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Abstract: Microstructure images of metallic materials play a significant role in industrial applications.
To address image degradation problem of metallic materials, a novel image restoration technique
based on K-means singular value decomposition (KSVD) and smoothing penalty sparse
representation (SPSR) algorithm is proposed in this work, the microstructure images of aluminum
alloy 7075 (AA7075) material are used as examples. To begin with, to reflect the detail structure
characteristics of the damaged image, the KSVD dictionary is introduced to substitute the traditional
sparse transform basis (TSTB) for sparse representation. Then, due to the image restoration, modeling
belongs to a highly underdetermined equation, and traditional sparse reconstruction methods may
cause instability and obvious artifacts in the reconstructed images, especially reconstructed image
with many smooth regions and the noise level is strong, thus the SPSR (here, q = 0.5) algorithm
is designed to reconstruct the damaged image. The results of simulation and two practical cases
demonstrate that the proposed method has superior performance compared with some state-of-the-art
methods in terms of restoration performance factors and visual quality. Meanwhile, the grain size
parameters and grain boundaries of microstructure image are discussed before and after they are
restored by proposed method.

Keywords: image restoration; KSVD dictionary; smoothing penalty sparse representation (SPSR);
microstructure images; aluminum alloy 7075 (AA7075) material

1. Introduction

Microstructure images of metallic materials play a significant role in industrial applications, such
as metallography detection, surface topography measurement (STM), and micro-electro mechanical
manufacturing (MEMM) [1–3], etc. However, the raw microstructure images are easily contaminated
on their acquisition, storage, and transmission, which degrade the fidelity of the microstructure image.
Further, in most cases, images re-acquisition is not possible in practice, as such damaged images are
not suitable for subsequent processing [4,5].

Image restoration is an effective technique for recovering incomplete or damaged images
approximate to the ideal images. Up to now, various image restoration strategies have been proposed,
which can be classified into several categories: (i) Time domain analysis methods, such as adaptive
filter denoising (AFD) [6,7]; (ii) Frequency domain analysis methods, such as wavelet–wavelet packet
denoising (W-WPD) technique [8,9]; (iii) Data-driven approaches, such as partial differential equation
(PDE) [10–13], and wavelet hidden Markov random field (WHMRF) [14]; (iv) Sparse representation
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(SR) techniques, such as redundant dictionary and non-convex penalty regularization [15–18], etc.
Although the damaged images can be restored more precisely by the above methods, the drawbacks
are also obvious. For example, the adaptive filter denoising method can achieve a good denoising
effect under low noise level, but the denoising effect will be greatly reduced with the noise increases.
The W-WPD can improve the quality of image, but some artifacts (e.g., ambiguity points) might be
generated along with the reconstruction process. The main shortcomings, including optimal parameter
selection and high computation cost, still remain unsolved in data-driven approaches. For the WHMRF
method, it is difficult to flexibly integrate the spatial quantitative relation (between the damaged pixel
point and its neighbor points) into the restoration model [19].

Today, SR techniques are based on the principle that an image can be sparsely represented in
a time domain or frequency transform domain, where each image block could be reconstructed by
sparse reconstructing algorithms. The core idea behind SR is how to represent the images more
sparsely in the time/frequency transform domains, usually, the most common methods focus on the
establishment of redundant multiscale transform and redundant dictionary. For example, in ref. [20],
the curvelet transform is proposed to denoise the white noise, which exhibits higher perceptual quality
than wavelet-based reconstructions. In ref. [21], the edge detection and fuzzy clustering algorithm are
combined to preserve the edges of synthetic aperture radar (SAR) despeckling in translation-invariant
second-generation band-wavelet transform (TIBT) domain. In ref. [22], to address the image denoising
problem, the over-complete discrete cosine transform (DCT) dictionary, global trained dictionary, and
K-means singular value decomposition (KSVD) dictionary, were proposed.

Another core point of the SR is reconstruction algorithm. Generally, image restoration is
an inverse problem, in which the ideal images could be approximatively estimated from the
noisy images. The difficulty knot of image restoration is that the inverse problems are often ill-posed
(or non-deterministic polynomial-time hard, NP-hard). In traditional sparse representations, most
of the methods are applied based on regularization-based technique, for example, matching pursuit
(MP) [23], orthogonal matching pursuit (OMP) [24], and compressive sampling matching pursuit
(CoSaMP) [25], some regularization models, such as total variation regularization function (TVRF) [26],
sparse non-local regularization (SNLR) [27,28], etc. However, the traditional sparse representation
methods may cause instability and obvious artifacts in the reconstructed images, especially for the
restoration of microstructure image that include some smooth regions and multi-boundary and
fine-textures, or when the noise level is strong.

To address the above issues in SR and exploit the spatial information of microstructure images, in
this paper, a novel image restoration method based upon smoothing penalty sparse representation
(SPSR) and adaptive over-complete KSVD dictionary is proposed for microstructure image of metallic
materials, taking aluminum alloy 7075 (AA7075) material as an example. The nonconvex penalty
regularization is introduced to address the image inverse problem mentioned above, and the success
rate will be improved greatly in image reconstruction. Moreover, unlike the common procedure used
in refs. [29,30], in which the sparse transform basis was used for measuring the image sparsity, this
paper utilizes over-complete dictionary (e.g., trained KSVD dictionary) to promote the image sparsity
under the given redundant system. The simulation and experimental results show the superiority of
the proposed method compared with some state-of-the-art methods, such as wavelet packet method,
the discrete cosine transformation (DCT) combined with OMP method, and the KSVD dictionary
combined with OMP method, respectively. Meanwhile, the comparison results of grain parameters,
such as grain diameter (mean), grain area (polygon), grain perimeter (ratio), etc., are also discussed in
detail before and after processing based on the proposed method.

