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Institute of Applied Mechanics, Poznan University of Technology, ul. Jana Pawła II 24, 60-965 Poznan, Poland;
tomasz.strek@put.poznan.pl
* Correspondence: hubert.jopek@put.poznan.pl; Tel.: +48-61-665-2339

Received: 24 January 2018; Accepted: 11 February 2018; Published: 13 February 2018

Abstract: This paper presents a study of new two-dimensional composite structures with respect
to their thermomechanical properties. The investigated structures are based on very well-known
auxetic geometries—i.e., the anti-tetrachiral and re-entrant honeycomb—modified by additional
linking elements, material which is highly sensitive to changes of temperature. The study shows
that temperature can be used as a control parameter to tune the value of the effective Poisson’s ratio,
which allows, in turn, changing its value from positive to negative, according to the temperature
applied. The study shows that such thermoauxetic behavior applies both to composites with voids
and those completely filled with material.

Keywords: auxetic; thermoauxetic; thermal auxeticity; anti-tetrachiral; re-entrant honeycomb;
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1. Introduction

It is very well known that mechanical properties of materials depend on temperature. In particular,
temperature change can drastically influence the values of materials’ elastic properties, i.e., the Young’s
modulus and the Poisson’s ratio [1,2]. This is particularly interesting in the case of auxetic materials.
The negative Poisson’s ratio characterizing auxetic materials has been extensively studied for more
than thirty years. Since first works by Gibson [3], Lakes [4], Wojciechowski [5] and Evans [6], it has
been discovered that auxeticity can be obtained from specific geometry of material microstructure and,
consequently, many such geometries have been proposed. Some of the most popular geometries are:
chiral and antichiral [7–9], re-entrant [10,11], double arrowhead [12,13] and rotating polygons [14].
Auxetic behavior could be also the result of precisely designed cuts, which have been shown by
Francesconi et al. [15] and Javid et al. [16] All these geometries are usually used to build cellular
structure of materials. Studies of these structures have been performed both experimentally and
theoretically, using numerical methods, e.g., a review of the manufacture, mechanical properties of
auxetic foams was published by Critchley et al. [17].

A very important group of materials are composites consisting of two or more constituents.
Composites in which at least one phase is auxetic have also been considered by some authors.
For instance, Strek et al. studied the behavior of torsioned composite beams in which one phase is
characterized by negative Poisson’s ratio [18,19]; Lim investigated laminates with auxetic phase [20,21]
as well as other systems characterized by negative Poisson’s ratio [22]. Jopek studied a sandwich
panel reinforced with unidirectional auxetic fibers [23]. The composite’s material characteristics
depend both on mechanical properties of each constituent and topological arrangement of each phase.
These effective properties of composites can be very different from the properties of each constituent.

Further, there are composites whose one or more material phases create auxetic structure.
Milton [24] investigated hexagonal composites characterized by the Poisson’s ratio close to −1.
Evans et al. [25] analyzed re-entrant network embedded in another matrix material. Experimental
studies on.
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Sigmund and Bendsøe [26,27] showed in particular that it was possible to perform an optimization
procedure in order to design a composite structure characterized by specific effective material
properties. In case of two-phase composites composed of elastically isotropic constituents with
bulk and shear moduli, Hill [28] provided first bounds on the range of effective bulk and shear
moduli based on the Voigt and Reuss estimates. Hashin and Shtrikman [29] improved these bounds
for three-dimensional composites and well-ordered constituents (phase with larger shear modulus
has also larger bulk modulus). In anisotropic solids (e.g., single crystals, honeycombs and fibrous
composites), physical properties, including Poisson’s ratio and elastic moduli, depended on direction
and could have positive or negative values of arbitrarily large size. Strek et al. [30,31] proposed
optimized topologies of a composite built out of two materials characterized by positive Poisson’s ratio
whose effective Poisson’s ratio was negative. Czarnecki et al. presented models of auxetic materials
resulting from optimal distribution of Young’s modulus within the composite material volume [32,33].
Long et al. maximized the effective Young’s modulus of a composite with auxetic inclusions [34].
Pozniak et al. [35] investigated composites with elliptic inclusions using the finite element method and
showed that one could tailor a material of practically arbitrary elastic parameters.

