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Abstract: A computer-aided design (CAD)-based approach and sol-gel chemistry were used to
design a multilayer dental post with a compositional gradient and a Young’s modulus varying from
12.4 to 2.3 GPa in the coronal-apical direction. Specifically, we propose a theoretical multilayer post
design, consisting of titanium dioxide (TiO2) and TiO2/poly(ε-caprolactone) (PCL) hybrid materials
containing PCL up to 24% by weight obtained using the sol-gel method. The current study aimed
to analyze the effect of the designed multilayer dental post in endodontically treated anterior teeth.
Stress distribution was investigated along and between the post and the surrounding structures.
In comparison to a metal post, the most uniform distributions with lower stress values and no
significant stress concentration were found when using the multilayer post.

Keywords: computer-aided design (CAD); mechanical analysis; finite element analysis (FEA);
composites; hybrid materials; biomedical applications

1. Introduction

The role of computer-aided design (CAD) for theoretical and experimental analyses has been
widely used for different applications [1–6]. Such methods have been used to develop several
kinds of polymeric and composite devices and have received considerable attention in biomedical
applications [7–10].

The restoration of endodontically treated teeth represents a challenge as it generally involves the
use of both metals and non-metallic materials [11]. In this field, many dental post-core systems have
been used [11,12]. Initially, metal posts were chosen due to their long-term safety. As a consequence
of mismatch between the elastic modulus of metal alloys and the surrounding structures, stress
concentration generally occurs, often leading to catastrophic root fracture [12]. For this reason, studies
have been devoted to the development of different shapes, sizes, and materials for the post [12].

Considering the results of previous studies, the use of materials with a lower elastic modulus,
such as fiberglass-reinforced composites, may provide more favorable stress distribution. However,
these composite posts have an elastic modulus, often ranging from 45.7 to 53.8 GPa [12,13], that is
lower than that of metal posts, e.g., 95 GPa for gold and 110 GPa for titanium [12,14], but is still higher
than those of natural tissues, which is 18.6 GPa for dentin [12,15].
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Studies on endodontically treated canine teeth showed interesting results in terms of stress
distribution, focusing on the ferrule effect and on the role of the specific material-shape combination of
the post [16].

The mechanical behavior of a restored tooth is negatively affected by a dental post created using
a high modulus material [11]. A dental post should stabilize the core without weakening the root [11].
As reported in the literature [11], stress concentration generally occurs at the apical and cervical regions
of the tooth. Thus, an ideal post would possess a stiffness that decreases from the coronal part to the
apical end, optimizing the stress transfer mechanism [11]. Given this context, functionally graded
materials have also been considered for the development of dental posts with tailored properties,
to overcome the drawbacks related to the use of both flexible and rigid posts [11].

Titanium [17], poly(ε-caprolactone) (PCL) [9,10,18–21], and several organic-inorganic hybrid
materials obtained via sol-gel method [22–31] have been proposed for different biomedical applications.
For example, titanium dioxide (TiO2) and TiO2/PCL hybrid materials containing PCL up to 24% by
weight were obtained using the sol-gel method. In this case, heat and pressure were applied for powder
compaction. The effects of the processing conditions and the amount of polymer on the performance
of the materials were properly evaluated [17].

In this study, we theoretically design a multilayer dental post with a stiffness decreasing from
the coronal part to the apical end using a CAD-based approach and sol-gel chemistry. In particular,
a multilayer post with a compositional gradient of sol-gel synthesized materials and a Young’s modulus
ranging from 12.4 to 2.3 GPa in the coronal-apical direction was designed according to the values
experimentally obtained [17] for TiO2/PCL 94/6 (12.4 GPa), TiO2/PCL 88/12 (9.2 GPa), TiO2 (4.1 GPa),
and TiO2/PCL 76/24 (2.3 GPa). In endodontically treated canine teeth, the stress distribution along
the multilayer post and at the interface between the post and the surrounding structure was assessed
and compared to that of a titanium post. The null hypothesis was that the proposed multilayer post
with a compositional gradient and a Young’s modulus varying in the coronal-apical direction would
not affect the stress distribution.