For the applicability of the proposed method, generally, a microstructure image is used that
exhibits a lamellar (plate-like) structure or a structure that exhibits twinning, which can be divided into
two kinds of regions: one is the image blocks containing lamellar (plate-like) structure and boundaries
in structure regions, etc., and the other is the image blocks that distributed in smooth regions.
Correspondingly, the optimization expression of the sparse representation method usually includes
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a likelihood part and prior knowledge part, furthermore, the external noise will play a critical role
in smooth regions during image restoration, and its effect is relatively weak in structured regions,
where there is a strong similarity between the two blocks, due to the pixel values being similar in
smooth regions, and if the noise level is strong, the information characteristics of external noise in
smooth regions might be regarded as structural information in sparse coefficients, wherein the classical
optimization approach might remove the inveracious structure information that failed, leading to
instability and obvious artifacts on the reconstructed image. For the proposed method, on the one
hand, before the reconstruction algorithm is implemented, the information of lamellar (plate-like)
structure and boundaries could be represented in over-complete KSVD trained dictionary, on the
other hand, the prior knowledge part is improved by introducing a smoothing parameter, and the
likelihood part is also improved via a regularization weight, therefore, the noise distributed in structure
regions and smooth regions could be denoised adaptively, especially for the noise points hidden in the
smooth regions.

The main contributions of this paper are summarized as follows:

(1) The dictionary training algorithm, namely KSVD, is introduced, while the detailed
structure information, such as lamellar (plate-like) structure and boundaries, could be
represented accurately.

(2) The smoothing parameter and regularization weight are designed based upon the traditional
sparse representation method, and the noise distributed in structure regions and smooth regions
could be denoised adaptively.

(3) The grain parameters, such as grain diameter (mean), grain area (polygon), grain perimeter
(ratio), etc., are discussed before and after they are processed by the proposed method, and the
structural information that used for industrial applications, such as metallography detection,
micro-electro mechanical manufacturing (MEMM) could be clearly isolated, which may open up
a new field of application of material microstructure to industry.

The layout of this paper is organized as follows. Section 2 describes the algorithms of sparse
representation and KSVD. Section 3 introduces smoothing penalty sparse representation (SPSR)
algorithm, and its derivation and parameter selection, etc. In Section 4, the simulation and experimental
results of the proposed method are presented with other approaches. Conclusions are shown
in Section 5.

2. Sparse Representation and KSVD Algorithm

2.1. The Review of Sparse Representation (SR)

Generally, the image degradation process can be described by a degradation matrix R as follows:

y = Rx + n (1)

where y is the damaged image, x is the latent ideal image and n is external noise. Usually, image x is
assumed to be K-sparse, i.e., which having K non-zero components (the pixel value of the measurement
matrix in the damaged area is 0, in contrast, undamaged area is 1).

According to the framework of compressed sensing (CS) [31,32], a discrete 1-D signal with limited
length x0 that can be represented in the domain ϕ = [ϕ1, ϕ2, . . . , ϕN ],

x0 =
N

∑
i = 1

ϕiαi = ϕα (2)

where α is the transformation coefficients of signal x in domain ϕ. Usually, the commonly used sparse
transformation base ϕ includes discrete wavelet transform (DWT) basis, discrete cosine transform
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(DCT) basis, Gabor basis and curvelet basis, etc. [33]. Further, if the 1-D discrete signal is expanded
into 2-D image, i.e., x0 → x , Equation (1) can now be rewritten as follows:

y = Rx + n = Rϕα + n = Aα + n (3)

where A = Rϕ denotes sensing matrix. Here, Candes et al. [32,34,35] showed that the Equation (3)
can only be solved when the sensing matrix A satisfies the conditions of incoherence or restricted
isometry property (RIP), where the RIP is given by

(1− δ)‖α‖2 ≤ ‖Aα‖2 ≤ (1 + δ)‖α‖2 (4)

where parameter δ controls the level of data discrepancy based on an estimation of the noise variance.
Usually, the common measurement matrix includes Gaussian random matrix (GRM), local Fourier
matrix (LFM) and local Hadamard matrix (LHM), etc.

2.2. KSVD Algorithm

To enhance the sparsity of the damaged image, in this section, the adaptive over-complete
dictionary is employed to substitute the traditional sparse transform basis, that is, the image blocks
will be represented by trained KSVD method [36], i.e., A = RD. It should be noted that the matrix
A may not satisfy the RIP criterion, due to the over-complete dictionary D; to address this issue, the
mutual coherence technique [37] is applied to substitute the matrix A, i.e.,

µ(A) = max
i 6=j

∣∣< αi, αj >
∣∣

‖αi‖2‖αj‖2
, i, j = 1, 2, . . . , K (5)

where αi and αj are the i-th and j-th column in matrix A, respectively. The adaptive over-complete
KSVD dictionary method is designed as follows [16,36]:

Step (1). Dictionary initialization. Suppose that D ∈ Rn×k(k << n) is the over-complete
dictionary, for example, over-complete discrete cosine transform (DCT) dictionary.