Voids occurring in the internal structure are a common feature of auxetics, including most
composites characterized by the negative effective Poisson’s ratio. Still, composites were proposed
whose whole volume was filled with material and which yet exhibited auxetic behavior. Recently,
new research was published in which the value of effective Poisson’s ratio could be tuned from positive
to negative. Grima et al. [36] proposed metamaterial in which the value of the Poisson’s ratio was
controlled by an external magnetic field. Jopek and Strek [37,38] presented a composite in which the
value of the Poisson’s ratio switched from positive to negative as a function of temperature. Similar
results were obtained by Li at al. [39,40] in their studies of the bimetallic re-entrant structure.

In this paper, new composite structures are proposed based on very well-known auxetic
geometries, i.e., anti-tetrachiral and re-entrant honeycomb. Modified structures are built with two
constituent materials—each of them is characterized by different temperature-dependent elastic
properties. Mechanical properties of the resultant composites are also influenced by temperature.
The article focuses in particular on the effective Poisson’s ratio and the possibility of changing its value
from positive to negative depending on the temperature applied (thermoauxeticity). FEM method is
used to perform numerical calculations.

2. Materials and Methods

The equilibrium equation expressed in terms of stresses can be written in a compact notation

−∇ · σ = F, (1)

where F denotes the volume force (body force), σ is the stress tensor. In a linearly elastic material,
stress tensor is σ = C : ε, where C is the fourth-order stiffness tensor and the strain-displacement
relation for displacement is ε = 1

2 (∇u + (∇u)T). Generally, for linear isotropic material, only two
constants are needed to describe the elastic behavior of the material: The Young’s modulus and
the Poisson’s ratio, or the shear modulus (G) and bulk modulus (K), where G = E/(2(1 + ν)) and
K = E/(3(1− 2ν)), or two Lamé constants. The Poisson’s ratio of an isotropic, linearly elastic material
can neither be less than −1.0 nor greater than 0.5. Hooke’s law (solid stress-strain relationship) for the
linear isotropic material is:

σ = 2µε+ λ(∇ · u)δij, (2)

where u is the displacement field, δij is Kronecker’s delta and λ and µ are Lamé constants:

µ = G =
E

2(1 + ν)
, λ =

E ν

(1− 2ν)(1 + ν)
. (3)



Materials 2018, 11, 294 3 of 12

Substituting the stress-strain and strain-displacement relationship in the Navier’s Equation (1)
results in the Navier’s equation expressed in the displacement. Neglecting body forces Navier’s
equation is described as follows:

µ∇2u + (λ + µ)∇(∇ · u) = 0. (4)

The Navier’s equation is desired formulation for the displacement problem and the system
represents three equations (in three-dimensional problems) for the three unknown displacement
components.

However, many problems in elasticity may be treated satisfactorily by a two-dimensional plane
theory of elasticity. There are two general types of problems involved in this plane analysis (plane
stress or plane strain). These types will be defined by setting down certain restrictions and assumptions
on the stress and displacement fields. For the simplicity of writing expressions, it is assumed that
x = [x1, x2, x3] = [x, y, z] and u =

[
ux, uy, uz

]
.

Plane stress is defined to be a state of stress in which the normal stress σz and the shear stresses
σxz and σyz, directed perpendicular to the xy-plane are assumed to be zero. The geometry of the body
is essentially that of a plate with one dimension much smaller than the others. The loads are applied
uniformly over the thickness of the plate and act in the plane of the plate.

For isotropic materials and assuming σz = τxz = τyz = 0 and γxz = γyz = 0 yields σ = C : ε,
where stiffness tensor is expressed as:

C =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

. (5)

The basic partial differential equations for plane stress without body and inertia forces are:

G
(

∂2ux
∂x2 + ∂2ux

∂y2

)
+ 1+ν

1−ν G ∂
∂x

(
∂ux
∂x +

∂uy
∂y

)
= 0,

G
(

∂2uy
∂x2 +

∂2uy
∂y2

)
+ 1+ν

1−ν G ∂
∂y

(
∂ux
∂x +

∂uy
∂y

)
= 0.

