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Abstract: In this paper, titanium matrix composites with in situ TiB whiskers were synthesized by the
plasma activated sintering technique; crystalline boron and amorphous boron were used as reactants
for in situ reactions, respectively. The influence of the sintering process and the crystallography
type of boron on the microstructure and mechanical properties of composites were studied and
compared. The densities were evaluated using Archimedes’ principle. The microstructure and
mechanical properties were characterized by SEM, XRD, EBSD, TEM, a universal testing machine,
and a Vickers hardness tester. The prepared composite material showed a high density and excellent
comprehensive performance under the PAS condition of 20 MPa at 1000 ◦C for 3 min. Amorphous
boron had a higher reaction efficiency than crystalline boron, and it completely reacted with the
titanium matrix to generate TiB whiskers, while there was still a certain amount of residual crystalline
boron combining well with the titanium matrix at 1100 ◦C. The composite samples with a relative
density of 98.33%, Vickers hardness of 389.75 HV, compression yield strength of up to 1190 MPa,
and an ultimate compressive strength of up to 1710 MPa were obtained. Compared with the matrix
material, the compressive strength of TC4 titanium alloy containing crystalline boron and amorphous
boron was increased by 7.64% and 15.50%, respectively.

Keywords: titanium matrix composite; plasma activated sintering; crystalline boron; amorphous
boron; mechanical property

1. Introduction

Titanium-based metal matrix composite (TMC) has been widely used in the fields of aviation,
aerospace, the chemical industry, and others because of its high specific strength, specific rigidity,
and excellent mechanical properties at high temperatures [1–3]. Its reinforcement can be divided
into continuous and discontinuous according to the state of the reinforcement (particles, whisker,
or short fiber). Tomoyuki et al. have prepared alumina (Al2O3) titanium (Ti) composites to produce
biocompatible materials with superior mechanical properties. The Al2O3–Ti composites were fabricated
without any reaction phases, irrespective of raw materials [4]. The discontinuous nature of reinforced
titanium matrix composites has attracted much attention for its isotropic, low cost, and simple
preparation method.

The preparation process of TMCs can be divided into direct addition and in situ reaction by
means of the addition of reinforcement [5–7]. Although the preparation process of direct addition
is relatively quick and simple, the luster of titanium brings a series of issues, such as the degree
of wetting [8–10], the reaction interface [11,12], a higher manufacturing cost than that of ordinary
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materials, and others [13,14]. In situ synthesis can generate one or several enhanced phases through
an in situ reaction under certain conditions. This can be used to prepare particle-reinforced composites
with a small particle size, a stable thermodynamic performance, no interface pollution, and a
high bonding strength. It is a promising particle-reinforced composite material manufacturing
process [15–17]. Research shows that TiB whiskers have as good physical properties and mechanical
properties as in situ particles of TMCs. The interface between TiB and the Ti matrix introduced using
the in situ, autogenous method is clean and has no interface reaction [18–20]. Chandravanshi et al. have
studied the effect of boron on the microstructure and mechanical properties of thermomechanically
processed near-alpha titanium alloy. The results indicated that the typical cleavage fracture mechanism
at room temperature was the same as that at 550 ◦C [21]. Its good compatibility makes TiB an ideal
reinforcement for titanium matrix composites.

TMCs are mainly prepared by powder metallurgy (PM), the casting solidification molding method,
the spray molding method, and the laminated composite method [22–24]. For the base metal, a type
and size of more than two kinds of second phase particle can be chosen according to the technical
demands of the powder metallurgy composite method. However, the reaction between the matrix
metal and strengthening particles is hard to achieve through the traditional hot pressing process [25].
Plasma activated sintering (PAS) is a technology developed in recent years for the synthesis of materials.
Using the DC pulse voltage of the switch to generate an instantaneous, high-temperature plasma
between the powder particles or the gap, it is possible to quickly eliminate the impurity and gas
adsorbed on the surface of the powder particles, and promote the high speed diffusion and migration
of the material. Ghasali et al. have compared the effects of spark plasma, microwave, and conventional
sintering on the relative density and mechanical properties of Al-15 wt % TiC composite samples, and
the SPS technique achieved the most remarkable effect [26,27]. The materials can be consolidated at
lower temperatures, in a short period of time using the PAS process [28–30].

