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Abstract: In this study, poly(2,5-bis(3,4-ethylenedioxythienyl)pyridine)/graphitic carbon nitride
composites (poly(BPE)/g-C3N4) were prepared by an in situ chemical polymerization method.
Composites were characterized by using Fourier transform infrared spectroscopy (FT-IR),
ultraviolet–visible absorption spectra (UV–vis), X-ray diffraction (XRD), energy-dispersive X-ray
spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy
(TEM). Furthermore, electrochemical sensors were applied for the electrochemical determination of
Cd2+ and Pb2+ using the differential pulse voltammetry (DPV) method. The results indicated that
10 wt % poly(BPE)/g-C3N4 composite-modified electrode exhibited linear detection ranging from
0.12 to 7.2 µM and 0.08 to 7.2 µM for Cd2+ and Pb2+, with detection limits (S/N = 3) of 0.018 µM and
0.00324 µM. Interference analysis suggested that the 10 wt % poly(BPE)/g-C3N4-modified electrode
can be applied for the detection of the Cd2+ and Pb2+ in real samples.

Keywords: poly(BPE)/g-C3N4 composite; DPV; electrochemical sensor; simultaneous detection;
heavy metals

1. Introduction

Industrial waste water usually contains heavy metal ion—such as Zn2+, Cd2+, Pb2+, Cu2+ and
Hg2+, the accumulation of these heavy metal ions in the human body can cause many chronic
diseases [1–3]. For example, an imbalance of Zn2+ can reduce the amount of vitamin C and iron
in the body, and cause iron deficiency anemia. Cd2+ accumulation to a certain value in the human
body will lead to renal failure. Both lead and mercury affect the brain and nervous system, and result
in mental retardation and brain damage in children [4]. Therefore, developing a simple and sensitive
analytical method to detect these heavy metal ions is essential [5].

Up to now, various techniques have been used for detection of heavy metals, including inductively
coupled plasma mass spectrometry [6], inductively coupled plasma atomic emission spectrometry [7],
atomic fluorescence spectrometry [8], atomic absorption spectrometry [9], surface enhanced Raman
spectrometry, and electrochemical analysis technology [5,10]. However, most of these methods
require expensive equipment, complicated procedures, and specialized training. Due to its high
sensitivity, low operating cost, and fast response, electrochemical analysis has been considered as
an effective technique for the determination of heavy metal ions. Among the current developed
electrochemical approaches, anodic stripping voltammetry (ASV) has been widely accepted as one of
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the most simple and efficient techniques, since it can be operated easily and can analyze several heavy
metal ions simultaneously. The ASV includes two steps: the preconcentration step and the stripping
step. During the preconcentration step, a low potential is applied, causing the metal ions to become
concentrated on the working electrode and then reduced to their reduction states. During the stripping
step, potential is changed from low potential to high potential, causing the reduced metal ions to
change to their oxidation states, and the reduced metals are stripped from the electrode surface into
the solution in their ionic forms. From the stripping peak potential and current, the metal ions can be
qualitatively and quantitatively determined.

The sensitivity of the electrochemical sensor mainly relies on its electrochemical properties and
the adsorption ability of ions. To improve the sensitivity of the electrode, novel sensing materials must
be developed [5]. The ineffectiveness of conventional electrodes can be improved by modifying them
with electrochemically active materials, such as metals [11], metal oxides [12], carbon materials [13],
and conducting polymers [14]. Among them, carbon materials and their composites have great
applications in the field of sensors [15–17]. In recent years, graphitic carbon nitride (g-C3N4) has drawn
much attention for its simple preparation, good chemical stability, high catalytic activity, and green
environmental protection material [18]. Besides that, g-C3N4 shows a two-dimensional structure
constructed from tri-s-triazine units connected by planar amino groups, and it can be considered as
containing nitrogen-substituted graphite hexatomic ring units [19]. Moreover, it has a structure similar
to graphene, with layers connected to each other through weak van der Waals forces between the
C–N covalent bonds. Because of its exceptional optical, thermal, electrical, mechanical, and chemically
inert properties, applications of g-C3N4 are typically lithium-ion batteries [20], water splitting [21],
fuel cells [22], photocatalysis [23], and electrochemiluminescence and fluorescent sensor fields [24,25].