Step (2). Dictionary presentation. Suppose that D ∈ Rn×k(k << n) is the over-complete DCT
dictionary, Y = {yi}N

i = 1 is a N-training samples set and X = {xi}N
i = 1 is a solution vectors set

of Y, hence,
min
D,X
‖Y−DX‖2

F, s. t., ∀i, ‖xi‖0 ≤ T0, i = 1, 2, . . . , N (6)

where T0 is the maximum value of nonzero vector in sparse coefficients and ‖ · ‖F is Frobenius norm.
Step (3). Dictionary updated. Assume that dk refer to the k-th column of the pending update

dictionary, then Equation (6) equivalent to

‖Y−DX‖2
F = ‖(Y−

K

∑
j 6=k

dkxj
T)− dkxk

T‖
2

F

= ‖Ek − dkxk
T‖

2
F (7)

where Ek represents pre-computed error matrix, xk
T represents the k-th row of X which actually gives

the sparse coefficients or weights of dk. For the purpose of singular value decomposition (SVD), four
parameters are defined as follows:

ωk = { i|1 ≤ i ≤ K, xk
T(i) 6= 0},

xk
R = xk

TΩk,
YR

k = YΩk,
ER

k = EkΩk,

(8)
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where Ωk is a matrix with size N × |ωk|. The parameter YR
k includes a subset of the samples that are

currently using dk element, ER
k represents error columns that correspond to samples that using dk

element, respectively. Returning to the objective Equation (7), it can be rewritten as

‖EkΩk − dkxk
TΩk‖

2
F = ‖ER

k − dkxk
R‖

2
F (9)

Step (4). Singular value decomposition. The Ek is decomposed by SVD method, i.e., Ek = U∆VT ,
∧
dk is the first column updated by dk in U, then the second column will be updated successively until the

last column, otherwise, go back to step (3), and the new trained dictionary
∧
D will be finally obtained.

3. Smoothing Penalty Sparse Representation (SPSR)

It should be noted that y = Aα + n belongs to a highly underdetermined equation (HUE) [38,39],
there are infinite set of solutions. The problem of image reconstruction by sparse representation under
residual error constraint can be calculated by

∼
α = argmin‖α‖0, s. t., ‖Aα− y‖2

2 ≤ c (10)

where c is a threshold of the residual error. Moreover, the prior knowledge of the original image is
usually utilized to regularize the solution under residual error constraint is expressed as

∼
α = argmin‖Aα− y‖2

2 + λ · ζ(x) (11)

where λ is regularization weight and ζ(x) regularization term. From the perspective of Bayesian
estimation, the ‖Aα− y‖2

2 and ζ(x) can be viewed as the likelihood part and prior knowledge part,
respectively. Therefore, the ζ(x) prior knowledge plays a significant role in image restoration based on
sparse representation. For a microstructure image, it can also be divided into two types: the first is the
image blocks containing details, boundaries, and singular points, and the second is the image blocks
located in smooth regions. For the former, the details, boundaries, and singular points that determine
the similarity between two blocks, and the influence of external noise, is relatively weak. However,
in smooth regions, there is a strong similarity between the two blocks due to the pixel values being
similar; here the influence of external noise will play a critical role in image restoration. If the noise
level is strong, the information of noise in smooth regions is regarded as structural information in
sparse coefficients. Meanwhile, the classical optimization approaches and regularization approaches
cannot remove the false structural information contained in the sparse coefficients, and the traditional
methods may cause instability and obvious artifacts in the reconstructed images.

To overcome the above issue, inspired by the ideas of the unconstrained low-rank matrix recovery
in refs. [40–42] that have been implemented in the compressed sensing field [31–33], a novel smoothing
penalty sparse representation (SPSR) method is introduced, which is different from the ones studied
in [40–42] where a uniform random matrix (i.e., the entries of the matrix are random variables with
uniform distribution) was used. In this work, the matrix is obtained via the mutual coherence technique
[37] and over-complete KSVD dictionary that satisfies the RIP criterion. The objective function is as
follows,

Lq(α, ε, λ) =
N

∑
j = 1

[α2
j + ε2]

q/2
+

1
2λ
‖Aα− b‖2

2 (12)

where q is regular operator, ε(ε > 0) is smoothing parameter, λ(λ > 0) is penalty
parameter, and b is measurement vector. It should be mentioned that the smoothing
parameter ε(ε > 0) plays a critical role in image restoration in terms of smooth
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regions. The detailed updated procedures of the proposed Algorithm 1 are as follows:

Algorithm 1. The smoothing penalty sparse representation algorithm.

SPSR (0 < q ≤ 1) algorithm:
Input: Matrix A, measurement vector b, estimated sparsity level s.
Output: Recovery vector α;
(1) Choose appropriate parameters λ(λ > 0), q (0 < q ≤ 1);
(2) Initialize α(0), such that Aα(0) = b, and set ω(0) = e0 and ε0 = 1;
(3) For k = 0;
(4) Solve the following linear system for α(k),

[
qα(k+1) [i]

(ε2
k+‖α(k) [i]‖2

2)
1− q

2
]

1≤i≤M

+ 1
λ AT(Aα(k+1) − b) = 0

Or
(ATA + diag( qλ

(ε2
k+‖α(k) [i]‖2

2)
1− q

2
)

1≤i≤M

)α(k+1) = ATb

(5) When α(k) meet the reconstruction accuracy, α(k) as the output value assigned to α, meanwhile end to this
algorithm, otherwise execute next steps.
(6) Let β is a constant, where (0 < β < 1), update εk+1 = min{εk, β · r(α(k+1))s+1/M}, where r(α) represents
the rearrangement of absolute values of r(α(k+1)) in the decreasing order, and r(α)s+1 is the (s + 1)th
component value of r(α). Note that, if εk+1 = 0, choose α(k+1) to be an approximation of sparse solution and
stop this iteration.
(7) Let k = k + 1, and return to Step (4) to continue.
End

For the SPSR method, the following theorem summarizes the results for 0 < q ≤ 1, thus, we have
the following theorem which can prove the above proposed algorithm.

