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Abstract: A meso-mechanical damage model is developed to predict the tensile damage behaviors
of bulk metallic glass composites (BMGCs) toughened by ductile particles. In this model,
the deformation behaviors of the BMG matrix and particles are described by the free volume
model and Ludwik flow equation, respectively. Weng’s dual-phase method is used to establish the
relationship between the constituents and the composite system. The strain-based Weibull probability
distribution function and percolation theory are adopted in characterizing the evolution of shear
bands leading to the progressive failure of BMGCs. Moreover, the present model is performed under
strain-controlled loading. Comparing to experiments on various BMGCs, the predictions are in good
agreement with the measured results, which confirms that the present model successfully depicts the
composite properties, such as yield strength, uniform deformation and strain softening elongation.

Keywords: bulk metallic glass matrix composites (BMGCs); meso-mechanics; shear band;
stress–strain relation; failure

1. Introduction

To improve the poor damage tolerance of pure bulk metallic glass (BMG), many kinds of
composite (BMGC) systems have been prepared, and many important conclusions were reached.
However, an in-depth understanding of the inherent synergic effect among different constituents
in BMGCs is still lacking. In comparison to simulations and experiments, theoretical models are
more efficient and convenient in explaining their micro-deformations and composite effect. Moreover,
quantitative relations are more efficient in optimizing the ductility/toughness of BMGs via rapidly
tuning their microstructures. It is imperative to understand the correlations among processing,
microstructures and properties for such composites. According to the thermodynamics and free energy
principle, Marandi et al. [1] advanced an elastic-viscoplastic constitutive model for describing the
finite deformation behaviors of BMGCs. They [2] further extended their model to better predict the
stress–strain relations of in-situ BMGCs. Qiao et al. [3] were the first to consider the work-hardening
ability of dendrite phase and softening of metallic glass matrix from the point of micromechanics
view, and the predictions are in a fairly good agreement with tensile experiments. It should be noted
that the interaction among the constituents is not fully reflected. Yang et al. [4] also established an
analytical model to describe the deformation kinematics, free volume evolution, hardening, softening
and viscosity of BMGs. Recently, Sun et al. [5] improved Qiao’s previous micromechanics model
to predict the tensile behaviors of in-situ BMGCs more accurately based on the measured data via
nano-indentation. Rao et al. [6] proposed a new meso-mechanical constitutive model to predict the
monotonic tensile/compressive deformation of BMGCs with toughening phases, but their analytical
model has very complicated formulas. Jiang et al. [7–10] regarded the shear bands as micro-cracks,
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established their equivalence relation, and finally developed two micromechanics models based on the
incremental tangent stiffness and secant modulus, respectively.

These analytical models can successfully reflect some main features, such as yield strength, strain
hardening and stress softening elongation, of ductile particles filled BMGs. However, they cannot
fully take account of the inherent microstructure evolution and deformation features of BMG matrix.
It is expected that shear bands will gradually transform into micro-cracks with the deformation
increasing, and correspondingly the stress–strain curve of BMGCs will enter the stress-softening
stage. To the author’s knowledge, the damage effect in the BMGCs was not addressed in these
analytical models, and a simple micromechanics model is always required to describe their intriguing
mechanical response.

This paper aims to build an analytical damage model for predicting the tensile failure of BMGCs
toughened by ductile particles. The deformation behaviors of BMG matrix and particles are described
by the free volume model and Ludwik flow equation, respectively, and Weng’s homogenization frame
is adopted to establish the interaction between the constituents and composites. As compared to
the other models, the present model is more convenient to apply, and more readily to be expanded.
The developed model is performed under strain-controlled loading, and verified by modeling the
monotonic stress–strain relations of particle toughened BMGCs.

2. Analytical Model of BMGCs

The BMGCs are filled with ductile particles, and the stress–strain relations of the constituents
should be described with the proper constitutive equations. For such dual-phase composites, where
both phases can undergo plastic flow, Weng [11] developed an analytical model to depict the
stress–strain relations of the composites, and later extended by Zhu [12]. Their formula will be
used as the basis of a new micromechanics method for BMGC, and a perfect interfacial bonding
between two phases is assumed. For a dual-phase composite, the particle phase is referred as phase 1
and the BMG matrix as phase 0, and those of the composite are expressed by symbols without any
script. All the tensors and vectors are written in boldface letters. The volume fractions for the particle
and matrix phases are denoted by c1 and c0, respectively, and should satisfy the condition c1 + c0 = 1.

