanol (5:13) to investigate the kinetic rates of hydrolysis
reaction. The reaction was carried out under the temperature of 25 ◦C and the humidity of 40%. FI-IR
and conductivity measurement were used to record the changes of OH, Si-O-Si stretching vibrations
and conductivity to calculate the kinetic rates of α-amine ketoximesilanes, respectively.

In this study, α-amine ketoximesilanes only participate in the hydrolysis reaction via Equation (1)
and the rate constant is K. Excess water and ethanol insures this hydrolysis reaction is irreversible.
Under the acidic system, the hydrolysis rate is found to be much faster than condensation rates
of α-amine ketoximesilanes in the system of water and alcohol. To obtain the hydrolysis rate
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constant, it was assumed that the hydrolysis completed before the condensation reaction started [23,24].
The equation for expressing the hydrolysis reaction could be described as follows:

d[M]/dt = −K[M] (1)

In the above equation, [M] is the molar concentration of α-amineketoximesilanes and K denotes
the hydrolysis rate constant. As reported previously, the calibration curves of α-amineketoximesilanes
concentration were linearly correlated with the absorption intensity of OH and Si-O-Si measured by
FT-IR as well as conductivity, which could be described by the equation of y = kx. In this equation,
y denotes concentration of α-amineketoximesilanes [M] and x denotes the absorption intensity or
conductivity ([A]). Integration of Equation (1) gives Equation (2):

ln[M]o/[M] = ln [A]o/[A] = Kt (2)

In Equation (2), t denotes the reaction time. [M]o and [A]o refer to the initial concentration
and absorption intensity of α-amineketoximesilanes, respectively. Therefore, the initial slope of the
ln [A]o/[A] versus time curve can be used to predict the magnitude of hydrolysis rate constant (K).
The reaction mixture was transparent and homogenous during the whole hydrolysis process.

2.5. Preparation of RTV Silicone Rubber

A series of crosslinkers, i.e., MOS, DEMOS, DBMOS, n-BMOS, CMOS, and AEMOS (0.01–0.1%
by weight), was added to the PDMS (Mw = 23,700), respectively, in a double roller mixer. The curing
temperature and humidity were maintained at the 25 ◦C and 40%, respectively, as recommended by
China’s standard method for curing RTV silicone rubber (DL/T 627-2012). After mixing for certain
time, the simple RTV silicone rubber were prepared for thermal stability measurement. Briefly, a certain
amount of silica (SiO2) was added with a magnetic stirrer into PDMS, which was placed in a 100 mL
beaker. After mixed uniformly, the mixture was placed in an oven at 150 ◦C for 15 min. After cooling,
the mixture was dissolved in n-hexane totally. Then, certain amounts of crosslinkers were added
into the solution with intense agitation. Finally, the mixture was cured in a steel mold at required
temperature to accomplish curing and obtain the RTV silicone rubber.

3. Results and Discussion

3.1. Synthesis and Characterization

The five crosslinkers DEMOS, DBMOS, n-BMOS, CMOS, and AEMOS were characterized by
FT-IR and 1H NMR (Figure 1 and Figures S1–S5). As shown in Figure 1, the strong broad peaks at
1156–1086 cm−1 indicated Si-O stretching in Si-ONC groups and the peak at 1274 cm−1 was caused
by the stretching vibrations of C-N bands. Furthermore, C=N stretching in HO-N=CMeEt induced
the moderate peaks at 1650 cm−1. The peaks at about 2800 cm−1 and around 1400 cm−1 were due to
C-H stretching and bending vibrations of alkyl groups. All these stretching and bending vibrations of
functional groups proved the target compounds were successfully obtained.

Correspondingly, 1H NMR resonances (400 MHz, CDCl3) arising from the synthesized compounds
were described as following: DEMOS, δ 2.31 (q, 6H), 2.14 (q, 4H), 1.95 (s, 1H), 1.82 (s, 9H), 1.00 (t, 9H),
0.98 (t, 6H); DBMOS, δ 2.48 (t, 4H), 2.33–2.08 (q, 6H), 1.82 (s, 9H), 1.72 (s, 2H), 1.43–1.33 (m, 4H),
1.33–1.22 (m, 4H), 1.03–0.91 (t, 9H), 0.87 (t, 6H); n-BMOS, δ 2.81–2.75 (q, 2H), 2.35 (dd, 1H), 2.25–2.12
(q, 6H), 1.97 (s, 9H), 1.82–1.78 (d, 2H), 1.48–1.62 (dd, 1H), 1.35–1.25 (m, 1H), 1.00 (t, 9H), 0.85 (t, 3H);
CMOS, δ 2.50 (dd, 1H), 2.33 (q, 6H), 2.18 (m, 1H), 1.82 (d, 2H), 1.71 (s, 9H), 1.67–1.58 (q, 4H), 1.57–1.50
(m, 2H), 1.25–1.06 (m, 4H), 1.01–0.95 (t, 9H); AEMOS, δ 2.78 (q, 2H), 2.40 (m, 2H), 2.26–2.12 (q, 6H),
1.98 (q, 2H), 1.82 (s, 9H), 1.42 (m, 1H), 1.23 (t, 2H), 1.04 (t, 9H) (Figures S1–S5).
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Figure 1. FT-IR spectrums of α-amine ketoximesilanes. DEMOS, α-(N,N-diethyl)aminomethyltri
(methylethylketoxime)silane; DBMOS, α-(N,N-di-n-butyl)aminomethyltri(methylethylketoxime)silane;
n-BMOS, α-(N-n-butyl)aminomethyltri(methylethylketoxime)silane; CMOS, α-(N-cyclohexyl)
aminomethyltri(methylethylketoxime)silane; AEMOS, α-(β-aminomethyl) aminomethyltri
(methylethylketoxime)silane.