Theorem 1. Error estimation theorem [43]. Suppose that x0 is s-sparse signal which satisfies Ax0 = b.
The smooth parameter εk → ε∗ with k→ ∞ . Matrix A satisfies the RIP of order 2s with δ2s < 1, when ε∗ > 0,
the sequence {x(k)} has at least one convergent subsequence. Suppose that the limit εk = ε∗ is a local optimal
solution for Equation (12), we have,

‖xε∗ − x0‖2 ≤ C1
√

λ + C2δs(xε∗)2 (13)

where δs(xε∗)2 is the approximate error of xε∗ , which satisfies δs(xε∗)2 = inf
‖y‖2,0≤s

‖xε∗ − y‖2. For the special

case, when ε∗ = 0, there must exist a convergent subsequence converging to point x0, it satisfies,

‖x0 − x∗‖2 ≤ C3
√

λ (14)

where C1, C2 are C3 are independent positive constants. To prove the theorem 1, the following two lemmas (i.e.,
lemma 1 and lemma 2) [40,41] are required.

Lemma 1 [40,41]. For all x, y ∈ RN and 0 < q ≤ 1, if εk ≥ εk+1 ≥ 0, it satisfies,

(ε2
k + ‖x‖

2
2)

q
2 − (ε2

k+1 + ‖y‖
2
2)

q
2 − qyT(x− y)

(ε2
k + ‖x‖

2
2)

1− q
2
≥ q‖x− y‖2

2

2(ε2
k + ‖x‖

2
2)

1− q
2

(15)

Proof [40,41]. According to arithmetic-geometric mean inequality [44], i.e.,

(ε2
k + ‖x‖

2
2)

1− q
2 (ε2

k+1 + ‖y‖
2
2)

q
2 ≤ (1− q

2
)(ε2

k + ‖x‖
2
2) +

q
2
(ε2

k+1 + ‖y‖
2
2) (16)
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Then we compute,

(ε2
k + ‖x‖

2
2)

q
2 − (ε2

k+1 + ‖y‖
2
2)

q
2 − qyT(x−y)

(ε2
k+‖x‖

2
2)

1− q
2

=
(ε2

k+‖x‖
2
2)−(ε2

k+‖x‖
2
2)

1− q
2 (ε2

k+1+‖y‖
2
2)

q
2−qyT(x−y)

(ε2
k+‖x‖

2
2)

1− q
2

≥ (ε2
k+‖x‖

2
2)−(1−

q
2 )(ε

2
k+‖x‖

2
2)−

q
2 (ε

2
k+1+‖y‖

2
2)−qyT(x−y)

(ε2
k+‖x‖

2
2)

1− q
2

= q
2

ε2
k−ε2

k+1+(x−y)2

(ε2
k+‖x‖

2
2)

1− q
2
≥ q

2
(x−y)2

(ε2
k+‖x‖

2
2)

1− q
2

This completes the proof of Lemma 1. �

Lemma 2 [40,41]. Let Lq(x, ε, λ) =
N
∑

j = 1
[α2

j + ε2]
q/2

+ 1
2λ‖Aα− b‖2

2, if be the solution of Lq(x, ε, λ) for

k = 0, 1, 2, . . . N, then,

‖Ax(k) − Ax(k+1)‖
2
2 ≤ 2λ(Lq(x(k), εk, λ)− Lq(x(k+1), εk+1, λ)) (17)

Furthermore,

‖x(k+1) − x(k)‖
2
2 ≤ C4(Lq(x(k), εk, λ)− Lq(x(k+1), εk+1, λ)) (18)

where C4 is an independent positive constant.

Proof [40,41]. We first compute the following formula,

Lq(x(k), εk, λ)− Lq(x(k+1), εk+1, λ)

=
N
∑

j = 1
(ε2

k +
∣∣∣x(k)j

∣∣∣2) q
2
−

N
∑

j = 1
(ε2

k+1 +
∣∣∣x(k+1)

j

∣∣∣2) q
2
+ 1

2λ (‖Ax(k) − b‖2
2 − ‖Ax(k+1) − b‖2

2)

=
N
∑

j = 1
(ε2

k +
∣∣∣x(k)j

∣∣∣2) q
2
− (ε2

k+1 +
∣∣∣x(k+1)

j

∣∣∣2) q
2
+ 1

2λ‖Ax(k) −Ax(k+1)‖2
2

+ 1
λ (Ax(k+1) − b)

T
(Ax(k) −Ax(k+1))

(19)

According to [ qα(k+1) [i]

(ε2
k+‖α(k) [i]‖

2
2)

1− q
2
]

1≤i≤M

+ 1
λ AT(Aα(k+1) − b) = 0, we have

1
λ
(Ax(k+1) − b)