2.1. Constitutive Model of BMGs

The shear band evolution controls the fundamental deformation mechanisms in BMGs. At the
microscopic level, shear band formation is accompanying with the evolution of the local structural
order. One atomistic mechanism capturing shear band formation and evolution in BMGs is the free
volume model proposed by Spaepen [13] and further extended by Steif [14]. From the continuum
mechanics point of view, the shear band is regarded as a consequence of strain softening and acts as
a strain-localization phenomenon. This model considers free volume as an internal state variable to
characterize the structural evolution of BMGs at the atomic level.

Following a J2-type, small strain visco-plasticity framework, the free volume model is adapted
into the multi-axial stress state. The total strain rate in the BMG matrix is written as

.
εij =

.
ε

e
ij +

.
ε

p
ij, (1)

which includes the elastic part,
.
ε

e
ij =

1+ν
E
( .
σij − ν

1+ν

.
σkkδij

)
, and the plastic part,

.
ε

p
ij. For the BMG matrix,

the plastic strain rate, i.e., the flow equation is expressed as

.
ε

p
ij = f σ′ij/σeq, (2)
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where σ′ij = σij − σkkδij/3 is the deviatoric stress tensor and σeq = (σ′ijσ
′
ij)

1/2 is the von Mises′ stress.
f is the flow stress, which is defined by

f = f0 exp
(
−∆Gm

kBT

)
exp

(
−1

ξ

)
sinh

(
σeqΩ
2kBT

)
, (3)

where f 0 is the frequency of atomic vibration; ∆Gm is the activation energy; kB is the Boltzmann
constant; T is the absolute temperature; Ω is the atomic volume; and ξ is the concentration of free
volume. The free volume evolution equation under multi-axial stress state is written as

.
ξ =

1
α0

f0 exp
(
−∆Gm

kBT

)
exp

(
−1

ξ

){
2kBT
ξν∗S

(
cosh

(
σeqΩ
2kBT

)
− 1
)
− 1

nD

}
, (4)

where α0 is a geometrical factor of order unity; ν* is a critical volume; S is the Eshelby modulus, given
by S = 2(1 + v)µ/3(1 − v); v is Poisson’s ratio; µ is the shear modulus; and nD is the number of atomic
jumps needed to annihilate a free volume equal to ν* and is usually taken to be 3–10.

2.2. Constitutive Model of Ductile Phases

The Ludwik equation is adopted for ductile particles in terms of von Mises′ effective stress and
plastic strain as

σeq = σy + h(εp
eq)

n
, (5)

where ε
p
eq = (2ε

p
ijε

p
ij/3)

1/2
; σy, h and n are the initial yield stress, strength coefficient and the

work-hardening exponent, respectively; and these material parameters will be determined by fitting
with a measured stress–strain curve. Moreover, Hencky’s flow rule is adopted,

ε
p
ij =

3
2

ε
p
eq

σeq
σ′ij, (6)

2.3. Homogenization Method for BMGCs

For dual-phase composites, Weng’s model is used to establish the relationship among ductile
particles, matrix and the resulting composites under monotonic uniaxial tension. The detailed
derivations are found in their original work [11]. The relationship between the hydrostatic and
deviatoric strains of BMGCs are defined by

σkk = 3κ0

[
1 +

c1(κ1 − κ0)

c0αs
0(κ1 − κ0) + κ0

]
εkk, (7)

σ′ij = 2µs
0

{[
1 +

c1(µ1 − µs
0)

c0βs
0(µ1 − µs

0) + µs
0

]
ε′ij −

c1µ1

c0βs
0(µ1 − µs

0) + µs
0

ε
p(1)
ij

}
, (8)

where αs
0 and βs

0 are the components of the classical Eshelby’s tensor for spherical inclusions,
and given as

αs
0 =

1 + νs
0

3(1− νs
0)