(6)

Plane strain is defined to be a state of strain in which the strain normal to the xy-plane εz and the
shear strain γxz and γyz are assumed to be zero. In plane strain, the dimension of the structure in one
direction (say the z-direction) is very large in comparison with the dimensions of the structure in the
other two directions. The loads are uniformly distributed with respect to the large dimension and act
perpendicularly to it.

For isotropic materials and assuming εz = γxz = γyz = 0 and γxz = γyz = 0 yields σ = C : ε,
where stiffness tensor is expressed as:

C =
E

(1 + ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0
0 0 1−2ν

2

, (7)

with
σz =

E
1 + ν

ν

1− 2ν
(εx + εy) (8)

The basic partial differential equations for plane strain are:

G
(

∂2ux
∂x2 + ∂2ux

∂y2

)
+ 1

1−2ν G ∂
∂x

(
∂ux
∂x +

∂uy
∂y

)
= 0,

G
(

∂2uy
∂x2 +

∂2uy
∂y2

)
+ 1

1−2ν G ∂
∂y

(
∂ux
∂x +

∂uy
∂y

)
= 0.

(9)
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The most common definition of the engineering Poisson’s ratio (PR) is based on the assumption
of small deformation. PR is simply defined as a negative ratio of the transverse to longitudinal strains.
More generally the Poisson’s ratio for the longitudinal direction l and the transverse direction t can be
written [41]

νlt = −
εt

ε l
(10)

where εt and ε l are strains in transverse and longitudinal direction, respectively.
In the case of non-homogeneous material, the homogenization technique [42] is used. The effective

value of the Poisson’s ratio is defined as a negative ratio of the average transverse to longitudinal strains:

νe f f = −
〈εt〉
〈ε l〉

, (11)

where 〈εt〉 and 〈ε l〉 are average strains in transverse and longitudinal direction, respectively.
In the case of a large deformation, however, the expression describing effective PR might require

more complex, nonlinear form. The logarithmic PR model is expressed by the following formula:

νe f f = −
log (1 + 〈εt〉)
log (1 + 〈ε l〉)

, (12)

but other models could also be considered [43].
The average strain is defined as 〈ε〉 =

∫
V εdV/V, where ε is strain in a given direction and V is

the volume of the considered composite. This equation is proper only if volume V is fully filled by
materials. If the analyzed composite is not fully filled, the strain is expressed as the change in length
∆L per unit of the original length L of the sample. When the sample is stretched or compressed along
the y-axis, the average transverse strain is defined as:

〈εt〉 =

∫
Γ1

uxdΓ

L
∫

Γ1
dΓ

, (13)

where Γ1 is the free boundary (x = L). The average longitudinal strain is defined as:

〈ε l〉 =

∫
Γ2

uydΓ

L
∫

Γ2
dΓ

, (14)

where Γ2 is the boundary (y = L) where prescribed displacement boundary condition is applied.
The Poisson’s ratio of an isotropic, linearly elastic material can neither be less than −1.0 nor

greater than 1
D−1 , where D is the number of dimensions of problem (D = 2 or 3). The limits of PR for

isotropic solids possess fundamental significance. Shape is preserved at the lower limit of ν = −1.
Volume is preserved at the upper limit ν = 1/2 (for 3D) while area is preserved at upper limit ν = 1
(for 2D). In anisotropic material, there is no bounds for the value of Poisson’s ratio [44].