In this paper, the plasma activated sintering method was applied to the preparation of in situ
titanium matrix composites by powder metallurgy. The influence of the PAS process and second phase
particles used for the in situ reaction on the microstructure and mechanical properties of the prepared
titanium matrix composites were investigated.

2. Experimental Procedure

In this work, spherical TC4 titanium alloy powders (6.1% Al, 4.3% V, 0.16% Fe, 0.01% C, remainder
Ti; wt %) manufactured by the inert gas atomizing process were used as the raw material; the particle
sizes were in the range of 15–45 µm; −400 mesh crystalline boron (C-B) and amorphous boron (A-B)
powders were used as the second phase powder. The SEM images and XRD patterns of the two boron
powders are shown in Figure 1. The design percentage of boron was 5 wt %. The TC4 titanium alloy
powders were first mixed with 5 wt % boron powder in a shaker-mixer for 24 h. The milled powders
were compacted into a graphite die with an inside diameter of 25 mm. PAS was carried out on the
ED-PAS III system. Before sintering, the chamber was evacuated to a high vacuum. An uniaxial
pressure of 20 MPa was employed during sintering, and the heating process consisted of two steps:
a pulse electric current of 20 V and 100 A was loaded for 30 s to activate the surfaces of the particles,
and then a direct current was passed through, the graphite die containing the powders was heated up
at a rate of 100 ◦C/min, and held for 3 min at the design temperature [31–34].

The density of the sintered samples was measured by Archimedes’ principle. The phase
identification was carried out by X-ray diffraction (XRD, Ultima III, Rigaku, Japan) with Cu Kα

radiation. The microstructure of the polished surface and compressive fracture morphology of the
samples were examined by field-emission scanning electron microscopy (FESEM, Quanta-250, FEI,
Hillsboro, OR, USA). Vickers hardness was measured on the polished sections of the samples using
Vickers indentation (Tukon 1202, Buehler, Binghamton, NY, USA) at a load of 500 g held for 15 s.
The compressive strength (cylindrical specimens, of which the height was 10 mm and the diameter
was 5 mm) was measured at an ambient temperature using a universal testing system (MT810, MTS
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Systems Corporation, Eden Prairie, MN, USA); the load speed during compressive test was 1 mm/min.
Each sample was tested three times with nominally identical specimens to obtain an average value of
the yield strength.

Figure 1. (a) SEM secondary electron image of crystalline boron (C-B) powder; (b) SEM secondary
electron image of amorphous boron (A-B) powder; (c) XRD patterns of C-B and A-B powders.

3. Result and Discussion

3.1. Relative Density

Figure 2 shows the relative densities of TMCs sintered at different temperatures. The results
indicate that the densities of the samples show an upward trend with the increase of the sintering
temperature in the range of 900 to 1100 ◦C. The densities of the two kinds of composites are 93.40% and
92.46% at 900 ◦C, respectively; they then rise to 97.78% and 98.55% at 1100 ◦C. The relative densities of
the samples with A-B are higher than the samples with C-B when the sintering temperature is higher
than 1000 ◦C; this was due to the better chemical activity of A-B than C-B, thus allowing A-B to be
more fully diffused and reacted with the matrix. The densities did not continue to rise obviously when
the sintering temperature was higher than 1050 ◦C.

Figure 2. The relative densities of titanium-based metal matrix composites (TMCs) sintered at
different temperatures.

3.2. Microstructures

Figure 3 shows the microscopic morphology of the samples with the addition of C-B at different
sintering temperatures, and the combination of the particles with the matrix. The results show that at
the sintering temperature of 900 ◦C, the boron particles were not tightly bonded to the matrix. When
the sintering temperature rises to 1000 ◦C, the C-B particles were bonded closely with the matrix, and
the reaction layer appeared. The thickness of the reaction layer was 1.26 µm, but pores could still be
observed at the boundary. TiB whiskers were dispersed in the matrix; these were the complete reaction
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product of C-B and the Ti matrix. At the sintering temperature of 1100 ◦C, the intensity of TiB whiskers
increased obviously. The reaction layer between the residual elemental boron particles and the matrix
became thicker, measuring up to 3.35 µm. There were no obvious existing defects at the interface
between the C-B particles and the matrix.