Recently, more and more attention has been focused on the application of g-C3N4 in the field
of electrochemical sensors [26–28]. It has been reported that metal ions can be absorbed on a
g-C3N4 matrix through electrostatic bonding or coordination with several N-atoms in the tri-s-triazine
ring [29]. However, the poor conductivity of g-C3N4 strongly effects its use in practical applications.
Therefore, the application of g-C3N4 in electrochemical sensing is still challenging. Studies show
that the conductivity of the g-C3N4 can be enhanced by using some electroactive materials, such as
graphene, metal oxides, and conjugated polymers [17,30,31]. These composite materials can enhance
the sensitivity and selectivity of the electrodes. Among these electroactive materials, conjugated
polymers (such as polyaniline, polypyrrole, polythiophene) are widely used as electroactive materials
with their unique π-conjugation system, high conductivity, and fast electron properties. In recent
years, the donor–acceptor–donor (D–A–D) type of conjugated polymer has been considered an ideal
substance because its donor and acceptor units regularly alternate connections in each structural unit.
In addition, the D–A–D type of conjugated polymer contains O, S, and N atoms, which can donate two
unpaired electrons. Thus, the polymer can coordinate readily to positively charged heavy metal ions.
Therefore, the composite of a D–A–D type conjugated polymers and g-C3N4 can be used as an excellent
electrode modification material for the efficient detection of heavy metal ions by electrochemical sensor.

In this work, poly(2,5-bis(3,4-ethylenedioxythienyl)pyridine)/graphitic carbon nitride composites
(poly(BPE)/g-C3N4) were prepared by an in situ chemical polymerization method and applied to for
the simultaneous detection of Cd2+ and Pb2+. The combination of poly(BPE) and g-C3N4 not only
improved the conduction pathway on the electrode surface, but also produced a strong conjugating
effect on them, thus enhancing the adsorption of metal ions. The metal ions could coordinate with the
lone-pair electrons of nitrogen in the tri-s-triazine unit, and the nitrogen and sulfur atoms in poly(BPE)
had similar effects. Overall, using this approach for the determination of Cd2+ and Pb2+ offers several
advantages including low cost, simple preparation, high selectivity, good sensitivity, and reusability.
This approach might be an alternative tool for heavy metal detection in environmental monitoring.
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2. Materials and Methods

2.1. Materials

EDOT (3,4-ethylenedioxythiophene), n-butyl lithium, 3,6-dibromopyridazide, and ferric chloride
were bought from Shanghai Chemical Reagents Company (Shanghai, China). All the other chemicals
and solvents, including urea, zinc chloride, sodium acetate (NaAc), acetic acid (HAc), and chloroform
were used as received without further purification. The 0.1 M acetate buffer solution (ABS) was obtain
through mixing different volume ratio stock solutions of 0.1 M NaAc and HAc. Standard solutions
of 1 × 10−3 M of Cd2+ and Pb2+ were prepared by dissolving lead acetate and cadmium acetate in
ultrapure water, respectively.

2.2. Instruments and Characterizations

The structure and properties of the composites were investigated by Fourier transform infrared
spectroscopy (FT-IR), ultraviolet–visible absorption spectra (UV–vis), X-ray diffraction (XRD),
energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and transmission
electron microscopy (TEM). The FT-IR spectra of the composites were recorded with a
BRUKER-QEUINOX-55 FTIR spectrometer (Bruker, Billerica, MA, USA) using KBr pellets. The UV–vis
spectra of the samples were recorded with a UV–vis spectrophotometer (UV4802, Unico, Dayton, NJ,
USA). XRD patterns were obtained by using a Bruker AXS D8 diffractometer (Bruker, Billerica, MA,
USA), scan range (2θ), which was 10–80◦ with monochromatic CuKα radiation source (λ = 0.15418 nm).
The SEM images were carried out on a scanning electron microscope (SEM, Hitachi, Chiyoda-ku, Japan,
S-4800, operating voltage, 5 kV), with powdered samples scattered on the conducting resin. Before SEM
imaging, the samples were sputtered with thin layers of aurum under vacuum. Transmission electron
microscopy (TEM, Akishima, Tokyo, Japan, model 2100) was performed with an accelerating voltage
of 100 kV. The elemental percentages of samples were measured using energy-dispersive X-ray
spectroscopy, which was taken on a Leo1430VP microscope (Carl Zeiss Inc., Oberkochen, Germany)
with operating voltage 5 kV.

2.3. Preparation of g-C3N4 and Poly(BPE)/g-C3N4 Composites

2.3.1. Preparation of g-C3N4

The graphitic carbon nitride samples were prepared by a pyrolysis method using urea as
precursor [32]. Typically, 10 g of urea was loaded into a 40 mL crucible with a cover. The crucible was
placed in a muffle furnace under air condition and heated to 500 ◦C with a heating rate of 10 ◦C/min.
Then, it was heated at 500 ◦C for 2 h and at 550 ◦C for another 2 h. Finally, the crucible was naturally
cooled to room temperature, and a pale-yellow powder was obtained. The sample was washed with
deionized water and absolute ethanol three times and dried at 60 ◦C for 24 h.