T
(Ax(k) −Ax(k+1)) = −

N

∑
j = 1

qx(k+1)
j (x(k)j − x(k+!)

j )

(ε2
k +

∣∣∣x(k)j

∣∣∣2)1− q
2

(20)

Using Lemma 1 and substituting Equation (20) to Equation (19), we have

Lq(x(k), εk, λ)− Lq(x(k+1), εk+1, λ)

=
N
∑

j = 1
{(ε2

k +
∣∣∣x(k)j

∣∣∣2) q
2
− (ε2

k+1 +
∣∣∣x(k+1)

j

∣∣∣2) q
2
−

qx(k+1)
j (x(k)j −x(k+!)

j )

(ε2
k+
∣∣∣x(k)j

∣∣∣2)1− q
2
}

+ 1
2λ‖Ax(k) −Ax(k+1)‖2

2

≥ 1
2λ‖Ax(k) −Ax(k+1)‖2

2 +
N
∑

j = 1
(x(k)j − x(k+1)

j )
2 q

2(ε2
k+
∣∣∣x(k)j

∣∣∣2)1− q
2

(21)
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From the result of Equation (21), the Equation (17) can be calculated.
It should be noted from Equation (17) that the Lq(x(k), εk, λ) is monotonically decreasing

sequence, hence,

‖x(k)‖
q
q ≤ ‖x(k)‖

q
q,εk
≤ Lq(x(k), εk, λ) ≤ Lq(x(0), ε0, λ) = ‖x(0)‖

q
q,ε0

(22)

for all k ≥ 1 and 1 ≤ i ≤ n, there exists a positive number β which satisfies ‖x(k)‖∞ ≤ β, hence

q

2(ε2
k +

∣∣∣x(k)j

∣∣∣2)1− q
2
≥ q

2(ε2
0 + β2)

1− q
2

(23)

Let 1
C4

= q

2(ε2
0+β2)

1− q
2

, and the Lemma 2 is proved conclusively. �

Herein, combining the above inequalities in Lemma 1 and Lemma 2, the Theorem 1 can be proved
ultimately, for simplicity, the detailed proof process was omitted. In the next section, the choice of
regular operator q will be discussed in detail via a simulation experiment.

For the choice of regular operator q (0 < q ≤ 1), let q varying among {0.1, 0.5, 0.7, 1}. Firstly, the
matrix A is designed by rand-function rand(64, 256) in MATLAB, and the initialization signal x0 has t
non-zero narrow impulses that subject to the standard Gaussian distribution (SGD), the locations of
non-zeros are uniformly and randomly generated, and t, varying among {8, 10, 12, . . . , 32}. The penalty
parameter λ = 10−6 is small enough to approximately enforce Ax = Ax0 and δ = 0.09, which
is measured over 100 times in terms the perfect reconstruction. Taking the SPSR algorithm iterative
1000 times, if the recovery error satisfies ‖xr − x0‖2/‖x0‖2 ≤ 10−3, the iteration is stopped, where
xr stands for a recovered vector. The recovery algorithm is SPSR method (q ∈ {0.1, 0.5, 0.7, 1}), the
recovery success rate curve of different. q with sparsity is shown in Figure 1. From Figure 1, it can
be seen that q = 0.1, q = 0.5 performed better than q = 0.7 and much better than q = 1. Moreover,
q = 0.5 gives a higher success than q = 0.1 slightly. We emphasize that our results do not counter the
intuition that a smaller q should recover more sparse vectors. Generally, a smaller q value makes the
minimizing functional more non-convex, but more difficult to solve. In addition, in this algorithm, it
has been discovered that if smoothing parameter ε decreased slowly, the performance of q = 0.1 reach
further improved. However, the running time with q = 0.1 also became much longer. For example, in
this simulation, the execution time of parameter q = 0.5 is 4.4550 s, and execution time of q = 0.7 and
q = 1 are 5.7359 s and 8.6348 s, respectively, but the execution time of q = 0.1 is 9.4643 s, it should be
noted that the execution time becoming longer when parameter q is selected smaller.Materials 2018, 11, x FOR PEER REVIEW  9 of 20 
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Figure 1. Random impulses and the comparison results of recoverability with different q. (a) Random
signal with 32 non-zero impulses; (b) The comparison results of recoverability with different q.
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4. Case Verifications and Disscussion

In order to quantitatively calculate restoration effect, three restoration performance standards
(RPSs) are employed for comparison, i.e., the normalized mean-square error (NMSE), peak
signal-to-noise ratio (PSNR), and structural similarity (SSIM), respectively. It should be noted that the
PSNR reflects the approximation degree between the recovered image and original image, and the
SSIM reflects the similarity degree between the recovered image and original image. Three RPSs are
defined as

NMSE =
∑ [x− ∧x]

2

∑ [x− x]2
(24)

PSNR = 20× lg
2552

‖x− ∧x‖
2

2

(25)

where x is an original image and
∧
x is a recovered image.

SSIM =
(2µxµ∧

x
+ c1)(2σ

x,
∧
x
+ c2)

(µ2
x + µ2

∧
x
+ c1)(σ2

x + σ2
∧
x
+ c2)

(26)

where µ is the mean of image, σ is variance or covariance, c1 and c2 is the small constant which can
enhance the stability of calculation results, respectively.