3. Modelling of Thermoauxetic Composites

Four new structures built on the basis of two well-known auxetic structures, re-entrant honeycomb
(RH) and anti-tetrachiral (AT), are analyzed in this paper. Both geometries have been modified so
that empty spaces occurring in original structures are partially or completely filled with material
characterized with material properties other than the material of the structure. The basic geometries
are known to be auxetic so that negative values of the Poisson’s ratio of these structures is not
surprising. For that reason, they were selected—to show that their well-known feature (auxeticity)
could be modified and controlled through some structural modifications and thermal conditions.
The temperature range is selected so that it could be easily attainable in experimental studies,
the Young’s modulus of the stiffer material does not change significantly and the softer material
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remains in the range of elasticity. Hence, we obtained a tunable microstructure of auxetic/non-auxetic
material. In Figure 1a, the RH structure with a link connecting re-entrant sides of the honeycomb cell is
presented. The same geometry with completely filled voids is presented in Figure 1b. Anti-tetrachiral
structure with linking elements is presented in Figure 1c and the same one with filled voids is
presented in Figure 1d. In all considered cases, basic auxetic structures are made of stiff material whose
material parameters are only slightly temperature-dependent, whereas linking (or filling) materials are
characterized by Young’s modulus whose values change with temperature (from 200 K to 400 K) by at
least one order of magnitude.Materials 2018, 11, x FOR PEER REVIEW  5 of 12 
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Figure 1. Analyzed auxetic unit cells (light gray) with linking/filling material (dark gray):
(a) modified re-entrant honeycomb; (b) filled re-entrant honeycomb; (c) modified anti-tetrachiral;
(d) filled anti-tetrachiral.

Modified RH geometry is characterized by several parameters; most of them describe auxetic
geometry which has already been studied by many and which is not considered in this paper. The only
parameter that defines exclusively the size of the linking element is P, therefore only this parameter
is considered as a variable and its influence on the composite is studied. Similarly, in the case of AT
geometry, the only parameter independent of auxetic structure geometry is F which also describes the
size of the linking element. Hence, this is the only variable parameter analyzed for this geometry.

Boundary conditions (BC) applied to the analyzed quarter of structure are defined as follows:

• right boundary: x = L and y ∈ 〈0, L〉 -free BC,
• left boundary: x = 0 and y ∈ 〈0, L〉 roller (symmetry) BC: n · u = 0, where n is the normal unit

vector to boundary,
• bottom boundary: y = 0 and x ∈ 〈0, L〉-roller (symmetry) BC: n · u = 0,
• top boundary: y = L and x ∈ 〈0, L〉-prescribed displacement: u0 = (0, ∆Ly).

The is the prescribed displacement applied on the top boundary and it describes the extension
during stretching or reduction during compressing in y-direction. In all considered cases ∆Ly = −0.1
so all samples are compressed.

The behavior of considered samples depended on temperature, so thermal stresses were also
initially taken into account. Several simulations, however, confirmed that the influence of thermal
stresses is not crucial for the deformation mechanism under assumed thermal conditions, so this
factor was omitted and the focus was only on the considered phenomenon. Moreover, a perfect
interface is considered between both constituent materials so that the continuity of displacement field
is assumed. However, in the case of experimental research one must carefully choose both materials as
the differences in thermal expansion coefficients as well as other factors could influence the behavior
of the considered structure as well as the values of resultant effective properties.

The analysis was performed with the use of material data available in Comsol Multiphysics
material. The material data in this library is based on the experimental data obtained for selected
materials [45–48]. For each considered case, both constituent materials of the considered composite
structure were carefully chosen in order to provide required Young’s moduli ratio between them.
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Furthermore, the material used to create cellular auxetic structure had to be stiff and its mechanical
properties were expected to not change significantly within assumed temperature range. Therefore
steel, aluminum and Armco materials were selected as the values of Young’s moduli of these
materials are either close to constant or changes slightly in a linear way. On the contrary, the value of
Young’s modulus of the linking/filling material was expected to be considerably lower and strongly
temperature-dependent so that polymeric materials (PMMA, polyamide) were selected. In order to
present wider range of possible change in the effective PR and due to limited access to experimental
data, computational material was also used, for which the Young’s modulus was assumed to be
linearly changing according to the following formula: E(T) = (Emax − Emin)(Tmax − T)/(Tmax − Tmin),
where Tmin and Tmax defined the temperature range (Tmin = 200 K and Tmax = 400 K) and Emax,
Emin were respectively the maximum and the minimum value of Young’s moduli for these temperatures.
The formula for E(T) is linear as nonlinearities would not change the result qualitatively but only
quantitatively. Moreover, Young’s moduli of considered real materials are also changing quasi-linearly
in the assumed temperature range. This computational material, however, allowed for better analysis
and highlighting of the phenomenon. The value of Poisson’s ratio of the computational materials
was assumed constant as stated in Table 1. Moreover, the use of this computational material allowed
application of a wider range of Young’s modulus for assumed temperature range and resulted in a
wider range of effective Poisson’s ratio of considered structures.