,βs
0 =

2(4− 5νs
0)

15(1− νs
0)

, (9)

and κ and µ denote the bulk and shear moduli, and are written as follows to satisfy the
isotropic relations,

κr =
Er

3(1− 2vr)
,µs

r =
Es

r
2(1 + vs

r)
, (r = 0 or 1) (10)
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where E and ν are the Young’s modulus and Poisson’s ratio, respectively; and E and ν with superscript
“s” denote the secant modulus and secant Poisson’s ratio, respectively, defined by

Es
r =

1
1
Er

+
ε

p
eq
σeq

,vs
r =

1
2
−
(

1
2
− νr

)
Es

r
Er

, (r = 0 or 1) (11)

The relationship between the hydrostatic and deviatoric strains of the constituents and those of
BMGC are given as

ε
(0)
kk =

αs
0(κ1 − κ0) + κ0
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εkk, (12)
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ε
(1)
ij

′
=

µs
0

c0βs
0(µ1 − µs

0) + µs
0
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ε
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ij . (15)

2.4. Failure of the BMG Matrix

During the deformation of BMGCs, shear bands gradually transform into micro-cracks with the
applied loading, and therefore are simplified as micro-cracks. Moreover, shear bands lead to the stress
softening behavior, which is similar to the effect of micro-cracks on the mechanical behaviors [15].
From this viewpoint, shear bands are equivalent to micro-cracks, and then some analytical models for
micro-cracks are also applied to the strain localization effect induced by shear bands [16].

The representative volume element (RVE) is often utilized to account for the micro-crack
orientation statistics in the inhomogeneous materials. The micro-cracks generated by shear bands are
supposed to be random, and thus the corresponding effective moduli are given by [17]

E
Ein

=

[
1 +

16(1− ν2
in)(1− 3νin/10)

9(1− νin/2)
ρ

]−1

, (16)

G
Gin

=

[
1 +

16(1− νin)(1− νin/5)
9(1− νin/2)

ρ

]−1

, (17)

ν

νin
=

E
Ein

[
1 +

8(1− ν2
in)

45(1− νin/2)
ρ

]
, (18)

where the subscript “in” denotes the intact materials with no micro-cracks. For the ductile phases,
the failure criterion based on statistical probability is associated with strain levels. The strain-based
Weibull distribution function is introduced to characterize the shear band induced fracture as

P(εp) = 1− exp
[
−
(

εp

ε0

)m]
, (19)

where εp is the plastic strain and ε0 is the reference strain, and since there is no data available for
parameter m, which is need to be determined by fitting from a final stage with damage so that the
predicted stress–strain relations can duplicate the experiments. Then, the density of shear-bands in the
BMGCs is defined by

ρ = ρ0 · P(εp) = ρ0 ·
{

1− exp
[
−
(

εp

ε0

)m]}
, (20)
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where ρ0 denotes the saturate density of shear-bands. After introducing the percolation threshold of
shear-band propagation in the BMG matrix, the shear-band density is given by

ρ =

{
ρ0 · P(εp)(1− c1) (c1 > ccr)

ρ0 · P(εp)(1− c1)
[
1− (ccr − c1)

χ] (c1 < ccr)
, (21)

where ccr and χ are constants, which will be assigned by the experimental data. In fact, almost the
precipitates are randomly distributed in real BMGCs. Therefore, some necessary statistics experiments
should be performed to examine the flaw sensitivity and reliability of BMGs.

3. Numerical Implementation

The developed model is performed under strain-controlled loading, and the detailed algorithm is
explained here. For a time interval from tn to tn+1 (∆tn+1 = tn+1 − tn), the necessary variables at time
tn, such as σn, εn, ε

(0)
n , ε

(1)
n , σ

(0)
n and σ

(1)
n , are known, and a uniform strain increment ∆εn+1 is given.

The average strain increments ∆ε
(r)
n+1 (r = 0, 1) in each phase are determined by Equations (12)–(15),

and then the secant modulus, secant Poisson′s ratio and plastic strain can be computed by the
constitutive models for each phase. The overall stress increment corresponding to the current strain
increment can be solved.