2.3.2. Preparation of Monomer BPE

The monomer of BPE was synthesized based on the previous report and reaction process as shown
in Scheme 1 [33]. EDOT (5.0 g, 35.2 mmol) was added to 100 mL of anhydrous THF. Upon cooling
to −78 ◦C, n-BuLi was added to the solution drop-wise (14.7 mL, 2.4 M) and stirred for 60 min,
then ZnCl2 (4.8 g, 16.7 mmol) was added. The mixture solution was stirred at 0 ◦C for 60 min before
Pd(PPh3)4 (1.0 g, 0.865 mmol) and 2,5-dibromopyridine (2.08 g, 8.78 mmol) in 25 mL THF was added.
The reaction mixture was stirred at 80 ◦C for another 72 h. Finally, the mixture was cooled to room
temperature, and the THF was removed under reduced pressure. The product was extracted using
chloroform, then further purified by recrystallization by methanol to obtain canary yellow solid.
The structure of the monomer was characterized by 1H-NMR (in Figure 1). 1H-NMR: (400 MHz,
CDCl3): δ [ppm] 4.30 (m, 8H), 6.33 (s, 1H), 6.43 (s, 1H), 7.91 (m, 2H), 8.91 (s, 1H).
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magnetic stirring for 24 h. Finally, the sample was washed several times with chloroform, methanol, 
and distilled water, and then dried in an oven at 60 °C for 12 h. 
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The bare glassy carbon electrode (GCE) was polished with 0.3 and 0.05 μm alumina slurries in 
sequence. The GCE was modified by a simple casting method. Five microliters of poly(BPE)/g-C3N4 
dispersion (1 mg/mL) was spread onto the surface of the cleansed electrode and left to dry at 40 °C. 
The different weight percentages of poly(BPE)/g-C3N4, pure poly(BPE), and g-C3N4-modified GCE 
were prepared using the same procedure. 

2.5. Electrochemical Measurements 

All electrochemical measurements were carried out on CHI660C electrochemical workstation 
(ChenHua Instruments Co., Shanghai, China). In the three-electrode system, composite-modified 
electrode, platinum electrode, and saturated calomel electrode were used, respectively, as the 
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carried out in a mixing solution of 5 mM [Fe(CN)6]3−/4− with 0.1 M KCl with a scanning rate of 50 
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Figure 1. 1H-NMR spectra of bis(3,4-ethylenedioxythienyl)pyridine (BPE) in CDCl3, starred peak come
from CDCl3.

2.3.3. Preparation of Poly(BPE)/g-C3N4 Composites

To prepare the poly(BPE)/g-C3N4 composites, a certain weight of g-C3N4 was dispersed in 20 mL
chloroform with ultrasonication for 30 min. Monomer BPE dissolved in 10 mL chloroform was added
and ultrasonic dispersion applied for another 30 min. After that, FeCl3 was dispersed in 10 mL
chloroform and added to the above solution drop by drop as oxidant. The reaction was stirred under
magnetic stirring for 24 h. Finally, the sample was washed several times with chloroform, methanol,
and distilled water, and then dried in an oven at 60 ◦C for 12 h.

Different weight percentages of poly(BPE)/g-C3N4 composite were obtained with a similar
method. The pure poly(BPE) was prepared by a similar method without the addition of g-C3N4.

2.4. Preparation of Modified Electrodes

The bare glassy carbon electrode (GCE) was polished with 0.3 and 0.05 µm alumina slurries in
sequence. The GCE was modified by a simple casting method. Five microliters of poly(BPE)/g-C3N4

dispersion (1 mg/mL) was spread onto the surface of the cleansed electrode and left to dry at 40 ◦C.
The different weight percentages of poly(BPE)/g-C3N4, pure poly(BPE), and g-C3N4-modified GCE
were prepared using the same procedure.

2.5. Electrochemical Measurements

All electrochemical measurements were carried out on CHI660C electrochemical workstation
(ChenHua Instruments Co., Shanghai, China). In the three-electrode system, composite-modified
electrode, platinum electrode, and saturated calomel electrode were used, respectively, as the working
electrode, counter electrode, and reference electrode. Cyclic voltammograms (CV) were carried out
in a mixing solution of 5 mM [Fe(CN)6]3−/4− with 0.1 M KCl with a scanning rate of 50 mV·s−1.
Differential pulse voltammetry (DPV) was performed in 0.1 M ABS (pH = 4.5) with potential interval
−1.4 to −0.2 V; deposition potential, −1.4 V; deposition time, 210 s; pulse width, 50 ms; pulse period,
100 ms; increment potential, 2 mV.
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3. Results and Discussion