Table 1. Basic characteristics of materials used in selected structures.

Geometry
Type

Sample Materials
Material 1/Material 2

Young’s Modulus, E [GPa] (200 K–400 K) Poisson’s Ratio, υ (200 K–400 K)

Stiff Auxetic
Structure Material 1

Linking/Filling
Material 2

Stiff Auxetic
Structure Material 1

Linking/Filling
Material 2

Modified RH
steel/computational 200 200–20 0.33 0.33

aluminum/polyamide 70 8.5–7.2 0.33 0.36

Filled RH
steel/computational 200 10–1 0.33 0.33
Armco iron/PMMA 216–208 6.9–4.03 0.29 0.33–0.36

Modified AT
steel/computational 200 50–5 0.33 0.33
aluminum/PMMA 70 8.5–7.2 0.33 0.33–0.36

Filled AT
steel/computational 200 20–2 0.33 0.33
Armco iron/PMMA 216–208 6.9–4.03 0.29 0.33–0.36

The geometries of both considered shapes are presented in the Figure 2.
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4. Results

Finite element analysis was performed with the use of Comsol Multiphysics software. In all
cases, the two-dimensional model was considered with the assumption of plane stress approximation.
Triangular elements with 2nd order Lagrange polynomials as shape functions were used to create the
mesh. The number of mesh elements varied and was in the range of 10,000–15,000 elements and about
150,000 degrees of freedom.

The results obtained for auxetic geometry with linking material were parametrized in order
to present the influence of the geometrical parameter that defined basic dimension of linking
elements. Hence, the plots consisted of multiple curves as opposed to plots obtained for geometries
completely filled.

The results obtained for anti-tetrachiral geometry are presented in Figure 3a for the structure built
with a linking element made of computational material and in Figure 3b for the structure made of real
materials. The parameter P describes one dimension of linking a rectangular element (see Figure 2),
the other dimension results from the geometry of the cell. The temperature dependence of effective
Poisson’s ratio υeff in the first case changes more than 0.3, e.g., for P = 0.3, υeff changes from 0.15 at 200 K
to almost −0.2 at 400 K. With the decrease of P value (thinning of the linking element), both values of
υeff and the range of υeff decrease. The structure made of real materials shows the same tendency—the
value of υeff decreases with the increase of temperature. In particular, for P = 0.3, the value of υeff
changes form the positive value 0.07 at 200 K to −0.03 at 400 K.
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Figure 3. Effective Poisson’s ratio for AT (anti-tetrachiral) geometry with linking elements in the case
of (a) computational linking material; (b) real linking material. Geometry parameters: L = 1, R = 0.33,
r = 0.25, P—a variable parameter.

In the case of anti-tetrachiral geometry with completely filled voids, the resultant composite can
still exhibit auxetic behavior if the ratio of Young’s moduli of the constituents is sufficient. Figure 4a
shows the results obtained for a composite filled with computational material where the value of
υeff decreases from 0.2 at 200 K to −0.27 at 400 K. The results obtained for the structure made of real
materials are different when it comes to the range of the effective Poisson’s ratio but the behavior is
similar to that obtained with the computational material. The range of υeff starts at 0.02 and decreases
to −0.08 (see Figure 4b).