3.2. Kinetic Rate of α-Amine Ketoximesilanes Hydrolysis

FT-IR spectroscopy and conductivity are quantitative tools for determining the concentrations
of target species in solution. From a theoretical view, the concentration of species should be lined
with the signal changes of measurement for a given set of sample parameters. Hence, the quantitative
information on the concentration changes of measured species could be obtained using signal
changes of measurement from the calibration equation [22]. Figures 2 and 3 show the evolution
of FT-IR spectra with time for DEMOS and AEMOS in the hydrolysis system of ethanol and water.
The integrated intensity of peak at 1050 and 3740 cm−1 were used for quantitative analysis because
these peaks were strong and without any overlap. The Si-O-Si band intensity increases as the
reaction time continues, suggesting the condensation reaction of hydrolyzed silane takes place
simultaneously in the hydrolysis system. Our kinetic data demonstrate the reaction rates of two process:
the hydrolysis process and condensation process of hydrolyzed silane. Because the approach using
FT-IR spectroscopy and conductivity allows for convenient determinations of silane concentrations
for calculating thermodynamics parameters of reactions compared to other free radical monitoring
approaches [22], calculating the respective kinetic data of hydrolysis process and condensation process
will not significantly improve our understanding of this material in the use of industrial field but
necessitate the associated increase in experiment cost. Therefore, FT-IR spectroscopy and conductivity
are reasonable approaches for monitoring hydrolysis system in our work.

From the conductivity data, the kinetics of α-amine ketoximesilanes hydrolysis exhibited a typical
exponential decay, suggesting that the reaction obey the first-order law (Figure S6). Based on the
experiment data and Equation (2), the kinetic rates of hydrolysis for DEMOS, DBMOS, n-BMOS, CMOS,
and AEMOS were calculated, as shown in Table 1. The good agreement between the experimental
data and fitting lines was observed in all the system with R2 > 0.5. From the calculated kinetic
rates listed in Table 1, it could be seen that the activity of hydrolysis reaction decreased with the
order of DEMOS > n-BMOS > DBMOS > CMOS > AEMOS at the given temperature and humidity.
The reaction rate constants across the five α-amine ketoximesilanes varied from 12.2 × 10−4 s−1 to
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7.6 × 10−4 s−1, reflecting the impacts of different functional groups on α-amine ketoximesilanes
hydrolysis are not obvious.Materials 2018, 11, x FOR PEER REVIEW  6 of 10 

 

 

 

Figure 2. FT-IR spectra of α-(N,N-diethyl)aminomethyltri(methylethylketoxime)silane (DEMOS) in 

the presences of ethanol and water under different hydrolysis time: (a) Si-O-Si stretching vibrations; 

and (b) OH stretching vibrations. The mass ratio of AEMOS, water and ethanol was 1:1:5. The 

experiments were performed at 25 °C and 40% humidity. 

 

Figure 2. FT-IR spectra of α-(N,N-diethyl)aminomethyltri(methylethylketoxime)silane (DEMOS) in the
presences of ethanol and water under different hydrolysis time: (a) Si-O-Si stretching vibrations; and
(b) OH stretching vibrations. The mass ratio of AEMOS, water and ethanol was 1:1:5. The experiments
were performed at 25 ◦C and 40% humidity.

Table 1. Reaction rate constants for α-amine ketoximesilanes hydrolysis in the system of ethanol and
water (1:5:13) at the temperature of 25 ◦C and the humidity of 40%.