The key issue in the modeling procedure is to fix ∆ε
(r)
n+1 (r = 0, 1). At first, the initial tentative

value of ∆ε
(1)
n+1 is given by

∆ε
(1)
n+1 = ∆εn+1. (22)

Then,

∆ε
(0)
n+1 =

∆εn+1 − c1∆ε
(1)
n+1

1− c1
. (23)

Then, the compatibility of a strain increment ∆ε
(1)
n+1 in particles is checked by the residual R

as follows
Rij = κ0

f0αs
0(κ1−κ0)+κ0

εn+1
kk +

µs
0

f0βs
0(µ1−µs

0)+µs
0
εn+1
′ij

+ f0βs
0

µ1
f0βs

0(µ1−µs
0)+µs

0
ε

p(1)
ij

∣∣∣
n+1
− ε

(1)
n − ∆ε

(1)
n+1

, (24)

R represents the difference between particle′s tentative average strain increment and that obtained
by Weng′s model. If ‖R‖ < TOL (R→0), the iteration stops. Otherwise, ∆ε

(1)
n+1 is updated with another

new iteration,
∆ε

(1)
n+1 = ∆ε

(1)
n+1 + R. (25)

In the uni-axial strain-controlled loading, only the strain increment in loading direction (∆ε11) is
exactly given, and the others should be determined by the overall-stress constraints. An additional
iteration procedure should be performed to obtain the values of ∆ε22 (∆ε33) as

σ22 = σ33 = 0. (26)

For a given strain increment (∆ε11, ∆ε22 = ∆ε33), determining the exact value of ∆ε22 should be
a key procedure in the computation. A simple method is explained here. The iteration of updating
∆ε22 is also performed from an initial value of zero, and a new ∆ε22 = ∆ε22 + ∆ is assigned with a very
small ∆. The value of ∆ is adjusted correspondingly based on the computation precision. The iteration
stops if Equation (26) is satisfied; otherwise, ∆ε22 is updated according to the above equation for the
next iteration.

Based on the completed stress–strain curves by the above iteration, the shear-band density ρ is
determined, and then the overall elasticity is given. Based on Equations (16)–(18), the stress–strain
curves for the BMGCs can be re-evaluated by involving the damage effect. The above-mentioned
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numerical implementation procedure is illustrated by the flowchart in Figure 1, and a Fortran code
was programmed to predict the stress–strain relations of BMGCs.
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Figure 1. Flow chart of numerical integration algorithm under displacement-based loading.

4. Results and Discussion

4.1. Comparisons with the Experiments

Szuecs et al. [18] prepared a Zr-based BMGCs with dendrite volume fraction of c1 = 20%,
and measured their mechanical properties under tension. The dendrites are described by Equation (5),
and their properties are: E1 = 72 Gpa, v1 = 0.4, σy = 700 Mpa, h = 1200 Mpa, and n = 0.65. The material
properties for Zr-based BMG are: E0 = 86 Gpa, v0 = 0.36, ξ0 = 0.05, nD = 3, α = 0.5, β = 0.9
and σ0 = 125 Mpa. The predictions are compared with the measured results shown in Figure 2,
where ε0 = 0.04 and m = 18 are used. All the predictions agree with the experiments very well,
and strain-softening effect and the collapse stage can be clearly reflected by the damage model.
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Figure 3 shows the calculated stress–strain relation for BMGC with dendrite concentration of
c1 = 43% [19]. The material properties of constituents are: E1 = 140.3 Gpa, ν1 = 0.3, σ1

y= 1600 Mpa,
n1 = 0.2, h1 = 388 Mpa, E0 = 106 Gpa, ν0 = 0.35, σ0

y= 1336 Mpa, n0 = 0.4, h0 = 688 Mpa, ε0 = 0.1 and
m = 16. Figure 4 plots the stress–strain relations for BMG composite with various dendrite volume
fractions [20]. Material properties are: E1 = 127 Gpa, ν1 = 0.3; E0 = 90 Gpa, ν0 = 0.35, σ1

y= 1 Gpa,
n1 = 0.5, h1 = 560 Mpa, σ0

y= 700 Mpa, n0 = 0.1, h0 = 740 Mpa, ε0 = 0.11 and m = 8.
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Figure 4. Comparisons of the macroscopic stress–strain relation between the prediction and
experiments for BMGCs with different particle concentrations [20]. ε0 = 0.11 and m = 8 are adopted in
the computation.