2. Materials and Methods

2.1. Materials and Post

A titanium post (post A) was used as the control. TiO2 and TiO2/PCL hybrid materials containing
PCL up to 24% by weight were obtained via sol-gel method as described in a previous study [17].

As the experimentally-obtained values of the Young’s modulus and Poisson’s ratio for these
materials (12.4 GPa and 0.27 for TiO2/PCL 94/6; 9.2 GPa and 0.30 for TiO2/PCL 88/12; 4.1 GPa and
0.27 for TiO2; and 2.3 GPa and 0.30 for TiO2/PCL 76/24) [17], a multilayer post with a compositional
gradient and a modulus varying from 12.4 to 2.3 GPa in the coronal-apical direction (post B) was
designed, analyzed, and compared with a titanium post (post A) hypothetically having the same
geometrical characteristics.

The geometrical characteristics of the posts are reported in Table 1.

Table 1. Geometrical characteristics of the posts: length of coronal part, length of conicity part, coronal
diameters, and apical diameters.

Total Length (mm) Length of Coronal Part
(Cylindrical) (mm)

Length on Conicity
Part (mm) Coronal Diameter Apical Diameter

15 mm 7 mm 8 mm Ø 1.05–Ø 1.25–Ø 1.45 Ø 0.55–Ø 0.75–Ø 0.95

2.2. Generation of the Tooth Solid Model

An upper canine was analyzed using a micro-CT scanner system (Bruker microCT, Kontich,
Belgium). Micro-CT scan images were obtained and the three-dimensional (3D) CAD model of the tooth
was generated as in a previous study [16], where a total of 951 slices were collected (1024 × 1024 pixels)
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and 252 slices were used. To process the image data sets, ScanIP® (3.2, Simpleware Ltd., Exeter, U.K.)
was used. A previously adopted approach was used to generate the 3D model [16]. Briefly, procedures
related to image segmentation and filtering were used, and the 3D tessellated model was created [16].
Blending operations were performed via converting cross sections of the tessellated models into
surfaces. ScanTo3D® (SolidWorks® 2017, Dassault Systemes, Paris, France) was used to manage
the tessellated geometry. Specific procedures were used to create lofting surfaces and to ensure the
congruence of interfacial boundaries of tooth tissues [16]. The system of coordinates, the geometrical
model, and features were previously reported [16].

Two different geometric models of the restored tooth were analyzed. Specifically, two posts were
considered: posts A and B (15 mm in length) with a conical-tapered shape. A 0.1 mm thick cement
layer was added between the abutment and crown. In the canal, the cement was added between the
post and the root. In addition, the periodontal ligament with a thickness of 0.25 mm was modelled
around the root [16].

2.3. Numerical Simulation

The geometric models of endodontically treated anterior teeth were imported into HyperMesh®

(HyperWorks®-14.0, Altair Engineering Inc., Troy, MI, U.S.).
Finite element (FE) analyses were performed on two models: (1) Model A (a tooth with Post A)

and (2) Model B (a tooth with Post B). The values of Young’s modulus and Poisson’s ratio for the
components of the tooth model are reported in Table 2.

Table 2. Young’s modulus and Poisson’s ratio for the components of the tooth model [16]. * The values
varied from the coronal to the apical part of the part according to the different regions [17] of the
proposed multilayer post.