3.1. Structure Characterization of Poly(BPE)/g-C3N4 Composites

Figure 2A represents the FT-IR spectra of g-C3N4, poly(BPE), and poly(BPE)/g-C3N4 composites.
In the spectra of g-C3N4, the band at 812 cm−1 is attributed to the bending vibration of the triazine
ring modes out of plane. The weak peak at 890 cm−1 is assigned to the cross-linked heptazine
deformation mode [34]. The fingerprint regions at the range of 1230–1650 cm−1 correspond to the
stretching vibrations of C–N and C=N in heterocycles [35]. A broad vibration band appears in the
region of 3000–3500 cm−1, which can be assigned to the stretching vibrations of aromatic N–H bonds
of the uncondensed amino group (–NH2) [36]. For the pure poly(BPE), the band at 2800–3100 cm−1

corresponds to the aromatic C–H stretching vibrations. The peaks at 1439, 1358, and 1300 cm−1 are
due to the C=C asymmetric stretching vibration and C–C stretching vibration in the poly(BPE) ring.
The bands at 1663 cm−1 and 1658 cm−1 are C=N stretching in the pyridine. There are only a few
discrepancies between the spectra of g-C3N4 and poly(BPE)/g-C3N4 composite, and it is probably
because the peaks of g-C3N4 and poly(BPE) at 1230–1650 cm−1 have been superimposed. The new
weak band at 1081 cm−1 was observed after incorporating the polymer into the composite. This band
is assigned to the presence of ν(C–O–C) in the ethylenedioxy group of EDOT, due to the strong
interaction between poly(BPE) and g-C3N4 [37–39].
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Figure 2B represents the UV–vis spectra of g-C3N4, poly(BPE), and poly(BPE)/g-C3N4 composites.
The UV–vis spectra of g-C3N4 shows characteristic absorption peaks from 270 to 430 nm, which are
characteristic peaks of the carbon nitride. Furthermore, the absorption peaks of poly(BPE) appear
at 348, 490, and 586 nm, which are assigned to the π–π* transition of the thiophene ring [39]. In the
case of poly(BPE)/g-C3N4 composites, aside from the characteristic peak of g-C3N4, the absorption
peak appears at 490 nm for 10 wt % poly(BPE)/g-C3N4 and 15 wt % poly(BPE)/g-C3N4. The results
suggested that poly(BPE) was successfully incorporated into the g-C3N4 matrix.

Figure 2C exhibits the XRD patterns of poly(BPE), g-C3N4, and poly(BPE)/g-C3N4 composites.
The poly(BPE) shows broad characteristic peaks at about 2θ = 22.5◦, which is assigned to the π–π*
stacking within the molecule. Moreover, the sharp diffraction peaks at 2θ ≈ 33◦, 35◦, 41◦, 49◦, and 54◦

are associated with the FeCl4– doping agent [38,39]. Diffraction peaks of g-C3N4 are located at 27.1◦

and 13.2◦, which can be indexed as (002) and (100) diffraction planes for graphitic materials (JCPDS
87-1526). The strongest diffraction peak of graphite appears at 2θ = 27.1◦, which is attributed to
the planes of graphitic structures. The minor peak at 13◦ corresponds to the hole-to-hole arrays of
tri-s-triazine units. For the composites, no other peaks appeared, indicating the crystal structure
was not changed. However, it can be seen that as the intensity of (100) planes of g-C3N4 decreases,
the amount of poly (BPE) increases, suggesting that the original ordered intralayer structures of g-C3N4

probably suffered from damage in the presence of poly(BPE) [40,41].
Figure 2D depicts the EDS of g-C3N4 and poly(BPE)/g-C3N4 composites and poly(BPE).

As shown in Figure 2D, the EDS spectrum of the pure g-C3N4 samples reveal the existence of C
and N elements [42]. In the spectrum of pure poly(BPE), the C, N, O, and S elements are the major
chemical elements, and a small amount of Fe element was detected due to the addition of ferric
chloride [38]. For the poly(BPE)/g-C3N4, except the C and N elements, the O and S elements were
also detected, which provided powerful evidence for the existence of poly(BPE). In addition, as the
percentage of poly(BPE) increases, the weight percentage of S element in the composite increases from
0.21% to 1.14%.

Figure 3 presents the SEM and TEM images of g-C3N4, poly(BPE), and 10 wt % poly(BEP)/g-C3N4

composite. As shown in Figure 3A,D, the sheet-like g-C3N4 was like the fold of the sheet structure
and appears as ultrathin and well-spread sheets. As shown in Figure 3B,E, the pure poly(BPE)
exhibits uneven thickness of the irregular lump material. As shown in Figure 3C,F, slightly less
poly(BPE)/g-C3N4 (at 10 wt %) grows on the surface of g-C3N4 compared to pure g-C3N4 and
poly(BPE), forming a net-like structure. Due to the richness of amino, g-C3N4 can be easily dispersion
by the method of ultrasonication. The BPE monomer can be adsorbed on the surface of sheet-like
g-C3N4 by the π–π aromatic interaction and electrostatic attraction. During the in situ chemical
polymerization from the effect of ferric chloride, the monomer adsorbed on the surface of g-C3N4 grew
on g-C3N4 to form poly(BPE) [43].
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3.2. Electrochemical Characterization of Poly(BPE)/g-C3N4 Composites