BMGC’s deformation increases step by step; a slight work hardening was observed, followed by
remarkable improvement in plastic strain level. By including the damage effect, the collapse stage
during deformation could be clearly presented. Finally, the predicted results are in good agreement
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with the measured data. On the other hand, the increase in dendrite loading level will greatly impair
the yielding stress. The present comparison confirmed that this model can reflect the dependence of
composite strength and ductility on phase volume fractions.

The impacts of model parameters in the present method should be carefully explained. Figures 5
and 6 demonstrate the effect of Weibull modulus m and reference strain ε0 on the overall stress–strain
curves, respectively. In Figure 5, the Weibull modulus m ranges from 2 to 16, and the reference
strain ε0 = 0.06. At a given particle volume fraction, the plastic elongation increases with increasing
Weibull modulus, which is controlled by the physics meaning of Weibull modulus. Additionally,
the dependence of the overall stress–strain relations on reference strain ε0 is illustrated in Figure 6.
As expected, the uniform stretches decrease with the increase in micro-crack density. For the reference
strain less than 0.1, the difference in plastic elongation becomes evident.
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Based on the work hardening coefficient, the ability to endure damage can be judged for
engineering materials. The reliance of work-hardening rate dσ/dε on particle concentration is shown
in Figure 7. Here, the definition of dσ/dε, is used to describe the resistance to flow localization, i.e.,
necking. It is noted that the value of dσ/dε is higher for BMGCs with higher filler volume fraction.
Moreover, the value reduces rapidly with deformation for dilute composites. These curves also show
that uniform elongation becomes larger with the higher initial hardening rate. Since the material
with a high dσ/dε can lead to a much uniform plastic flow, which is against the early appearance of
deformation localization, and an increased stretch is finally reached.
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4.2. Discussion

The comparisons between the predictions and experiments indicate that the present model can
describe the damage behaviors of BMGCs accurately. Under the multi-axial stress state, the BMG
matrix in the composites exhibits a certain degree of plasticity, which is absent for pure BMG under
uniaxial loading. Based on the free volume model and iso-hardening flow law for the constituents, the
equivalent plastic behaviors of BMG matrix can be determined by the present model.

Based on the Eshelby’s tensor and Mori–Tanaka mean field frame, many micromechanic models
have been developed, and are commonly applied under stress-controlled loading. Such models have
difficulty describing strain-softening deformation. In the present work, the secant modulus and
strain-controlled formula were adopted, and the aforementioned difficulty can be easily avoided.
In Rao’s mesoscale model, two important terms need to be performed: The first one is the algorithmic
tangent operator, obtained by consistent linearization of the time discretized constitutive equations.
The second is a new one and called an affine strain increment. Therefore, their model has very
complicated in mathematical formulas. On the other hand, the present model does not need to
calculate the tangent stiffness instead of the secant modulus, and is very simple in mathematic form,
which is readily realized in programming.

It is expected that particle volume fraction is usually higher than 30%, even exceeding 50%
for many BMGCs. The interaction between particles and matrix cannot be well considered by the
Mori–Tanaka method. Additionally, shear bands will finally transform into micro-cracks by increasing
the applied deformation, and moreover the microstructure evolution is a complicated process, and their
effect on the macroscopic performance is not clear yet. These problems should be deeply studied and
tackled by improving the present model in the future.
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5. Conclusions

Based on Weng’s method for dual-phase composites, a meso-mechanical damage model was
proposed to depict the tensile failure of BMGCs. Free volume theory was adopted to describe the strain
softening of BMG matrix. The strain-based Weibull probability distribution function and percolation
theory are used to reflect the damage effect induced by the transformation from shear bands to
micro-cracks. The displacement controlled loading was applied to predict the collapse stage during the
deformation. The final comparisons with the experiments confirm that the present model can replicate
the monotonic tensile stress–strain relations of BMGCs until final failure.
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