Component Young’s Modulus (GPa) Poisson’s Ratio

Lithium disilicate crown 70 0.30
Crown cement 8.2 0.30

Abutment 12 0.30
Post A 110 0.35
Post B 12.4–2.3 * 0.27–0.30 *

Post cement 8.2 0.30
Root 18.6 0.31

Periodontal ligament 0.15 (×10−3) 0.45
Food (apple pulp) 3.41 (×10−3) 0.10

As previously reported [16], a 3D mesh was created and 3D solid CTETRA elements with four
grid points were considered for the models. Consistent with a previous methodology [16], the study
focused on the closing phase of the chewing cycle and solid food acting on the crown surface, using
apple pulp with a Poisson’s ratio and Young’s modulus of 0.10 and 3.41 MPa, respectively (Figure 1).
Slide-type contact elements were considered between the food and tooth surface. For the contact
condition between each part of the post restoration, the “freeze” type was used.

Briefly, convergence and mesh independence studies were also performed to obtain accurate
results. Mesh convergence was performed to determine the number of elements needed in the model
to ensure that the results were not affected by varying the mesh size. The complexity of the model
vs. response (i.e., stress) was recorded. Following convergence, mesh refinement was performed.
Thus, further technical features of the analyzed models included the total number of grids (structural)
(51,552), elements excluding contact (213,361), node-to-surface contact elements (14,094), and degrees
of freedom (188,127).
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Figure 2. Maximum principal stress distribution (MPa): model A and model B. 

Figure 1. Finite element (FE) model according to the components in the geometric model.

With regard to nodal displacements, the FE models of the restored tooth constraints were applied
in all the directions on the surface of the periodontal ligament. On the surface of the crown, a load
of 50 N was applied at 45◦ to the longitudinal axis of the tooth [16]. As a linear elastic behavior was
assumed for all the components, a non-failure condition was considered and linear static analyses
were performed. The maximum principal stress and von Mises stress distributions were evaluated
along the post and at the interface between the post and the surrounding structure.

3. Results

The maximum principal stress and von Mises stress distributions were observed in the abutment,
post, post cement, root, and periodontal ligament. The considered cross sections are depicted in
Figures 2 and 3.
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Figure 3. Von Mises stress distribution (MPa): model A and model B.

Differences were found between the two models in terms of the maximum principal stress and
von Mises stress distributions. If compared to model B, higher stress regions were observed for model
A along the post near the cervical margin of the tooth. Comparing the analyzed models, the most
uniform stress distribution was achieved for post B. The maximum principal stress and von Mises
stress distributions along the post are displayed in Figures 4–7.
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Stress concentrations were observed along the post in model A, whereas lower stress values were
evident for model B. In addition, with regard to the stress distribution at the interface between the post
and the surrounding structures (Figures 8–11), for model A, high stress gradients were found as well
as fluctuations and changes up to the apical part, which were much more marked than in model B.
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In comparison to model A, model B showed gradual changes and lower stress values
(Figures 8–11). The differences between a cross section at the cervical margin of the tooth of the
two models were compared. The results are displayed in Figures 12–14.
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Figure 13. Maximum principal stress and von Mises stress distributions (MPa) in the cross-section at
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In particular, Figures 13 and 14 report the maximum principal stress and von Mises stress
distributions in the cross-section at the cervical margin along the direction indicated by the red line in
Figure 12. The obtained results demonstrate high stress gradients for model A at the interface between
the surrounding structure and the post.
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4. Discussion

A dental post designed using a high-modulus material clearly alters the mechanical behavior of
the restored tooth [11,32]. To prevent catastrophic root fracture, fiberglass posts and resin cores are
currently used as post-core systems [12]. The performance of post-and-core systems have been widely
investigated [33]. As many efforts have been made to develop composite posts using different shapes
and kinds of fibers, such as carbon, glass, and quartz, clinical procedures have been continuously
modified [34–36]. Although many experimental and theoretical analyses and clinical studies have been
completed, no precise recommendations have been made [35]. A general procedure includes selection
of the post, the preparation of the root canal, the use of adhesive resin cements or self-adhesive cements
to bond the post, which must suitably extend to retain the core, and the placement of a crown [35].
However, with regard to devices, materials, and clinical procedures, contradictory opinions still
remain [35,37]. The performance of the fiber posts depends on the manufacturing process, matrix, fiber
properties, distribution and amount of fibers [37]. Several clinical studies have also been performed
on patients with teeth restored using posts fabricated from carbon fiber-, quartz fiber-, or glass
fiber-reinforced composites [37–42].