In the following experiments, the microstructure image is divided into 8 × 8 blocks. The DCT
dictionary is used as initial dictionary, and KSVD is used as dictionary training algorithm, then the
damaged microstructure images are applied as training samples. The KSVD dictionary training
parameters setting is shown in Table 1.

Table 1. Parameters setting of K-means singular value decomposition (KSVD) algorithm.

Training Sample Size Redundancy Dictionary Size Iterations

8 × 8 6 64 × 256 25

4.1. Simulation Case of Aluminum Alloy 7075 Material

To verify the superiority of proposed SPSR (q = 0.5) approach, an ideal microstructure orientation
image of aluminum alloy 7075 material is generated by cellular automaton simulation (CAS)
method [45,46], see Figure 2, Figure 2a is the ideal color image, and Figure 2b is the grayscale image,
respectively. The artificial Gaussian noises are added in the ideal microstructure image, and Figure 3
presents the visual quality of the reconstructed images based on wavelet packet and SPSR (here, q = 0.5)
algorithms when the noise level is fixed on 0.1, 0.5, 0.8, and 1.0, respectively. It can be seen from
Figure 3 that the proposed SPSR (q = 0.5) method clearly provides a significant improvement to the
fidelity of the resultant image (see the 4th column). The wavelet packet method is also applied to
process the noisy orientation image (see the 3rd column), and provides some improvement, but not
nearly as dramatic as that achieved with the SPSR method. More importantly, as we can see, the
proposed SPSR method achieves a significantly better visual quality than wavelet packet method in
smooth regions.
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Figure 3. Example orientation image with Gaussian noise added and orientation images obtained after
conventional wavelet packet and the proposed SPSR (q = 0.5) with noise levels of (a) 0.1; (b) 0.5; (c) 0.8;
and (d) 1.0. (from top row to bottom row); Noised orientation images of the color, grayscale, images
recovered by wavelet packet method, images recovered by SPSR (q = 0.5) (from left column to right
column).

Table 2 shows quantitative results of the restoration performance standards (RPSs) obtained for
the images shown in Figure 3. It can be see that the wavelet-packet method does provide a moderate
improvement particularly at the higher noise levels as evidenced by Figure 3. Further, as the images
show as well, the SPSR (q = 0.5) method provides much more significant improvement in RPSs.
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It should be noted that adding more noise to the orientation image lead to much higher NMSE, lower
PSNR and SSIM, and the data did not follow the expected trend, likely due to so many missing points.

Table 2. The restoration performance standard (RPS) results of wavelet-packet and proposed method.

Inpainting Methods Noise Level NMSE PSNR/dB SSIM

Wavelet-packet

0.1 1.8650 24.9068 0.9784
0.5 2.9994 22.8410 0.9648
0.8 6.9625 19.1669 0.9197
1 13.6314 16.2595 0.8530

SPSR (q = 0.5)

0.1 0.1241 36.5150 0.9984
0.5 0.3616 31.8698 0.9954
0.8 1.0988 27.0495 0.9859
1 1.9265 24.5989 0.9748

In the next two sections, two kinds of damaged aluminum alloy 7075 (AA7075) orientation images
are investigated. The first damaged image is contaminated, due to the charged particles and dust that
exists in the electron back-scattered diffraction (EBSD) system, which is artificially contaminated via
adding Gaussian and impulse noises. The second damaged image is a low-pixel (or low-resolution)
image that is contaminated due to the thicker contamination membrane residues on the sample surface,
which is artificially contaminated via pixel masking operation. The orientation images were acquired
by the Oxford Instruments AZtecHKL EBSD system (see open website www.ebsd.cn). Orientation
images were collected and recorded at 114 × 114 pixel. The Hough was run on the patterns after
compression to 96 × 96 pixels with a 9 × 9 convolution mask, 1◦ theta step size, and searching for a
maximum of 10 peaks.

4.2. Experimental Case 1

The initial DCT dictionary of the first damaged image and the over-complete dictionary that was
trained by KSVD algorithm are shown in Figure 4a,b, respectively. It is obvious that the structure of
KSVD dictionary is more abundant than the DCT dictionary, the reason is that the KSVD dictionary
fully reflects the detailed structure characteristics of the image, equivalently, the KSVD dictionary can
precisely represent the sparse characterization of block sub-image.
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Figure 4. The discrete cosine transform (DCT) dictionary and KSVD dictionary of first damaged image.
(a) The DCT dictionary; (b) The KSVD dictionary (iterated for 25 times).

Figure 5a,b are the color damaged image and its grayscale image. The reconstructed results
generated by wavelet packet method, the DCT combined with OMP method (namely DCT + OMP),
the KSVD combined with OMP method (namely KSVD + OMP), and the proposed method (namely

www.ebsd.cn
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KSVD + SPSR, q = 0.5) are illustrated in Figure 5c, Figure 5d, Figure 5e, and Figure 5f, respectively.
From Figure 5c–f, it can be observed that all the reconstruction methods are able to reasonably recover
the damaged image.
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Figure 5. Restoration results of the first damaged image. (a) Color damaged image; (b) Grayscale
damaged image; (c) Restoration result generated by wavelet packet method; (d) Restoration result
generated by DCT + orthogonal matching pursuit (OMP) method; (e) Restoration result generated by
KSVD + OMP method; (f) Restoration result generated by proposed method.