In general, the influence of temperature is non-linear and it strongly depends on the characteristics
of each constituent material as well as on the geometry. It is, however, easily noticeable that in the
case of geometry with linking elements, the relation between υeff and temperature is almost linear in
a wide range of temperatures. The same linear relation can be observed with the completely filled
geometry, although the range is not so wide. This observation suggests that these characteristics can
be optimized by careful selection of geometrical parameters and materials used.
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Similar analysis was performed for the re-entrant honeycomb geometry. In the case of geometry
modified by a linking element, parameter F is crucial. The results indicating both the impact of the
temperature and the parameter F are presented in Figure 5a for computational element and in Figure 5b
for real materials. Huge difference in behavior can be observed between the composite built with
computational material and the one made of real materials. Yet, the difference is mainly due to the
strong non-linear behavior in the range of temperatures above 350 K, presented in Figure 5a, while υeff
changes almost linearly in the whole range of temperatures in the case of structure made of real
materials. This confirms that precise selection of materials and parameters is crucial. The results
presented in Figure 5a show that, theoretically, it is possible to build a composite whose effective
Poisson’s ratio is temperature tunable in a very wide range—in this case of υeff starts form almost 0.15
at 200 K and decreases to −0.35 at 400 K for the parameter F = 0.05.
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the case of (a) computational linking material; (b) real linking material. Parameters of the geometry:
L = 1, B = 0.1, D = 0.15, G = 0.25, F—variable parameter.

The last analysis deals with the AT geometry with completely filled voids. The results presented
for computational filling material (see Figure 6a) and real filling material (see Figure 6b) may seem
very similar, however υeff ranges are very different. The value of υeff decreases from 0.05 at 200 K
to −0.65 at 400 K for the structure with computational material and such range is a huge change of
effective Poisson’s ratio. Nonetheless, the range of υeff for the structures made of real materials is
also very wide: υeff changes from 0.02 at 200 K to −0.18 at 400 K, which is very promising. It also
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confirms the possibility of manufacturing composite structures with tunable Poisson’s ratio controlled
by temperature or other phenomena that could influence significantly the values of Young’s modulus.
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All simulations were performed with the use of boundary conditions mentioned above which
means that the structure analyzed was in fact a quarter of material sample built of 4 unit cells. The
main reason was that such complicated structures are difficult to be manufactured and so it could be
easier to produce structures built of a small number of unit cell and compare them with the results of
numerical analysis. However, the results were also validated for samples built of greater number of
unit cells as well as with periodic structure. It has been shown [49] that results obtained for increasing
number of repeating unit cell should converge to the results obtained for unit cell with periodic
boundary conditions applied. Such convergence was also noticeable in our studies and exemplary
results for selected numbers of unit cells Nc and repeating unit cell (RUC) are presented in Figure 7a.
The dashed line represents the value of the effective PR computed for RUC with periodic boundary
conditions. The convergence of FEM was also checked for increasing number of degrees of freedom.
The plot showing the convergence of results with the increase of the number of degrees of freedom
for selected value of temperature T = 250 K is presented in Figure 7b. It is easily noticeable that the
method converges very well and the resultant effective Poisson’s ratio varies in a very small range
(less than 1%).
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(b) Result of convergence analysis with respect to the number of degrees of freedom for selected value
of T = 250 K.
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5. Conclusions

The analysis of four composite structures is presented in this paper. Geometries are based on two
popular auxetic structures, anti-tetrachiral and re-entrant honeycomb and modified by introduction of
another material highly sensitive to the change of temperature. Resultant composite structures are also
strongly temperature-dependent and so it is possible to actively tune the effective Poisson’s ratio and
switch its value form positive to negative. The change of the effective Poisson’s ratio is determined
by geometrical parameters of the structure as well as by temperature-dependent properties of each
constituent. Results of this study were obtained numerically for materials subjected to temperatures in
the range from 200 K to 400 K. All simulations were performed with the use of both computational
materials, characterized by assumed elastic properties and real materials (aluminum, Armco iron,
PMMA, polyamide) for reference. The results agreed well with each other and confirmed the possibility
of manufacturing composite structures with tunable Poisson’s ratio controlled by temperature or other
phenomena that could influence significantly the values of Young’s modulus. Naturally, computational
material provided a wider range of effective Poisson’s ratio but the results obtained for real materials
data were also very promising.
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