Figure 3. The microscopic morphology of TMCs with C-B addition sintered at different temperatures.
(a) and (d) 900 ◦C; (b) and (e) 1000 ◦C; (c) and (f) 1100 ◦C.

EDS analysis was carried out on the micro-area; the distribution of elements is shown in Figure 4.
The main elements in the diffusion layer were titanium, vanadium, and boron; the content of aluminum
was low. Therefore, the diffusion layer was mainly formed by the diffusion and mutual reaction of
these three elements. The micro-area EBSD phase analysis can be seen in Figure 5. The results show
that with the diffusion between C-B and the matrix, the presence of B, Ti, TiB, and TiB2 can be observed
at the interface. When the titanium element is in a supersaturated state, the reactant TiB2 will continue
to react with the titanium to form TiB; the saturated state of the C-B elements near the side of the C-B
particles does not provide the necessary conditions for any further reaction.

Figure 4. (a,b) The selected area of EDS analysis; (c) The EDS line of the micro-area at the second
phase particle.
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Figure 5. Micro-area EBSD phase analysis of the interface between C-B and the matrix. (a) C-B; (b) VB;
(c) TiB2; (d) TiB.

Figure 6 shows the microstructure of the composites with A-B addition at different sintering
temperatures, and the microstructure of the matrix without the addition of the reinforcing phase at the
corresponding sintering temperature. The results show that at 900 ◦C, the shape of the raw material
TC4 powder was still legible; A-B particles distributed around the TC4 powder; few TiB whiskers
could be observed in the matrix. However, the blank control group sample was fully saturated. When
the sintering temperature was increased to 1000 ◦C, the bonding of the matrix powder was good, and
most of the A-B species disappeared. However, the agglomeration of boron could still be observed in
some areas, while reactant TiB whiskers were distributed in the matrix material. The grain shape of
the material was a mixture of short plate and equiaxed, while the control group sample transformed
into a whole lamellar tissue. The samples were nearly saturated with no obvious pores present at
the sintering temperature of 1100 ◦C, and the boron was completely reacted with the matrix and
distributed evenly in the matrix. The microstructure of the composites was still of an equiaxial and
short-plate shaped mixed state. These phenomena were due to the fact that, in the control group
samples, the powder was in contact with the same species that facilitates the formation of the sintered
neck and the inter-diffusion of the elements. With the addition of the enhanced phase, the boron
particles were uniformly wrapped around the matrix powder, which hindered the diffusion between
the matrix powders, making it difficult to achieve sintering densification. Research showed that
TiB whiskers could also pin the grain boundary effectively, preventing the grain from growing at
high temperature. When its major axis is parallel to the grain boundary, TiB whiskers have the most
remarkable pinning effect on the grain growth [35].

The crystal structure of the specimens with different crystallographic boron addition were
characterized by X-ray diffraction; all the samples were prepared at 1100 ◦C. The XRD patterns
are displayed in Figure 7. The patterns indicate that the diffraction peaks of TiB could be observed
in both the A-B–TC4 composite sample and the C-B–TC4 composite sample. The sample with A-B
addition showed higher TiB diffraction peaks than the C-B–TC4 sample at the peak positions of the
(107), (210), and (102) crystal faces. Several diffraction peaks of B can be found in the XRD pattern of
the C-B–TC4 composite material, while there are no obvious peaks at the corresponding position of the
A-B–TC4 composite sample. The complete reaction of A-B and the titanium matrix led to the higher
content of TiB, while the typical B diffraction peaks in the C-B–TC4 composite sample are due to the
amount of residual crystalline boron.
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Figure 6. The microstructures of TMCs with A-B addition sintered at different temperatures: (a) 900 ◦C;
(b) 1000 ◦C; (c) 1100 ◦C; and without addition: (d) 900 ◦C; (e) 1000 ◦C; (f) 1100 ◦C.

Figure 7. The XRD patterns of sintered samples.

3.3. Mechanical Properties

Figure 8 shows the Vickers hardness value of samples sintered at different temperature. The
addition of A-B led to a more pronounced upward trend. A-B was more fully involved in the reaction
under the same conditions, resulting in a higher volume fraction of TiB whiskers, and leading to an
increase in grain boundaries. The high-density boundaries block the movement of dislocations because
of the dislocation entanglement phenomenon; this improved the deformation resistance. Because the
value of Vickers hardness was calculated by the area of indentation and the test pressure [36], the
higher density of boundaries provided by the full reaction between A-B and the matrix contributed
more to the hardness of the samples than that of the incomplete reaction of C-B.
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Figure 8. The Vickers hardness values of samples sintered at different temperature.