During loading, a high stress concentration normally occurs at the apical part of the post [11,43].
When the tooth structure is compromised, an increase in flexure may cause stress concentration at the
cervical region. Furthermore, stress concentration should be ascribed to the tapering of the root canal
at the apical region as well as to the characteristics of the post [11,44]. High stress concentrations arise
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from the stiffness mismatch between the post and surrounding structures [11,45]. An ideal post should
possess a stiffness decreasing from the coronal to apical part to optimize stress distribution.

As many technical features related to the development of fiber-reinforced composite posts have
been widely discussed in the literature, a CAD-based approach and sol-gel chemistry were considered
in the current research to theoretically design a multilayer post with a stiffness decreasing from the
coronal part to the apical end.

Sol-gel chemistry has been proposed as a method to develop organic-inorganic hybrid materials
with specific properties for biomedical applications [22–31]. Thus, benefiting from previous
experimental results [17], TiO2 and TiO2/PCL hybrid materials containing PCL up to 24% by weight
obtained using the sol-gel method were used to design a multilayer dental post with tailored properties.
In particular, with regard to endodontically treated anterior teeth, the effect of a multilayer post with
a compositional gradient of sol-gel synthesized materials and a Young’s modulus ranging from 12.4 to
2.3 GPa in the coronal-apical direction was evaluated in this study.

As a result of the multilayer structural design for post B, the performed analyses evidenced
that higher values of maximum principal and von Mises stresses were found along the post near the
cervical margin of the tooth for model A compared with model B, which showed no stress concentration
(Figures 2 and 3). The multilayer structure, having different mechanical properties, allowed us to tailor
the performance in the coronal-apical direction and avoid stress concentration, thus providing a better
stress distribution in the restored tooth. Figures 6 and 7 confirm that the designed multilayer post
(post B) provided better stress distribution along the center of the post from the coronal to the apical
part, if compared to the titanium post (post A).

At the interface between the surrounding structures and the post, the maximum principal stress
and von Mises stress distributions proved the important role of the designed post (Figures 10 and 11).
In the case of the titanium post, the stress transfer mechanism involved higher values of stress as well as
much more marked fluctuations and changes that were evident up to the apical part (Figures 10 and 11).
Consistently, the analysis results of a cross section at the cervical margin of the tooth showed stress
gradients for model A that were higher than those observed for model B (Figures 13 and 14). Finally,
the null hypothesis that the proposed multilayer post with a compositional gradient and a Young’s
modulus varying in the coronal-apical direction in the restored model would not affect the stress
distribution was rejected.

Potential limitations include the linear static analyses performed considering a non-failure
condition and the approach used to design of the multilayer post, which was based on the results
obtained in a previous work [17]. Regardless of these shortcomings, the current study should be
considered as a first work toward the theoretical design of a multilayer dental post consisting of TiO2

and TiO2/PCL hybrid materials obtained using sol-gel method, with a compositional gradient and a
Young’s modulus varying in the coronal-apical direction.

5. Conclusions

Within the limitations of the present study, the following conclusions were drawn: (1) A theoretical
design of a multilayer dental post was reported using CAD-based approach and sol-gel chemistry;
(2) a model of an anterior tooth restored with a multilayer post, consisting of TiO2 and TiO2/PCL
hybrid materials obtained via sol-gel method, was analyzed; and (3) in comparison to a titanium
post, the most uniform stress distribution with no significant stress concentrations was found in the
proposed multilayer dental post with a compositional gradient and a Young’s modulus varying in the
coronal-apical direction.
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