Compounds Rate Constant (×10−4 s−1) Dependence

DEMOS 12.2 R2 = 0.611
n-BMOS 9.1 R2 = 0.829
DBMOS 8.6 R2 = 0.613
CMOS 8.2 R2 = 0.549

AEMOS 7.6 R2 = 0.795

DEMOS, α-(N,N-diethyl)aminomethyltri(methylethylketoxime)silane; DBMOS, α-(N,N-di-n-butyl)
aminomethyltri(methylethylketoxime)silane; n-BMOS, α-(N-n-butyl)aminomethyl tri(methylethylketoxime)
silane; CMOS, α-(N-cyclohexyl)aminomethyltri(methylethylketoxime)silane; AEMOS,α-(β-aminomethyl)
aminomethyltri(methylethylketoxime)silane.
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Figure 3. FT-IR spectrums of α-(β-aminomethyl)aminomethyltri(methylethylketoxime)silane (AEMOS) in
the presences of ethanol and water under different hydrolysis time: (a) Si-O-Si stretching vibrations; and
(b) OH stretching vibrations. The mass ratio of AEMOS, water and ethanol was 1:1:5. The experiments
were performed at 27 ◦C and 35% humidity.

3.3. Thermal Stability of RTV Silicone Rubber

The thermal stabilities of the RTV silicon rubber with α-amine ketoximesilanes and
mehtyltri(methylethylketoxime)siliane (MOS) as crosslinkers were evaluated by TGA. As shown
in Figure 4 and Figure S7, the degradation temperature (the thermal weight loss consisted 5% of
original weight) of pure elastomer and elastomer with MOS as a crosslinker and dibutyltin dilaurate
as a catalyst were significantly lower than those with DBMOS, DEMOS and AEMOS as crosslinkers.
These results demonstrated that α-amine ketoximesilanes had much more advantage in promoting
thermal stability of PDMS compared to the commercial MOS, which is consistent with our previous
study [22]. In addition, the degradation temperatures of elastomer with α-amine ketoximesilanes were
comparable with each other, indicating different functional groups on α-amine ketoximesilanes had
negligible impacts on thermal stability of PDMS.
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Figure 4. TGA curves of the cross-linked PDMS with different α-amine ketoximesilanes: (a) α-amine
ketoximesilanes: PDMS = 1:10; and (b) α-amine ketoximesilanes: PDMS = 1:45. DEMOS,
α-(N,N-diethyl)aminomethyltri(methylethylketoxime)silane; DBMOS, α-(N,N-di-n-butyl)aminomethyltri
(methylethylketoxime)silane; n-BMOS, α-(N-n-butyl)aminomethyltri(methylethylketoxime)silane;
CMOS, α-(N-cyclohexyl)aminomethyltri(methylethylketoxime)silane; AEMOS, α-(β-aminomethyl)
aminomethyltri(methylethylketoxime)silane.

4. Conclusions

A series of α-amine ketoximesilanes were synthesized and applied in the preparations of
environment-friendly RTV silicone rubber as self-crosslinkers. FT-IR and 1H NMR were used to
confirm the structures of α-amine ketoximesilanes. We adopted the FT-IR and conductivity methods
to investigate the kinetic process of α-amine ketoximesilanes hydrolysis in the system of water and
ethanol. The kinetic constant rates were in the range of 12.2 × 10−4 s−1 to 7.6 × 10−4 s−1. The fastest
hydrolysis reaction of α-amine ketoximesilanes was DEMOS, followed by n-BMOS, DBMOS, CMOS
and AEMOS at the given temperature and humidity. In comparison to RTV silicon rubber using MOS
as a crosslinker and dibutyltin dilaurate as a catalyst, the α-amine ketoximesilanes crosslinked RTV
silicon rubber exhibited a better performance in thermal stability.



Materials 2018, 11, 790 9 of 10

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/5/790/s1.
Figure S1: The 1H NMR spectrum of α-(N,N-diethyl)aminomethyltri(methyleth-ylketoximo)silane (DEMOS),
Figure S2: The 1H NMR spectrum of α-(N,N-di-n-butyl)aminomethyltri(methylethylketoxime)silane (DBMOS),
Figure S3: The 1H NMR spectrum of α-(N-n-butyl)aminomethyltri(methylethylketoxime)silane (n-BMOS),
Figure S4: The 1H NMR spectrum of α-(N-cyclohexyl)aminomethyltri(methylethylketoxime)silane (CMOS),
Figure S5: The 1H NMR spectrum of α-(β-aminomethyl)aminomethyltri(methylethylketoxime)silane (AEMOS),
Figure S6: Conductibility of α-amine ketoximesilanes in the presences of ethanol and water under different
hydrolysis time. The mass ratio of α-amine ketoximesilanes, water and ethanol was 1:5:13. The experiments
were performed at the temperature of 25 ◦C and the humidity of 40%, Figure S7: TGA curves of pure PDMS. The
degradation temperature (the thermal weight loss consisted 5% of original weight) of pure PDMS was 343 ◦C.
The degradation temperature (the thermal weight loss consisted 5% of original weight) of silicone rubber with
CMOS, n-BMOS, DBMOS, DEMOS was 448 ◦C, 443 ◦C, 438 ◦C and 435 ◦C, respectively.
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