The electrochemical activity of differently modified GCEs was evaluated using CV in a redox
probe solution containing 5 mM [Fe(CN)6]3−/4− in 0.1 M KCl. As shown in Figure 4A, all the modified
electrodes show well-defined redox peaks, which are related to the [Fe(CN)6]3−/4− redox processes.
Compared to poly(BEP) and g-C3N4-modified GCE, the redox peak of the poly(BEP)/g-C3N4

composite-modified GCE is obviously enhanced. This indicates that more electrochemically active sites
were present on the surface of poly(BEP)/g-C3N4. Also, it is probably due to the excellent electron
transfer property of poly(BEP) [44]. The peak-to-peak potential (∆Ep = Eanodicpeak − Ecathodicpeak) at
10 wt % poly(BPE)/g-C3N4 composite-modified GCE is about 110 mV, while those at the g-C3N4,
5 wt % poly(BPE)/g-C3N4, and 15 wt % poly(BPE)/g-C3N4 composite-modified GCE are 280, 247,
and 155 mV, respectively (detailed data in Table 1). Meanwhile, the 10 wt % poly(BPE)/g-C3N4

composite-modified GCE presents the largest background current and peak current compared to other
modified GCEs, indicating that more electrochemical active sites present on the surface of 10 wt %
poly(BPE)/g-C3N4 composite-modified GCE [45]. Under the Randles–Sevcik equation, Ip = 2.69 × 105

n3/2 ACD0
1/2 ν1/2, where Ip is the anodic peak current, n is the number of electrons transferred, A is

electroactive surface area, C is concentration, ν is the potential scanning rate, and D0 is the diffusion
coefficient [44,46,47]. The effective surface areas of the g-C3N4, 5 wt % poly(BPE)/g-C3N4, 10 wt %
poly(BPE)/g-C3N4 and 15 wt % poly(BPE)/g-C3N4 composite-modified GCE are estimated to be
0.0781 cm2, 0.0851 cm2, 0.1234 cm2, and 0.0989 cm2, respectively. The 10 wt % poly(BPE)/g-C3N4 has
the largest effective surface area. Therefore, the 10 wt % poly(BPE)/g-C3N4 composite-modified GCE
could be used as an excellent sensor for electroactive species.
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Figure 4B shows the DPV of the differently modified GCEs in 0.1 M ABS (pH = 4.5) containing 
2.0 μM Cd2+ and Pb2+. As shown, the distance between the individual peaks is large enough, with 
individual peaks at approximately −0.834 V and −0.586 V for Cd2+ and Pb2+, respectively. The peak 
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Figure 4. (A) Cyclic voltammograms measured with g-C3N4, poly(BPE), poly(BPE)/g-C3N4

composite-modified glassy carbon electrode (GCE) in a solution of 5 mM Fe(CN)6
3−/4− containing

0.1 M KCl. (B) Differential pulse voltammogram (DPV) of g-C3N4, poly(BPE), 10 wt %
poly(BPE)/g-C3N4 composite-modified GCE in 0.1 M acetate buffer solution (ABS) (pH = 4.5)
containing 2 µM of Cd2+ and Pb2+. Deposition potential: −1.4 V, deposition time: 210 s, pulse width:
50 ms; pulse period: 100 ms; increment potential: 2 mV.

Table 1. The peak-to-peak potential (∆Ep) of differently modified GCEs.

Modified GCE Eanodicpeak (mV) Ecathodicpeak (mV) ∆Ep (mV)

g-C3N4 305 225 280
5 wt % poly(BPE)/g-C3N4 295 48 247
10 wt % poly(BPE)/g-C3N4 220 110 110
15 wt % poly(BPE)/g-C3N4 249 94 155

Figure 4B shows the DPV of the differently modified GCEs in 0.1 M ABS (pH = 4.5) containing
2.0 µM Cd2+ and Pb2+. As shown, the distance between the individual peaks is large enough,
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with individual peaks at approximately −0.834 V and −0.586 V for Cd2+ and Pb2+, respectively.
The peak current of GCE modified by 10 wt % poly(BPE)/g-C3N4 composite increased significantly,
the main reason being that poly(BPE) not only effectively improves the electron transfer rate of the
electrode surface, but also strongly interacts with the conjugated structure of g-C3N4 by π–π stacking,
which results from electrode materials having strong adsorption capacity [48].

3.3. Optimization of Experimental Conditions

To optimize the experimental conditions, simultaneous determination of 2.0 µM Cd2+ and Pb2+ at
the 10 wt % poly(BPE)/g-C3N4 composite-modified GCE under different pH values were evaluated
(deposition potential: −1.4 V, deposition time: 210 s, pulse width: 50 ms; pulse period: 100 ms,
increment potential: 2 mV). As shown in Figure 5A, maximum current responses appeared at pH = 4.5.
The lower pH values (3.5 and 4.0) could results in a reduction peak current, which is possibly due to
the protonation of the hydrophilic groups reducing the absorption of metal ions. The peak current at
the higher pH values (5.0 and 5.5) decreased, which is possibly due to the hydrolysis of Cd2+ and Pb2+.
Thus, pH = 4.5 was chosen as the best condition for the electrochemical measurements.
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Figure 5. The effects of (A) pH values; (B) deposition potential; and (C) deposition time on the stripping
peak currents of Cd2+ and Pb2+ at 10 wt % poly(BPE)/g-C3N4 composite-modified GCE in 0.1 M ABS
containing 1 µM of Cd2+ and Pb2+.