The quantitative RPSs between the actual and recovered image based on the above methods are
summarized in Table 3. In this work, due to the ideal image being unknown, the above RPS results are
designed based on damaged and recovered image, therefore, it should be noted that the larger the
value of NMSE, the smaller the values of PSNR and SSIM, and the more accurate of restoration effect.

Form Table 3, it is clear that the proposed approach achieves better restoration result than other
methods. In the smooth regions, through the proposed approach, one can find that the clarity and
fidelity of image grain-boundary are enhanced significantly, and the influence of the speckle noise is
reduced greatly.

Furthermore, to explore the grain distribution and its statistical result before and after restoration,
the maximum entropy threshold segmentation (METS) algorithm [47] is introduced in Figure 5b,f,
respectively. The segmentation effect and grain number tags created by image pro-plus software [48]
are shown in Figures 6 and 7, respectively. It is obvious that breakpoints of segmentation curves in
Figure 7a are less than Figure 6a, and the number of grains in Figure 7b is more than Figure 6b.
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Table 3. The RPSs comparison of the first damaged image.

Image Restoration Methods NMSE PSNR/dB SSIM Time (s)

- Wavelet packet 4.0825 21.4212 0.9345 0.6172
First damaged image DCT + OMP 2.3295 23.6980 0.9587 52.9017

- KSVD + OMP 2.3458 23.6679 0.9585 705.3599
- Proposed method 6.8192 19.0388 0.8953 1329.7895
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Table 4 summarizes the statistical results of grain size, which consists of grain diameter (mean),
grain area (polygon) and grain perimeter (ratio). It can be seen that the sample number is 64 before
being restored, and it has increased rapidly to 232 after being restored by the proposed method; this
is because more grains are calculated, due to the sealing character of the segmentation curves in
Figure 7b.
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Table 4. Statistical parameters of grain size of the first damaged image.

Statistic
Diameter (Mean)/µm Area (Polygon)/µm2 Perimeter (Ratio)/µm

Before After Before After Before After

Min 3.1622 2.8680 1 1 0.4516 0.5589
Max 9.1923 42.3221 13.9444 194.7222 1 1

Mean 5.7244 8.6099 4.3257 14.8863 0.8873 0.8635
Grain number 64 232 64 232 64 232

Figure 8 illustrates the histogram distribution of grain diameter, and Figure 9 shows the
relationship between the grain diameter and grain area before and after being restored, respectively.
From Figure 8a, it should be noted that the grain number is not counted when the grain size larger
than 10 microns, because most of the grain boundaries are broken in the original damaged image, and
only some continuous grains will be counted by the image pro-plus software; on the contrary, the
grain can be calculated easily based upon the proposed method. From the results shown in Figure 9,
the correlation value is 0.5537 in Figure 9a, and Figure 9b is 0.8086. From the scatter diagram of grain
diameter (mean) after being restored by proposed method, it can be seen that the minimum value
of the grain diameter (mean) is 2.868 µm, and grain area is 10.04 µm2, and most of the grains with
diameters below 10 µm can be detected. It is proven that the grain distribution in Figure 6b is more
dispersed than Figure 7b. Overall, it concluded from the experiments that, by both visual comparison
and statistical assessment, the proposed method shows better restoration performance compared with
some state-of-the-art methods.
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Figure 8. The grain diameter (mean) histogram. (a) Before restoration; (b) After restoration by
proposed method.
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Figure 9. The scatter diagram of grain diameter (mean) and grain area. (a) Before restoration; (b) After 
restoration by proposed method. 
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images are more unclear than the damaged image, based on the wavelet packet method. As shown 
in the close-up views of Figure 11d,e, KSVD + OMP leads to better restoration of edges and fewer 
artifacts than DCT + OMP, that is, because the KSVD dictionary contains more detailed structural 
information than the DCT dictionary. More importantly, the proposed algorithm still outperforms 
the other three methods; as demonstrated in Figure 11f, the number of black artifacts is reduced 
dramatically by the proposed method, and the grain boundaries of multi-regions become more legible.  

Figure 9. The scatter diagram of grain diameter (mean) and grain area. (a) Before restoration; (b) After
restoration by proposed method.

4.3. Experimental Case 2

For the low pixel (or low resolution) image, usually, in the engineering application, it is
difficult to test the metal macro-mechanical property based on the existing grain boundary and
dislocation orientation. Similar to the above experimental steps, the KSVD algorithm is applied to the
DCT initial dictionary, and the training parameter setting coincided with Table 1. The DCT dictionary
and trained KSVD dictionary are presented in Figures 10a and 10b, respectively.
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Figure 10. The DCT dictionary and KSVD dictionary of second damaged image. (a) The DCT dictionary;
(b) The KSVD dictionary (iterated 25 times).

Figure 11a,b are color-damaged image and its grayscale image. The comparison results of the
wavelet packet, the DCT + OMP, the KSVD + OMP, and the proposed methods, are illustrated in
Figure 11c, Figure 11d, Figure 11e, and Figure 11f, respectively. Three RPSs are displayed in the Table 5.
Unfortunately, from Figure 11c and Table 5, it is obvious that the grain boundaries in recovered images
are more unclear than the damaged image, based on the wavelet packet method. As shown in the
close-up views of Figure 11d,e, KSVD + OMP leads to better restoration of edges and fewer artifacts
than DCT + OMP, that is, because the KSVD dictionary contains more detailed structural information
than the DCT dictionary. More importantly, the proposed algorithm still outperforms the other three
methods; as demonstrated in Figure 11f, the number of black artifacts is reduced dramatically by the
proposed method, and the grain boundaries of multi-regions become more legible.
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Figure 11. Restoration results of the second damaged image. (a) Color-damaged image; (b) Grayscale
damaged image; (c) Restoration result generated by wavelet packet method; (d) Restoration result
generated by DCT + OMP method; (e) Restoration result generated by KSVD + OMP method;
(f) Restoration result generated by the proposed method.