Figure 9a shows the compressive properties of the C-B addition samples prepared at different
sintering temperatures. The compressive strength rose as the sintering temperature increased. This
was because a high sintering temperature promotes the interface reaction between the element and
the matrix. The same phenomenon occurred in Figure 9b, which shows the compressive strength
curves of the A-B addition samples. Figure 9c is a comparison of the compressive strength curves of
the composite material prepared at 1100 ◦C with the boron-free matrix material. The results show that
the compressive strength of the sample with the enhanced phase is significantly higher than that of
the matrix material, and the yield strength was increased by 8.56%. Huang et al. have studied the
transformation of TiB whiskers during plastic deformation. Their result showed that a significant
recrystallization occurred in the primary α phase of titanium matrix composite materials. When true
strains reached 1.81%, the dislocation density decreased obviously. An equiaxed microstructure was
obtained after the complete recrystallization of the alloy, and a good effect on the comprehensive
performance of the material was reported [35].

Figure 9. The compression strength curves of different groups of samples, (a) with C-B addition;
(b) with A-B addition; (c) comparison between TMCs and the matrix material; (d) specific node value.
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With the increase of the sintering temperature, A-B reacts with the matrix to form TiB whiskers.
These in situ whiskers can enhance the performance of the sample in the process of compressive
fracture when compared with TC4 titanium materials with similar compositions. Sun et al. have
prepared a TC4 titanium block with the same microstructure of axial and short, tabular grains as the
matrix, and obtained a compression stress of 1020 MPa, 7.8%, lower than the composite material in this
paper [37]. Figure 10 shows the fracture form of the TiB whiskers during the slip of the compression.
The cross section of the in situ TiB whiskers was of a hexagonal shape; (100), (101) and (10-1) crystal
planes were clarified in Figure 10a. The growth in the longitudinal direction of the whisker is aligned
in the (010) direction according to the earlier studies [21]. These whiskers aligned in different directions
provide shear stress and axial tension stress as shown in Figure 10b,c, while the strain rate of the
sample also increased due to the hindering and entangling of the dislocation brought about by the
second phase particles.

Figure 10. (a) The hexagonal cross section of the in situ TiB whisker; (b,c) TiB whiskers on the sliding
surface; (d) The fracture form of the TiB whiskers during the slip of the compression.

Figure 11 shows the compression fracture surface of the sample with C-B addition, and the state
of the second phase particles during the fracture process. The EDS line indicates that the interface of
the second phase has a small aluminum content, and the boron and vanadium elements are enriched.
The reaction product of this region is mainly VB compound, which is a brittle ceramic phase with low
intensity. A crack appeared in this region during the process of compression deformation. This crack
occurred only in the vicinity of the grain, and did not expand to the matrix, playing a role in energy
absorption and contributing to the plastic deformation of the material.

Figure 11. (a,b) The compression fracture surface of the sample with C-B addition; (c) EDS line of the
selected area.

4. Conclusions

In this paper, titanium matrix composites with in situ TiB whiskers were synthesized by plasma
activated sintering; the effect of C-B and A-B addition as the reactant were compared and investigated.
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Titanium matrix composites containing in situ whiskers with a high relative density were obtained
under the PAS condition of 20 MPa and 1000 ◦C for 3 min. A-B had a higher reaction efficiency than
C-B; for this reason, it could completely react with the titanium matrix to generate TiB whiskers, while
C-B still had a certain amount of residual particles at 1100 ◦C. The in situ whiskers obtained a length in
the range of 2~10 µm, and the microstructure of the matrix was of an equiaxial and short, plate-shaped
mixed state.

The composite samples obtained high comprehensive mechanical properties with a Vickers
hardness of 389.75 HV, a compression yield strength of up to 1190 MPa, and an ultimate compressive
strength of up to 1710 MPa. The in situ whiskers helped the titanium matrix composites maintain an
equiaxed and short plate-like uniform microstructure distribution, and enhance the compression
strength through the dislocation entanglement phenomenon, which contributed to the good
compressive mechanical properties.
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