The effect of the deposition potential on the performance of the modified electrode was
investigated in the range from −1.0 to −1.6 V, and the results are shown in Figure 5B. The maximum
current peak could be observed at −1.4 V. However, the peak currents decreased gradually with the
potential moving to the negative direction. Thus, the deposition potential of −1.4 V was chosen as the
optimum value for detection of two heavy metals.

Figure 5C exhibits the DPV current response of 2.0 µM Cd2+ and Pb2+ over the accumulation time
of 60–390 s. As shown in Figure 5C, for the time of 60–210 s, the peak currents are almost linearly
proportional to accumulation time, and this may be attributed to the fact that the amount of metal ions
at the modified electrode surface greatly increases due to electrochemical deposition. When deposition
time was above 210 s, the increase rate of the peak current of Pb2+ changed, and this is probably due to
the working electrode surface saturation. Under the consideration of sensitivity, a determination time
of 210 s was selected for the deposition of the ions.

3.4. Individual Determination of Cd2+ and Pb2+

Under the optimized conditions, DPV was used as an analytical method for the electrochemical
detection of Cd2+ and Pb2+ using various modified GCEs in 0.1 M ABS (pH = 4.5). Figure 6 exhibits
the DPV responses of 10 wt % poly(BEP)/g-C3N4 composite-modified GCE toward Cd2+ and Pb2+.
The figure also shows the linear relationship between peak currents and concentrations of the two
ions, and the inset shows as well as their linear equations and correlation coefficient (Figure 6 inset).
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The linear range of Cd2+ is 0.1–6.8 µM with a detection limit of 0.0097 µM. The linear range of Pb2+ is
0.1–6.4 µM with a detection limit of 0.00327 µM. Detailed results are shown in Table 2.Materials 2018, 11, x FOR PEER REVIEW  9 of 16 
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0.1–6.4 µM. The inset shows their linear equations as well as correlation coefficient.

Table 2. Performance of the 10 wt % poly(BPE)/g-C3N4 composite-modified GCE for individual and
simultaneous determination of Cd2+ and Pb2+.

Types Analytes Linear Range (µM) Linear Regression Equation R2 Detection Limit (µM)

Individual
determination

Cd2+ 0.1–6.8 I (µA) = 1.08782 + 7.63612c (µM) 0.99707 0.00970

Pb2+ 0.1–6.4 I (µA) = 0.37986 + 11.1397c (µM) 0.99661 0.00327

Simultaneous
determination

Cd2+ 0.12–7.2 I (µA) = 0.26776 + 4.11513c (µM) 0.99740 0.0180

Pb2+ 0.08–7.2 I (µA) = 0.73646 + 11.28023c (µM) 0.99599 0.00324

From the above results, it is clear that the 10 wt % poly(BPE)/g-C3N4 composite-modified
electrode showed a wide detection range and low detection limit, and the detection limits were lower
than the those of WHO standards. It should be noticed that the electrochemical analysis of 10 wt %
poly(BPE)/g-C3N4 composite for trace metal ions may be attributed to the lone-pair electrons of
nitrogen in the g-C3N4. The report shows that the highly ordered tri-s-triazine units contain many
ideal coordination sites and thus metal ions can intercalate into g-C3N4 through the lone-pair electrons
of nitrogen [26–29]. The combination of poly(BPE) and g-C3N4 not only improved the conduction
pathway on the electrode surface, but also produced a strong conjugate effect on them, enhancing the
adsorption of metal ions.

3.5. Simultaneous Determination of Cd2+ and Pb2+

The analytical performance of the 10 wt % poly(BPE)/g-C3N4 composite-modified GCE was
investigated by simultaneous determination of Cd2+ and Pb2+ in 0.1 M ABS (pH = 4.5). As shown
in Figure 7A, the current response of Cd2+ and Pb2+ appeared at −0.82 V and −0.58 V, respectively.
The distance between each individual peak is large enough to simultaneous detect these heavy metal
ions using the 10 wt % poly(BPE)/g-C3N4 composite-modified GCE. Figure 7B,C shows the linear
relationship between peak current and concentration of the two heavy metal ions, as well as their
linear equations and the correlation coefficient. The linear ranges of Cd2+ and Pb2+ are 0.12–7.2 µM
and 0.08–7.2 µM, respectively. The detection limits of Cd2+ and Pb2+ are 0.018 µM and 0.00324 µM,
respectively. Other detailed results are shown in Table 1.
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Figure 7. (A) DPV response of the 10 wt % poly(BPE)/g-C3N4 composite-modified GCE for the
simultaneous analysis of Cd2+ and Pb2+ over a concentration range of 0.1–7.2 µM; (B,C) the respective
calibration curves of Cd2+ and Pb2+ corresponding to (A).