Table 5. The RPSs comparison of the second damaged image.

Image Restoration Methods NMSE PSNR/dB SSIM Time (s)

- Wavelet packet 33.6264 14.0288 0.7017 0.4969
Second damaged image DCT + OMP 73.8015 11.1316 0.5523 165.4376

- KSVD + OMP 74.1460 11.1111 0.5499 2928.2968
- Proposed method 85.2766 10.3924 0.5131 3371.2670

Furthermore, in order to discuss the restoration effect on grain boundary, the image segmentation
and edge detection methods are applied on Figure 11b,f. Figure 12 shows the comparison of grain
boundaries for the second damaged image. As illustrated in Figure 12a, the grain boundaries with small
size (see the red circle) are still relatively obscure, and the grain number cannot be estimated accurately.
After recovery via the proposed algorithm, the grain boundaries and grain number have a greater
improvement, and are increasing. Compared with Figure 12a, it should be noted from Figure 12b that
a larger number of continuous lamellar (plate-like) structures are recovered, and some breakpoints are
reconnected by the proposed method, image segmentation, and edge detection method, meanwhile, the
grain number will be increased via the image pro-plus software. Due to that the ideal microstructure
image is unknown, comparing Figures 11 and 12, some data that may not show in ideal microstructure
image might be created (thus over-correcting), this phenomenon might be improved by adjusting
parameter q. Generally, for the SPSR method, the reconstruction effect and sharpness degree will
be further improved when the regular operator q that is selected is much smaller, such as q = 0.1.
However, the running time with q = 0.1 also became much longer. In this work, the regular operator q
is selected to 0.5, as one can find in Table 5, that the running time of the proposed method (3371.2670 s)
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is much longer than wavelet packet (0.4969) and other sparse representation methods (DCT + OMP is
165.4376 s, and KSVD + OMP is 2928.2968 s) due to dictionary training and its iteration operations,
thus, the faster calculation method based on adaptive selection method of regular operator q will be
explored in future studies for eliminating the drawback of over-correcting.
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5. Conclusions

To address the image restoration problem, a new image reconstruction technique for
microstructure image based on KSVD and smoothing penalty sparse representation (SPSR) algorithm
is proposed in this paper. In image sparse representation, traditional orthogonal basis functions
are replaced by trained KSVD dictionary, and the trained KSVD dictionary represents the sparse
characterization of block sub-image probably due to the traditional sparse representation methods
that may cause instability and obvious artifacts in the reconstructed image, especially for the
restoration of microstructure images, including some smooth regions, or when the noise level
is strong. The proposed algorithm can overcome the above issues, which improves the reconstruction
accuracy significantly. Moreover, the damaged microstructure image usually brings statistics missing
in the analysis of microstructure grain parameters, and the proposed method can effectively address
this drawback, which has a high engineering application value in metal materials, manufacturing, and
microstructure fields.

Although the proposed method improves the reconstruction quality significantly, it still needs
future improvements, where the complexity level and computational time of the proposed approach is
rather high, due to dictionary training and its iteration operations. It is suggested that faster calculation
methods will be explored in future studies.
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Nomenclature

y Damaged image
x Latent ideal image
n External noise
R Degradation matrix
ϕ Transformation domain
α Transformation coefficients
x0 1-D discrete signal
A Sensing matrix
D Over-complete dictionary
dk The k-th column of the pending update dictionary
Ek Pre-computed error matrix
Ωk Matrix with size N × |ωk|
ER

k Error columns
λ Regularization weight
ζ(x) Regularization term
q Regular operator
ε Smoothing parameter
s Estimated sparsity level
b Measurement vector
β Constant
C1, C2, C3 Independent positive constants
KSVD K-means singular value decomposition
SPSR Smoothing penalty sparse representation
AA7075 Aluminum alloy 7075
STM Surface topography measurement
MEMM Micro-electro mechanical manufacturing
AFD Adaptive filter denoising
W-WPD Wavelet–wavelet packet denoising
PDE Partial differential equation
WHMRF Wavelet hidden Markov random field
SR Sparse representation
SAR Synthetic aperture radar
TIBT Translation-invariant second-generation band-wavelet transform
DCT Discrete cosine transform
NP hard Non-deterministic polynomial-time hard
MP Matching pursuit
OMP Orthogonal matching pursuit
CoSaMP Compressive sampling matching pursuit
TVRF Total variation regularization function
SNLR Sparse non-local regularization
CS Compressed sensing
DWT Discrete Wavelet transform
RIP Restricted isometry property
GRM Gaussian Random matrix
LFM Local Fourier matrix
LHM Local Hadamard matrix
HUE Highly underdetermined equation
SGD Standard Gaussian distribution
RPSs Restoration performance standards
NMSE Normalized mean-square error
PSNR Peak signal-to-noise ratio
SSIM Structural similarity
CAS Cellular automaton simulation
EBSD Electron back-scattered diffraction
METS Maximum entropy threshold segmentation
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