In the DPV technique, interfering molecules in the sample solution may be co-deposited on
the active sites of the electrode surface, which result in changes in the stripping peak current.
The interference may be the result of two main factors: (i) intermetallic compound formation and (ii)
the competition between analytes and interferent ions for active sites on the 10 wt % poly(BPE)/g-C3N4

composite-modified GCE surface. In order to understand whether there is interference between
Cd2+ and Pb2+ in simultaneous detection, we performed the following experiment. The effect of a
single species on the multispecies was performed by changing one species’ concentration while the
other species was unchanged. As shown in Figure 8, the DPV response of Cd2+ and Pb2+ increased
linearly with the increase of the target ion’s concentration, while the other ion was kept at a constant
concentration of 2 µM. From Figure 8A, it can be seen that the peak current of Pb2+ is practically
unaltered with increasing of Cd2+ concentration, and the peak current of Cd2+ is practically unaltered
with the increasing of Pb2+ concentration (Figure 8B). These results indicate that the other coexisting
ion did not interfere with the determination of Cd2+ or Pb2+. In addition, comparisons of the differently
modified electrodes toward the simultaneous detection of Cd2+ and Pb2+ are shown in Table 3.
From Table 3, it can be deduced that the 10 wt % poly(BPE)/g-C3N4 composite-modified GCE could
be an ideal sensor for simultaneous detection of Cd2+ and Pb2+.
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Figure 8. (A) DPV response of the 10 wt % poly(BPE)/g-C3N4 composite-modified GCE at 0, 0.4, 0.8,
1.2, 1.6, and 2 µM Cd2+ in the presence of 2.0 µM Pb2+ in 0.1 M NaAc–HAc (pH = 4.5), showing the
effect of the concentration of Cd2+ on the peak currents of 2.0 µM Pb2+. (B) DPV response of the 10 wt %
poly(BPE)/g-C3N4 composite-modified GCE at 0, 0.4, 0.8, 1.2, 1.6, and 2 µM Pb2+ in the presence of
2.0 µM Cd2+ in 0.1 M NaAc–HAc (pH = 4.5), showing the effect of the concentration of Pb2+ on the
peak current of 2.0 µM Cd2+.

Table 3. Comparison of different sensors for the determination of heavy metals.

Electrode Methods Analytes Linear Range (µM) LOD (µM) Ref.

PA/PPy/GO DPV
Cd2+ 0.045–1.335 0.019

[43]
Pb2+ 0.024–0.724 0.002

L-cys/GR-CS/GCE DPASV
Cd2+ 0.005–0.6 0.0012

[4]
Pb2+ 0.005–0.3 0.0072

GO/ex-Bi2Te3 modified GCEs SWV
Cd2+ 0.009–0.178 0.0018

[49]
Pb2+ 0.0024–0.0965 0.00048

G/PANI/PS fiber/SPCE SWASV
Cd2+ 0.089–4.448 0.039

[50]
Pb2+ 0.048–2.413 0.016

AuNPs/CNFs SWASV
Cd2+ 0.1–1.0 0.1

[51]
Pb2+ 0.1–1.0 0.1

DCD-CPE DPSV
Cd2+ 0.25–25 0.04

[52]
Pb2+ 0.1–15 0.01

Nafion-HAP DPASV
Cd2+ 0.1–10.0 0.035

[53]
Pb2+ 0.1–10.0 0.049

BT-SBA-15/CPE DPASV
Cd2+ 2.0–10.0 0.4

[54]
Pb2+ 0.3–7.0 0.04

Poly(BPE)/g-C3N4 DPV
Cd2+ 0.12–7.2 0.018

This workPb2+ 0.08–7.2 0.00324

PA/PPy/GO: phytic acid-functionalized polypyrrole/graphene oxide-modified electrode; L-cys/GR-CS/GCE:
L-cysteine/graphene–chitosan-modified GCE; GO/ex-Bi2Te3-modified GCE: GO/exfoliated Bi2Te3-modified
GCE; G/PANI/PS nanoporous fiber/SPCE: graphene/polyaniline/polystyrene nanoporous fiber-modified
screen-printed carbon electrode; AuNPs/CNFs: a well-dispersed Au nanoparticle grown on carbon nanofibers;
BT-SBA-15/CPE: 2-benzothiazolethiol functionalized SBA-15; DCD-CPE: diacetyldioxime-modified carbon paste
electrode; HAP-Nafion: the nanocomposite of HAP and Nafion.

3.6. Interference Study

It is known that, in practical applications, interference ions might co-deposit on an electrode
with Cd2+ and Pb2+. The interference study was performed by adding various potentially interfering
metal cations including Na+, K+, Ca2+, Mg2+, Al3+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+ in 50-fold excess
with target metal ions into a standard solution containing 2 µM Cd2+ and Pb2+ under the optimized
working conditions. As listed in Table 4, the change in the peak current of Cd2+ and Pb2+ was less
than 10% after adding interfering ions. Thus, the 10 wt % poly(BPE)/g-C3N4 composite-modified GCE
displayed high selectivity for Cd2+ and Pb2+ in the heavy metal analysis.
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Table 4. Interferences of some metal ions (100 µM) on the 10 wt % poly(BPE)/g-C3N4

composite-modified GCE during simultaneous determination of 2 µM Cd2+ and Pb2+. Electrolyte:
0.1 M ABS (pH = 4.5); deposition potential: −1.4 V; deposition time: 210 s.

Interferences Contribution (%)
(Ip Cd2+ = 100%)

Contribution (%)
(Ip Pb2+ = 100%)

Na +3.15% +9.46%
K −8.77% +2.85%
Ca −8.81% +3.92%
Mg +6.11% −2.64%
Al −8.36% 1.31%
Fe 5.32% 0.5%
Co −0.75% −0.7%
Ni 4.94% 8.8%
Cu −13.86% −5.38%
Zn −4.19% 5.9%

3.7. Reproducibility of Modified Electrode

To further evaluate the sensing performance, the repeatability of the 10 wt % poly(BPE)/g-C3N4

composite-modified GCE was tested with 2 µM Cd2+ and Pb2+ under the optimized conditions.
Electrolyte: 0.1 M ABS (pH = 4.5), deposition potential: −1.4 V, deposition time: 210 s. As shown
in Figure 9, the reproducibility was estimated with five different 10 wt % poly(BPE)/g-C3N4

composite-modified GCEs that were prepared independently by the same procedure. The values of
relative standard deviation (RSD) were 5.61% for Cd2+ and 2.86% for Pb2+ in the presence of 2 µM
of metal ions, which demonstrated the reliability of the fabrication procedure. Repeatability of the
developed method was evaluated by detecting 2 µM Cd2+ and Pb2+ at the 10 wt % poly(BPE)/g-C3N4

composite-modified GCE for 10 measurements. The values of RSD were 1.58% for Cd2+ and 1.71% for
Pb2+. Hence, the 10 wt % poly(BPE)/g-C3N4 composite-modified GCE shows ideal reproducibility
and repeatability.
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Figure 9. (A) DPV response of 2.0 µM Cd2+ and Pb2+ on five 10 wt % poly(BPE)/g-C3N4

composite-modified GCEs in 0.1 M ABS (pH = 4.5). (B) The data collected from every DPV response for
a total of 10 times. RSD refers to the relative standard deviation. (C) DPV response of 2.0 µM Cd2+ and
Pb2+ on the 10 wt % poly(BPE)/g-C3N4 composite-modified GCE in 0.1 M ABS (pH = 4.5). (D) The data
collected from every DPV response for a total of 10 times, RSD refers to the relative standard deviation.
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3.8. Real Sample Analysis

The 10 wt % poly(BPE)/g-C3N4 composite-modified GCE for simultaneous determination of
Cd2+ and Pb2+ showed high sensitivity and better reproducibility. Tap water samples were taken to
carry out a further study. Firstly, certain amounts of tap water in 0.1 M ABS (pH = 4.5) were prepared.
Subsequently, standard solutions of Cd2+ and Pb2+ with different concentration were added to the
tap water samples. The results are illustrated in Table 5. The recoveries of the Cd2+ and Pb2+ are
98.64–106.74% and 99.81–113.15%, respectively. Results indicate that the 10 wt % poly(BPE)/g-C3N4

composite-modified GCE could be applied in the detection of Cd2+ and Pb2+ in tap water samples.

Table 5. Determination of Cd2+ and Pb2+ in tap water.

Original Added (µM) Found (µM) Recovery (%)

(µM) Cd2+ Pb2+ Cd2+ Pb2+ Cd2+ Pb2+

N.D 1 1 1.0396 1.1315 103.96 113.15
N.D 2 2 2.1347 2.0334 106.74 101.67
N.D 3 3 3.0925 2.9944 103.08 99.81
N.D 4 4 3.9455 4.0102 98.64 100.26

N.D: not detected.

4. Conclusions

In summary, a novel poly(BPE)/g-C3N4 composite has been successfully synthesized via
chemical oxidative polymerization and used for determination of Cd2+ and Pb2+. The highly ordered
tri-s-triazine units contain many ideal coordination sites, and thus metal ions can intercalate into
g-C3N4 through the lone-pair electrons of nitrogen. Besides that, the composite-modified electrode
possesses a wide detection range and excellent sensitivity towards the simultaneous detection of Cd2+

and Pb2+.The results demonstrate that the 10 wt % poly(BPE)/g-C3N4 composite-modified electrode
possesses high sensitively, wide linear range, and low detection limit for the determination of Cd2+

and Pb2+.
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